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The matrix element for the decay of orthopositronium to three photons can be expressed in terms of three
independent amplitudes. We describe the analytic evaluation of these amplitudes, both to lowest order and with
the inclusion of all one-loop corrections. We use these amplitudes to find precise values for the one-loop
correction to the orthopositronium decay rate �1=−10.286606�10��� /���LO, and for the order-�2 “square”
correction to the decay rate �2�square�=28.860�2��� /��2�LO, where �LO is the lowest order rate. We give in
explicit form the function describing the one-loop correction to the distribution in phase space of the final state
photons.
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I. INTRODUCTION

Positronium, the electron-positron bound state, is well
suited for probing many fundamental aspects of particle
physics �1�. The physics of positronium is governed almost
exclusively by the electromagnetic force—weak interaction
effects are negligible compared to present experimental and
theoretical uncertainties �2–5�. As a consequence, positro-
nium is an ideal system for testing QED through high preci-
sion comparison between experimental and theoretical re-
sults for energy levels and decay rates. The states of
positronium are eigenstates of the charge conjugation and
parity operators C and P, so positronium can be used to test
the discrete symmetries C , P, and T and combinations
thereof �6�. Positronium has been the focus of many past and
ongoing attempts to observe physics beyond the standard
model �7,8�. In this work we focus on the decay of spin-1
orthopositronium to three photons.

The orthopositronium decay rate has been the subject of
continuing experimental and theoretical work since the first
measurement by Deutsch in 1951 �9�. A summary of all ex-
perimental and theoretical results has been given by Adkins,
Fell, and Sapirstein �10� and updated with commentary by
Rubbia �8� and by Sillou �11�. By 1990 it was apparent that
there was an “orthopositronium lifetime puzzle,” as the most
precise experimental determinations �gas �12� and vacuum
�13� results from the Michigan group� were in disagreement
with theory �14,15� by several standard deviations. Many
experiments were mounted to look for exotic decays of or-
thopositronium in an attempt to resolve the discrepancy
�8,16–19�. Newer, somewhat less precise powder results
from the Tokyo group in 1995 �20� and 2000 �21� were con-
sistent with theory and inconsistent with the earlier Michigan
results. In 2000 the calculation of all O��2� corrections to the
decay rate were completed �10,22�. Including yet higher or-
der logarithmic corrections as well �23–25�, the theoretical
prediction is �10�

��theory� = 7.039979�11� �s−1. �1�

The O��2� correction was found to be not unusually large,
leaving the discrepancy with the Michigan results intact. Fi-
nally, in 2003 the lifetime puzzle was resolved by two high-
precision results from the Tokyo �26� and Michigan �27�
groups:

��Tokyo� = 7.0396�12stat��11syst� �s−1 �2a�

��Michigan� = 7.0404�10stat��8syst� �s−1, �2b�

consistent with each other and with theory.
The resolution of the ortho-Ps lifetime puzzle does not

decrease the long-term usefulness of positronium decay as a
probe of fundamental physics. Ongoing and proposed experi-
ments involving positronium decay include those of Refs.
�6,8,27–29�. One challenge is to improve the experimental
precision of the ortho-Ps decay rate �currently about 200
ppm� to a level closer to the present theoretical value �about
2 ppm�. The O��2� contribution to that rate is 250 ppm, so
improved experimental precision will be required in order to
test the O��2� calculated result.

In this work we describe an analytic evaluation of the
one-loop ortho-Ps→3� decay amplitudes. We use these am-
plitudes to obtain a precise value for the O��� decay rate
contribution, and also to calculate the part of the O��2� cor-
rection coming from the square of the one-loop amplitudes.
These results have been reported already �30�—here we give
further details. We also supply an explicit analytic expression
for the O��� differential decay rate in terms of photon energy
variables. From the differential decay rate it is easy to obtain
the O��� corrected one-photon energy spectrum. �This en-
ergy spectrum, calculated more laboriously by numerical
methods, has been useful in developing simulations of ex-
perimental arrangements �20,26�.�

We adapt the formalism of covariant decay amplitudes,
originally developed for the study of Z boson decay to three
photons �31�, to the case of ortho-Ps→3�. In Sec. II we use
the extensive symmetries of the decay tensor to show that
there are only three independent amplitudes for the ortho-*Electronic address: gadkins@fandm.edu
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Ps→3� decay. In Sec. III we express the decay amplitudes
in terms of helicity variables since the spin sums are most
convenient in this form. In Sec. IV the integral for the decay
rate is reduced to its minimal two-dimensional form. In Sec.
V the preceeding formalism is applied to the lowest-order
decay process and the lowest-order decay rate of Ore and
Powell �32� is reproduced. In Sec. VI the method of Pas-
sarino and Veltman �33� for evaluating one-loop integrals is
developed. In Sec. VII the one-loop calculation is described.
Finally, in Sec. VIII our results for the O��� and part of the
O��2� decay rates are given. The Appendix contains our ex-
plicit form for the one-loop decay distribution.

II. SYMMETRIES OF THE DECAY TENSOR

The decay of the massive vector particle orthopositronium
to three photons is described by the matrix element �34�

M = �1�1

* �2�2

* �3�3

* ��M�1�2�3��k1,k2,k3� , �3�

where the three photons have momenta ki and polarizations
�i, and the positronium atom has momentum P=k1+k2+k3
and polarization �. The decay tensor is a linear combination
of terms like ka

�1kb
�2kc

�3kd
� , ka

�1kb
�2g�3�, and g�1�2g�3�. The

most general such tensor has 81 terms of the first type, 54 of
the second, and 3 of the third. However, gauge invariance
and Bose symmetry reduce the number of independent con-
tributions to only three �31�. We review the argument below.

Because the decay tensor is always contracted with physi-
cal polarization vectors of on-shell photons, which satisfy
�a�ka

�=0 �for a=1, 2, or 3�, we can drop terms containing
factors of k1

�1 , k2
�2, and k3

�3. This leaves only 24 terms of the
first type, 30 of the second, and still 3 of the third.

By Bose symmetry, the tensor M is totally symmetric un-
der photon interchange. This means, for the interchange of
photons 1 and 2, that

M�1�2�3��k1,k2,k3� = M�2�1�3��k2,k1,k3� . �4�

This symmetry leaves only four independent terms of the
first type, six of the second, and one of the third. The decay
tensor can be written in the manifestly symmetric way

M�1�2�3��k1,k2,k3� = �
S3

M�1�2�3��k1,k2,k3� , �5�

where the sum is over the six photon permutations, and the
tensor M has the form

M�1�2�3��k1,k2,k3�

= a1�k1,k2,k3�k3
�1k1

�2k1
�3k1

� + a2�k1,k2,k3�k3
�1k3

�2k1
�3k1

�

+ a3�k1,k2,k3�k3
�1k3

�2k2
�3k1

� + a4�k1,k2,k3�k3
�1k1

�2k2
�3k1

�

+ b1�k1,k2,k3�k1
�2k1

�g�1�3 + b2�k1,k2,k3�k3
�2k1

�g�1�3

+ b3�k1,k2,k3�k3
�1k1

�g�2�3 + b4�k1,k2,k3�k1
�2k2

�3g�1�

+ b5�k1,k2,k3�k1
�2k1

�3g�1� + b6�k1,k2,k3�k3
�2k2

�3g�1�

+ c�k1,k2,k3�g�1�g�2�3. �6�

The quantities ai�k1 ,k2 ,k3� , bi�k1 ,k2 ,k3�, and c�k1 ,k2 ,k3� are

scalar functions of their arguments, and b5 , b6, and c are
symmetric under the interchange k2↔k3.

Gauge invariance requires that the tensor M be transverse

k1�1
M�1�2�3��k1,k2,k3� = 0, �7�

with similar relations holding for contractions with k2�2
and

k3�3
. The condition of Eq. �7� provides 13 independent rela-

tions among the 19 variables ai�k1 ,k2 ,k3� , ai�k1 ,k3 ,k2� ,
bi�k1 ,k2 ,k3� , bi�k1 ,k3 ,k2� , b5�k1 ,k2 ,k3� , b6�k1 ,k2 ,k3�, and
c�k1 ,k2 ,k3� �with i=1, 2, 3, 4�, which lead �using permuta-
tion symmetry� to three independent solutions. So, the tensor
M can be expressed in terms of three scalar functions A1 ,A2,
and A3 as

M�1�2�3��k1,k2,k3�

= A1�k1,k2,k3�
1

k1k3
� k3

�1k1
�3

k1k3
− g�1�3�k1

�� k3
�2

k2k3
−

k1
�2

k1k2
�

+ A2�k1,k2,k3�� 1

k2k3
� k1

�k3
�1

k1k3
− g��1�� k1

�2k2
�3

k1k2
− g�2�3�

+
1

k1k3
� k1

�2

k1k2
−

k3
�2

k2k3
��k1

�3g��1 − k1
�g�1�3�	

+ A3�k1,k2,k3�
1

k1k3
� k1

�k3
�1

k1k3
− g��1�� k3

�2k2
�3

k2k3
− g�2�3� .

�8�

The amplitudes A1 ,A2, and A3 can be identified by writing
the decay tensor as

M�1�2�3��k1,k2,k3�

= − A1�k1,k2,k3�k3
�1k1

�2k1
�3k1

���k1k3�2�k1k2��−1

+ A2�k1,k2,k3�k3
�1k1

�2k2
�3k1

���k1k2��k2k3��k3k1��−1

+ A3�k1,k2,k3�k3
�1k3

�2k2
�3k1

���k1k3�2�k2k3��−1

+ ¯ . �9�

One finds A1 , A2, and A3 by taking the coefficients of
k3

�1k1
�2k1

�3k1
� , k3

�1k1
�2k2

�3k1
�, and k3

�1k3
�2k2

�3k1
�.

III. HELICITY AMPLITUDES

The formula for the ortho-Ps→3� decay rate involves the
absolute square of the decay matrix element summed over
final state spins and averaged over the initial state spin:


M
2 = �
�1,�2,�3

1

3�
�


M
2. �10�

This is a Lorentz invariant quantity, and can be calculated in
any frame. It is convenient to calculate it in a two-photon
center-of-mass frame.

Since we will use the orthopositronium center of mass
frame for the decay rate integration, it is useful to express
our results in terms of invariant variables. A convenient set is
given by the Mandelstam variables, which are defined by

sij = sji = �ki + kj�2 = 2kikj , �11�

and satisfy

GREGORY S. ADKINS PHYSICAL REVIEW A 72, 032501 �2005�

032501-2



sij + sjk + ski = MPs
2 , �12�

where MPs here is the orthopositronium mass and �i , j ,k� is
any permutation of �1,2 ,3�. Bar variables are defined by

s̄ij = MPs
2 − sij = sik + sjk. �13�

They satisfy

s̄ij + s̄ jk + s̄ki = 2MPs
2 . �14�

We note that each sij and s̄ij is non-negative.
We calculate 
M
2 in the k1k2 center-of-mass frame. The

photon and positronium momentum vectors in �E , px , py , pz�
notation are given by

k1 = �k,0,0,k� ,

k2 = �k,0,0,− k� ,

k3 = �q,q sin �,0,q cos �� ,

P = �E,q sin �,0,q cos �� , �15�

where E2=q2+MPs
2 . The k1k2 center-of-mass frame kinematic

variables are given in terms of invariants by

k =
s12

2
,

q =
s̄12

2s12

,

E =
MPs

2 + s12

s̄12

,

sin � =
2s13s23

s̄12

. �16�

The helicity vectors for photon 1 are

ê1
+ =

1
2

�0,− 1,− i,0� ,

ê1
− =

1
2

�0,1,− i,0� . �17�

For photon 2 we rotate these by 180° around the y axis using

R2 = �− 1 0 0

0 1 0

0 0 − 1
� �18�

to find

ê2
± = R2ê1

± = ê1
�. �19�

For photon 3 we rotate using

R3 = � cos � 0 sin �

0 1 0

− sin � 0 cos �
� �20�

to find

ê3
+ = R3ê1

+ =
1
2

�0,− cos �,− i,sin �� ,

ê3
− = R3ê1

− =
1
2

�0,cos �,− i,− sin �� . �21�

The positronium spin ±1 helicity vectors are the same as
those for photon 3:

êPs
± = ê3

±, �22�

while the positronium spin 0 helicity vector is

êPs
0 =

1

MPs
�q,E sin �,0,E cos �� . �23�

The helicity amplitudes are defined by

M	1	2	3	 = ê1�1

	1* ê2�2

	2* ê3�3

	3*ePs�
	 M�1�2�3��k1,k2,k3� . �24�

There are nine independent helicity amplitudes with 	1=+.
They are

M++++ = 2�− A1�123� + A1�132�
s̄12

+
A2�123� − A2�132�

s̄12

−
s23A3�132�

s12s̄12

−
A3�312�

s23
+ �1 ↔ 2�	 , �25a�

M+++− = 2�A1�123� − A1�132�
s̄12

+
− A2�123� + A2�132�

s̄12

−
A3�123�

s13
−

s13A3�132�
s12s̄12

+ �1 ↔ 2�	 , �25b�

M++−+ = 2�−
A1�132�

s̄12

+ �1 ↔ 2�	 , �25c�

M++−− = 2�A1�132�
s̄12

+
− A2�123� − A2�132�

s23
−

A3�312�
s23

+ �1 ↔ 2�	 , �25d�

M+−++ = 2�A1�123�
s̄12

+
− A2�123� − A2�132�

s̄12

+
− A2�312� − A2�321�

s12
−

A3�213�
s23

−
s23A3�231�

s12s̄12
	 ,

�25e�
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M+−+− = 2�−
A1�123�

s̄12

+
s13�− A2�123� − A2�132��

s23s̄12

−
s13A3�231�

s12s̄12
	 , �25f�

M+++0 =
2


MPs
2 � r13�A1�123� − A1�132��

s̄12

− s̄12A1�312�

+
r13�− A2�123� + A2�132��

s̄12

+ s̄12A2�312�

+
s12s23A3�123�

s13
+

�MPs
2 + s12�s13s23A3�132�

s12s̄12

+
s12s13A3�312�

s23
− �1 ↔ 2�	 , �25g�

M++−0 =
2


MPs
2 � r13A1�132� − r23A1�231�

s̄12

+ s12�A2�123� + A2�132� − A2�213� − A2�231��

−
s12s13A3�312�

s23
+

s12s23A3�321�
s13

	 , �25h�

M+−+0 =
2


MPs
2 �−

r13A1�123�
s̄12

− s̄12A1�321�

+
�MPs

2 + s12�s13�A2�123� + A2�132��
s̄12

+ s13�A2�312� + A2�321�� +
s12s13A3�213�

s23

+
�MPs

2 + s12�s13s23A3�231�
s12s̄12

	 , �25i�

where we have used the abbreviated notation Ai�abc�
=Ai�ka ,kb ,kc� and the definitions

rij = MPs
2 sij − siksjk,


 = MPs
2

2s12s13s23
. �26�

The other three 	1=+ amplitudes are related to the previous
ones by

M+−−+ = M+−+−�1 ↔ 2� ,

M+−−− = M+−++�1 ↔ 2� ,

M+−−0 = M+−+0�1 ↔ 2� . �27�

The 	1=− amplitudes are given by the parity relations

M−	2	3± = M+−	2−	3�,

M−	2	30 = − M+−	2−	30. �28�

The squared decay matrix element can be written as


M
2 =
2

3 �
	2,	3,	


M+	2	3	
2. �29�

IV. THE DECAY RATE INTEGRAL

We will calculate the ortho-Ps→3� decay rate integral in
the positronium center of mass frame. The decay rate integral
is given by

� =
1

3!

1

2MPs
� d3k1

�2��32�1

d3k2

�2��32�2

d3k3

�2��32�3
�2��4

� �P − k1 − k2 − k3�
M
2, �30�

where �i= 
k�i
 are the photon energies. Of the nine variables
in k�1 ,k�2 ,k�3, four are determined in terms of the others by
energy-momentum conservation

�1 + �2 + �3 = MPs,

k�1 + k�2 + k�3 = 0. �31�

Three variables describe the orientation in space of the decay
plane. The remaining two variables describe the relative ori-
entation of the photons in the decay plane. We will use the
energies of two of the photons for this last pair of variables.
Each photon can have any energy between 0 and W
=MPs/2. We find it convenient to introduce dimensionless
variables xi=�i /W which satisfy 0�xi�1, x1+x2+x3=2 and
are given in terms of invariants by xi= s̄ jk /MPs

2 . In terms of
the x’s, one has

� =
W

768�3�
0

1

dx1�
1−x1

1

dx2
M
2. �32�

V. THE LOWEST ORDER DECAY RATE

The lowest order decay amplitude is given by

MLO = �
S3

tr��− ie��3
*�

i

��− P/2 + k3� − m

� �− ie��2
*�

i

��P/2 − k1� − m
�− ie��1

*��� , �33�

where the sum is over the six permutations of the final state
photons. The wave function factor is given by

� = 2MPs�0 �� · �̂/2

0 0
��0, �34�

which contains the spin-1 spin factor, a normalization factor,
and the wave function at contact

�0 =m3�3

8�
. �35�

We write
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�0 �� · �̂

0 0
� =

1

4
��N + 1�����N − 1� �36�

for the positronium spin factor where N= P / �2W�. The low-
est order decay amplitude �see Fig. 1� becomes

MLO =
− i��3

4 �
S3

1

x1x3
tr���3

*�− �R3 + 1���2
*��R1 + 1�

� ��1
*��N + 1�����N − 1�� , �37�

where Ri=N−Ki, Ki=ki /W, and W�m. The lowest order
decay tensor has the corresponding form

MLO
�1�2�3� =

− i��3

4 �
S3

1

x1x3
tr���3�− �R3 + 1���2��R1 + 1�

� ��1��N + 1�����N − 1�� . �38�

We replace N by �K1+K2+K3� /2 and expand this out, and
identify the Ai functions by use of Eq. �9�. The lowest order
functions are

A1
LO�x1,x2,x3� = 0,

A2
LO�x1,x2,x3� = 16i�m2�3 x̄1x̄2x̄3

x1x2x3
,

A3
LO�x1,x2,x3� = 0, �39�

where xi= s̄ jk /MPs
2 and x̄i=1−xi=sjk /MPs

2 . Clearly, A2
LO is a

factor in each helicity amplitude. One has

M++−−
LO =

− x3

x̄1x̄2

A2
LO

m2 ,

M+−++
LO = M+−−−

LO =
− 1

x3x̄3

A2
LO

m2 ,

M+−+−
LO =

− x̄2

x̄1x3

A2
LO

m2 ,

M+−−+
LO =

− x̄1

x̄2x3

A2
LO

m2 ,

M+−+0
LO =

x̄2

x3
 2

x̄1x̄2x̄3

A2
LO

m2 ,

M+−−0
LO =

x̄1

x3
 2

x̄1x̄2x̄3

A2
LO

m2 , �40�

with all other M+	2	3	
LO amplitudes equal to zero. One finds

that


MLO
2 =
512

3
�2�6�� x̄1

x2x3
�2

+ � x̄2

x1x3
�2

+ � x̄3

x1x2
�2	 .

�41�

The lowest order decay rate is the Ore and Powell result �32�

�LO =
2

9�
m�6�

0

1

dx1�
1−x1

1

dx2

� �� x̄1

x2x3
�2

+ � x̄2

x1x3
�2

+ � x̄3

x1x2
�2	

=
2

9�
��2 − 9�m�6. �42�

VI. ONE-LOOP INTEGRALS

We used the method of Passarino and Veltman �33� to
evaluate the one-loop integrals. Since this approach is widely
used, and lengthy to describe in detail, we will just list the
one-loop integrals that are required but only work the scalar
integrals out in detail. The Passarino-Veltman method will be
illustrated in the case of the three-point functions.

The general definition of the one-loop form factors is
through

�X0,X�,X��,…� = �2�� �dq��n�1,q�,q�q�,…�

� ��− q2 + m1
2��− �q + p1�2 + m2

2�

� �− �q + p1 + p2�2 + m3
2� ¯ �−1. �43�

Ultraviolet divergences are controlled through dimensional
regularization with n=4−2� the dimensionality of space-
time. We define �dq��n=dnq / �i�n/2�. The quantity � is a ref-
erence mass introduced with the regularization which we
take to be equal to the electron mass m. Functional depen-
dences on the masses and momenta are indicated by
X�m1 ,m2 ,m3 ,… ; p1 , p2 ,…�.

The one-point function is trivially evaluated:

A�m1� = m2�� �dq��n
1

�− q2 + m1
2�

= − m1
2���� + Ā�m1� + O��� ,

�44�

where

Ā�m1� = − m1
2�1 − ln�m1

2/m2�� . �45�

The two-point functions are defined by

FIG. 1. The lowest order ortho-Ps→3� decay graph. The factor
on the right represents the initial spin-1 wave function.
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�B0,B�,B��� = m2�� �dq��n�1,q�,q�q��

� ��− q2 + m1
2��− �q + p�2 + m2

2��−1. �46�

The scalar function B0 is

B0�m1,m2;p� = m2�� dx
����

� = ���� + B̄0�m1,m2;p� ,

�47�

where 
= �1−x�m1
2+xm2

2−x�1−x�p2 and

B̄0�m1,m2;p� = −� dx ln�
/m2� . �48�

All parametric integrals will be taken between the limits 0
and 1. The cases of interest are

B̄0�0,m;p� = 2 +
1 − �

�
ln�1 − �� , �49�

where �= p2 /m2, and

B̄0�m,m;p� = 2�1 −4 − �

�
arctan �

4 − �
	 , �50�

valid for 0���4.
The three-point functions are defined by

�C0,C�,C��,C���� = m2�� �dq��n�1,q�,q�q�,q�q�q��

� ��− q2 + m1
2��− �q + p1�2 + m2

2�

� �− �q + p1 + p2�2 + m3
2��−1. �51�

The general forms for C� ,C��, and C��� are

C� = p1�C11 + p2�C12, �52a�

C�� = p1�p1�C21 + p2�p2�C22 + �p1p2���C23 + g��C24,

�52b�

C��� = p1�p1�p1�C31 + p2�p2�p2�C32 + �p1p1p2����C33

+ �p1p2p2����C34 + �p1g����C35 + �p2g����C36,

�52c�

where

�pk��� = p�k� + k�p�,

�ppk���� = p�p�k� + p�k�p� + k�p�p�,

�pg���� = p�g�� + p�g�� + p�g��. �53�

The only divergent terms here are C24 , C35, and C36.
We illustrate the Passarino-Veltman procedure by describ-

ing the evaluation of C11 and C12 in terms of C0 and the B
functions. We start by multiplying Eq. �52a� by p1

� and p2
�:

p1
2C11 + p12C12 = �q · p1�C � R1, �54a�

p12C11 + p2
2C12 = �q · p2�C � R2, �54b�

where pij = pi · pj and ��C is the integral operator on the right-
hand side �RHS� of Eq. �51� �so that for example C0= �1�C�.
We write Eqs. �54a� and �54b� as

X�C11

C12
� = �R1

R2
�, X = � p1

2 p12

p12 p2
2 � �55�

with the solution

�C11

C12
� = X−1�R1

R2
� . �56�

We find R1 and R2 by noting that

q · p1 =
− 1

2
�− �− q2 + m1

2� + �− �q + p1�2 + m2
2� + f1� ,

�57a�

q · p2 =
− 1

2
�− �− �q + p1�2 + m2

2�

+ �− �q + p1 + p2�2 + m3
2� + f2� , �57b�

where

f1 = m1
2 − m2

2 + p1
2, �58a�

f2 = m2
2 − m3

2 + �p1 + p2�2 − p1
2. �58b�

Then we see that

R1 = �qp1�C =
− 1

2
�− B0�m2,m3;p2� + B0�m1,m3;p1 + p2�

+ f1C0�m1,m2,m3;p1,p2�� , �59a�

R2 = �qp2�C =
− 1

2
�− B0�m1,m3;p1 + p2� + B0�m1,m2;p1�

+ f2C0�m1,m2,m3;p1,p2�� . �59b�

Since the B functions are already known, only the scalar C0
function remains to be computed. Similarly, the C2i functions
can be evaluated in terms of the C1i’s and B’s, etc. At each
level in the ladder, only the scalar functions are new.

The general three-point scalar integral is

C0�m1,m2,m3;p1,p2� =� �dq����− q2 + m1
2��− �q + p1�2 + m2

2�

� �− �q + p1 + p2�2 + m3
2��−1

=� dzdx
z



, �60�

where the limit n→4 has been taken since C0 is ultraviolet
finite, and �dq����dq��4=d4q / �i�2�. For 
 one finds


 = �1 − z�m1
2 + z�1 − x�m2

2 + zxm3
2 − z�1 − z�p1

2

− xz�1 − z�2p12 − xz�1 − xz�p2
2. �61�

The cases of interest here are
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C0�0,m,m;p1,p2� =
1

2p12
�Li2� p1

2 + 2p12

m2 � − Li2� p1
2

m2�	
�62�

which holds when p2
2=0,

C0�0,m,m;p1,p2�

=
1

2m2�
�Li2�1 − 2�� + 2��2� − 2�arctan1 − �

�
�2	 ,

�63�

which holds when p1
2=m2 and �2p1+ p2�2=0 and where �

=2+ p12/m2; and

C0�m,m,m;p1,p2� =
− 1

2p12
�L� �p1 + p2�2

m2 � − L� p1
2

m2�	 ,

�64�

where p2
2=0 and

L�s� =� dz
ln„1 − z�1 − z�s…

�1 − z�
= − 2�arctan s

4 − s
�2

.

�65�

The dilogarithm function Li2�x� is discussed in detail by
Lewin �35�.

The four-point functions are defined by

�D0,D�,D��,D���,D�����

=� �dq���1,q�,q�q�,q�q�q�,q�q�q�q��

� ��− q2 + m1
2��− �q + p1�2 + m2

2��− �q + p1 + p2�2 + m3
2�

� �− �q + p1 + p2 + p3�2 + m4
2��−1. �66�

We have dispensed with the regularization here since all of
the D functions needed for our calculation are ultraviolet
finite. While general expressions for D0 exist, we need only a
few special cases. In particular, we find that

D0�0,m,m,m;mN,− k1,− k2�

=
8

s12s̄12s23s̄23
�Li2� x+

D
,�� − Li2�− x−

D
,��	 , �67�

where

D =
m2s̄12

s12s̄23

, �68a�

x± =
1

2
�1 ±s23s̄12

s12s̄23
� , �68b�

tan � = s̄23

s23
, �68c�

and Li2�r ,�� is the dilogarithm of complex argument �35�.
By some transformations among the momentum vectors, one
can show that

D0�0,m,m,m;mN − k1,− k2,− k3�

= D0�0,m,m,m;mN,− k3,− k2� . �69�

Finally, we also have

D0�m,m,m,m;− k1,− k2,− k3�

=
− 4

s12s̄12s23s̄23
�Li2� y+

D1

,�1� − Li2�− y−

D1

,�1�
+ Li2� y+

D3

,�3� − Li2�− y−

D3

,�3� − Li2� y+

D0

,0�
+ Li2�− y−

D0

,0�	 , �70�

where

D0 =
s̄12s̄23

4s12s23
, �71a�

D1 =
m2s̄23

s12s23
, �71b�

D3 =
m2s̄12

s12s23
, �71c�

y± =
1

2
�1 ± 2D0� , �71d�

�1 = arctans12

s̄12

, �71e�

�3 = arctans23

s̄23

. �71f�

All of these integrals were done directly by way of Feynman
parameters.

The five-point functions are required for the ladder dia-
gram. The five-point functions are very difficult to evaluate
in general. We require only a special case, where m1=0,
m2=m3=m4=m5=m, p1=mN, p2=−k1, p3=−k2, p4=−k3.
One feature of this special case is that there is a binding
singularity: the scalar five-point function diverges, so we will
have to base our implementation of the Passarino-Veltman
formalism on the integral of the vector q�, which is finite,
instead of on the divergent scalar integral. Also, we have not
yet evaluated the three- and four-point functions with the
necessary momenta. We give the three-, four-, and five-point
functions with the special case mass and momenta values the
names E , F, and G:

�f�E = m2�� �dq��nf��− q2��− �q + p1�2 + m2�

� �− �q − p1�2 + m2��−1, �72a�

�f�F�p2� = m2�� �dq��nf��− q2��− �q + p1�2 + m2�

� �− �q − p1�2 + m2��− �q + p1 + p2�2 + m2��−1,

�72b�
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�f�G�p2,p3� = m2�� �dq��nf��− q2��− �q + p1�2 + m2�

� �− �q − p1�2 + m2��− �q + p1 + p2�2 + m2�

� �− �q + p1 + p2 + p3�2 + m2��−1, �72c�

where p1= p=mN. The first two of these are special cases of
the three- and four-point functions. Because of the binding
singularity, E0= �1�E, F0= �1�F, and G0= �1�G all diverge. We
start our analysis with the vector integrals E�= �q��E, F�

= �q��F, and G�= �q��G.
The three-point special case vector integral has the gen-

eral form

E� = �q��E = p�E1. �73�

It is not hard to show �by use of symmetric integration� that
E1=0, so that

E� = 0. �74�

The four-point special case vector integral has the general
form

F��p2� = �q��F = p1�F11�p2� + p2�F12�p2� . �75�

The necessary vector integrals for p2=−k1 are

F11�− k1� =
− 1

4x1
2 �Li2�1 − 2x1� − 2x1ln�2x1� − 2�2

− 4x1x̄1� + 2��2�� , �76a�

F12�− k1� =
1

x1
F11�− k1� +

1

8x1
2 �2Li2�1 − 2x1� + ��2� − 2�2� ,

�76b�

where

� = arctan x̄1

x1
. �77�

When p2=−k1−k2 one finds

F��− k1 − k2� = − F��− k3� , �78�

which implies that

F11�− k1 − k2� = − F11�− k3� + 2F12�− k3� ,

F12�− k2 − k2� = F12�− k3� . �79�

The five-point special case vector integral has the general
form

G��− k1,− k2� = �q��G = p�G11 + k1�G12 + k3�G13. �80�

The G1i functions are given by

G11�x1,x3� =
1

8x̄1

�I0�x1,x3� + I1�x1,x3��

−
1

8x̄3

�I0�x3,x1� + I1�x3,x1�� , �81a�

G12�x1,x3� =
1

16x1x̄1

��1 − 2x1�I0�x1,x3� − I1�x1,x3��

+
1

16x1x̄3

�I0�x3,x1� + I1�x3,x1�� , �81b�

G13�x1,x3� =
− 1

16x̄1x3

�I0�x1,x3� + I1�x1,x3��

−
1

16x3x̄3

��1 − 2x3�I0�x3,x1� − I1�x3,x1�� ,

�81c�

where

I0�x1,x3� =
1

x1x̄1x3x̄3

�Li2�r+,�� − Li2�r−,��� , �82a�

I1�x1,x3� =
1

�x1 − x3�
ln� x1

x3
� −

2
x3x̄3

arctan� x̄3

x3
� ,

�82b�

with r±=x̄1±x1x̄3 /x3 and �=arctanx1 / x̄1.

VII. ANALYSIS OF THE ONE-LOOP DECAY DIAGRAMS

The decay amplitudes can be written as

Ai = Ai
�0� + Ai

�1� + Ai
�2� + ¯ �83�

for i=1, 2, 3, where the superscript indicates the power of �
above that of the lowest order amplitudes Ai

�0�=Ai
LO. �Terms

of order Ai
�2� and higher also contain factors of ln�1/��.� The

expressions for the squares 
M	1,	2,	3;m
2 contain parts of the
form

Ai
*Aj = Ai

�0�*Aj
�0� + �Ai

�0�*Aj
�1� + Ai

�1�*Aj
�0�� + Ai

�1�*Aj
�1�

+ �Ai
�0�*Aj

�2� + Ai
�2�*Aj

�0�� + ¯ �84�

for various combinations of i and j. The Ai
�0�*Aj

�0� terms give
the lowest-order differential decay distribution. The
Ai

�0�*Aj
�1�+Ai

�1�*Aj
�0� terms give the order-� correction, and the

Ai
�1�*Aj

�1� and Ai
�0�*Aj

�2�+Ai
�2�*Aj

�0� terms give the order-�2 cor-
rections.

The graphs contributing to the order-� corrected decay
amplitudes Ai

�1� in the renormalized Feynman gauge are
shown in Fig. 2. The infrared divergence induced by mass-
shell renormalization is regulated by use of a photon mass 	.
The self-energy �Fig. 2�a�� and vertex graphs �Figs. 2�b� and
2�c�� contain infrared divergences of the form ln 	MLO. The
ladder graph Fig. 2�e� requires special care in its evaluation
since it contains an infrared binding singularity. This diver-
gence can be identified and subtracted out, as discussed in
detail in Ref. �10�. The result is that

ML = ��

	
+ ln 	 − 1 + O�	�	��

�
�MLO + MLS. �85�

The subtracted ladder graph is
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MLS = − i�4m2�
S3

� �d�����2��2 − 2�p���2 + 2�p�Z����−1

� ��tr��� − tr�0�� −
tr�0�
Z�0�

�Z��� − Z�0��	 , �86�

with p=mN,

tr��� =
1

4
tr������� − p� + m���3

*���� − p + k3� + m�

� ��2
*���� + p − k1� + m���1

*���� + p� + m�

� ����N + 1�����N − 1�� , �87�

and

Z��� = ��� − p + k3�2 − m2���� + p − k1�2 − m2� . �88�

The subtraction in Eq. �86� takes away the �-independent
part of tr��� /Z���, which would have had an infrared singu-
larity. This binding singularity, regulated by the photon mass,
is displayed in Eq. �85�. The contributions of the order-�
decay graphs were evaluated one by one and summed. The
1/	 binding singularity was removed according to the usual
procedure of NRQED �10,36�. The ln 	 terms cancel be-
tween the self-energy, vertex, and ladder graphs. The remain-
ing expressions are finite sums of rational functions of the xi
times logarithms, dilogarithms, and inverse tangent func-
tions.

VIII. RESULTS AND CONCLUSIONS

We use our analytic results for the order-� decay ampli-
tudes Ai

�1� to calculate the order-� correction to the ortho-
Ps→3� decay rate and a part of the order-�2 correction. The
individual amplitudes are quite lengthy and will not be dis-
played. A simplified form for the complete order-� decay
rate contribution is given in the Appendix. The result for the
order-� decay rate is �37�

�1 = − 10.286606�10�
�

�
�LO. �89�

This represents a 60-fold improvement in precision over the
previous best result −10.2866�6� �38� done using a higher

dimensional integration. The two-dimensional integral for
the part of the order-�2 correction to the decay rate coming
from the Ai

�1�*Aj
�1� terms gives �39�

�2�square� = 28.860�2���

�
�2

�LO. �90�

The previous result for this contribution was 28.8�2� �40�.
In this work we obtained analytic expressions for the

ortho-Ps→3� decay amplitudes. We used these expressions
to obtain precise results for the one-loop and “square” decay
rate contributions, which were incorporated into the full cal-
culation of two-loop corrections to the ortho-Ps→3� decay
rate �10,22�. We also give an explicit form for the one-loop
decay distribution �see the Appendix� which can be used to
obtain the one-loop energy spectrum in a convenient form.
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APPENDIX: THE ONE-LOOP CORRECTION

In the appendix we present the integral for the one-loop
correction to the decay rate in compact form. From this in-
tegral the one-loop phase-space distribution and energy spec-
trum can be obtained. We note that for very soft photons
additional effects must be taken into account in order to ob-
tain accurate results for the phase-space distribution and en-
ergy spectrum �41–44�.

The one-loop correction to the decay rate is

�1 =
m�7

36�2�
0

1

dx1�
1−x1

1

dx2
1

x1x2x3
�F�x1,x3� + permutations� ,

�A1�

where x1+x2+x3=2 and the “permutations” are the six per-
mutations of the variables x1 ,x2 ,x3. The one-loop phase
space distribution is just the integrand. The energy spectrum
is found by integrating over x2 but not x1=E1 /m. �The cor-
responding lowest-order expression is given in Eq. �42�.� The
function F�x1 ,x3� is given by

F�x1,x3� = g0�x1,x3� + �
i=1

5

gi�x1,x3�hi�x1�

+ �
i=6

7

gi�x1,x3�hi�x1,x3� . �A2�

The h functions are given by

FIG. 2. Graphs contributing to the ortho-Ps decay amplitudes
through order �. They are the �a� self-energy, �b� outer vertex, �c�
inner vertex, �d� double vertex, �e� ladder, and �f� annihilation con-
tributions. The wave function factors are implicit in these graphs.
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h1�x1� = ln�2x1� , �A3a�

h2�x1� =x1

x̄1

�1, �A3b�

h3�x1� =
1

2x1
���2� − Li2�1 − 2x1�� , �A3c�

h4�x1� =
1

2x1
���

2
�2

− �1
2	 , �A3d�

h5�x1� =
1

2x̄1

�1
2, �A3e�

h6�x1,x3� =
1

x1x̄1x3x̄3

�Li2�rA
+, �̄1� − Li2�rA

−, �̄1�� , �A3f�

h7�x1,x3� =
1

x1x̄1x3x̄3
�Li2�rB

+,�1� − Li2�rB
−,�1� −

1

2
Li2�rC

+,0�

+
1

2
Li2�rC

−,0�	 , �A3g�

where x̄i=1−xi and

�1 = arctan�x̄1/x1� , �A4a�

�̄1 = arctan�x1/x̄1� , �A4b�

rA
± = x̄1�1 ±x1x̄3

x̄1x3
� , �A4c�

rB
± = x1�1 ± x̄1x̄3

x1x3
� , �A4d�

rC
± = rB

±/x1. �A4e�

The g functions are given in terms of xmn=x1
mx3

n and x̄2=x1
+x3−1 as

g0�x1,x3� =
1

9x1x̄1�1 − 2x1�x3x̄3�1 − 2x3�
�− 180 + 2196x10

− 4968x20 + 5292x30 − 2664x40 + 504x50

− 5848x11 + 22639x21 − 20280x31 + 8405x41

− 1240x51 − 24x61 − 17551x22 + 22982x32

− 5857x42 + 264x52 + 48x62 − 3776x33 − 878x43

+ 400x53 + 536x44� , �A5a�

g1�x1,x3� =
4

x1
2�1 − 2x1�2�x1 − x3�x3

�2x20 − 13x30 + 35x40

− 36x50 + 8x60 + 4x70 + 9x11 − 59x21 + 149x31

− 210x41 + 162x51 − 51x61 + x71 − 4x02 + 3x12

+ 55x22 − 126x32 + 104x42 − 39x52 + x62 + 8x03

− 26x13 + 7x23 + 22x33 + 2x43 − 2x53 − 4x04

+ 14x14 − 8x24 − 8x34� , �A5b�

g2�x1,x3� =
2

3x1
3x̄1x3

�− 48x10 + 180x20 − 276x30 + 228x40

− 108x50 + 24x60 + 48x01 − 48x11 − 144x31

+ 244x41 − 106x51 + 2x61 + 4x71 − 96x02 + 156x12

− 108x22 + 168x32 − 132x42 + 7x52 + 6x62

+ 48x03 − 60x13 − 36x23 + 42x33 + 9x43 − 6x53

+ 6x34 − 4x44� , �A5c�

g3�x1,x3� =
4

x1
2�x1 − x3�x3

�− 2x20 − 2x40 − 4x60 + 5x11 − 6x21

+ 14x31 − 4x41 + 18x51 − x61 − 4x02 − 2x12 + 4x22

− 2x32 − 26x42 − x52 + 8x03 − 7x13 − 2x23 + 12x33

+ 2x43 − 4x04 + 4x14� , �A5d�

g4�x1,x3� =
8

x1
2 �− 4 + 7x10 − 7x20 + 12x30 − 10x40 + 2x50 + 8x01

− 10x11 + 3x21 − 3x31 + 2x41 − 4x02 + 3x12 + 2x22

+ x32� , �A5e�

g5�x1,x3� =
2x̄1

x1
�8 − 34x10 + 29x20 − 4x30 + 6x11 + 8x02

− 4x12� , �A5f�

g6�x1,x3� =
1

x1x̄2x3

�16 − 76x10 + 136x20 − 124x30 + 64x40

− 16x50 − 60x01 + 272x11 − 424x21 + 294x31

− 104x41 + 22x51 + 92x02 − 392x12 + 484x22

− 187x32 + 13x42 + 2x52 − 76x03 + 294x13 − 259x23

+ 30x33 + 3x43 + 36x04 − 120x14 + 61x24 + 3x34

− 8x05 + 22x15 + 2x25� , �A5g�

g7�x1,x3� =
1

x̄2

�16 − 48x10 + 46x20 − 12x30 − 2x40 − 48x01

+ 60x11 + 9x21 − 31x31 + 10x41 + 46x02 + 9x12

− 42x22 + 11x32 − 12x03 − 31x13 + 11x23 − 2x04

+ 10x14� . �A5h�
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