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It has been recently pointed out �V. Giovannetti, S. Lloyd, and L. Maccone, Europhys. Lett. 62, 615 �2003��
that, for certain classes of states, quantum entanglement enhances the “speed” of evolution of composite
quantum systems, as measured by the time a given initial state requires to evolve to an orthogonal state. We
provide here a systematic study of this effect for pure states of bipartite systems of low dimensionality,
considering both distinguishable �two-qubits� subsystems, and systems constituted of two indistinguishable
particles.
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I. INTRODUCTION

Entanglement is one of the most fundamental features of
the quantum description of nature �1–5�. In recent years it
has been the focus of intense research efforts �1–13�. A state
of a composite quantum system is called “entangled” if it
cannot be represented as a mixture of factorizable pure
states. Otherwise, the state is called separable. Entanglement
constitutes a physical resource that lies at the basis of impor-
tant quantum information processes �3–6�, such as quantum
teleportation, superdense coding, and quantum computation.

Entanglement is essential in connection both with our ba-
sic understanding of quantum mechanics and with some of
its most revolutionary �possible� technological applications.
Consequently, it is imperative to investigate, in detail, the
relationships between entanglement and other aspects of
quantum theory. In particular, it is of clear interest to explore
the role played by entanglement in the dynamical evolution
of composite quantum systems. It was recently discovered by
Giovannetti et al. �1,2� that, in certain cases, entanglement
helps to “speed up” the time evolution of composite systems.
The problem of the “speed” of quantum evolution has
aroused considerable interest recently, because of its rel-
evance in connection with the physical limits imposed by the
basic laws of quantum mechanics on the speed of informa-
tion processing and information transmission �14–16�.

The aim of the present contribution is to investigate, in
detail, for bipartite systems of low dimensionality, the con-
nection between entanglement and the speed of quantum
evolution. We are going to focus our attention on �i� two
qubits �distinguishable� systems and �ii� bosonic or fermionic
composite �bipartite� systems of lowest dimensionality.

II. TWO ENTANGLED DISTINGUISHABLE PARTICLES

We are going to investigate first the case of two equal but
distinguishable subsystems evolving under a local Hamil-
tonian. Let us then consider a two-qubits system whose evo-
lution is governed by a �local� Hamiltonian

H = HA � IB + IA � HB, �1�

where HA,B have eigenstates �0� and �1� with eigenvalues 0
and �, respectively. That is, the eigenstates of H are �00�,

�01�, �10�, and �11�, with eigenvalues respectively equal to 0,
� �twofold degenerate�, and 2�. For pure states ��� of our
composite system, the natural measure of entanglement is the
usual reduced von Neumann entropy
S��A,B�=−TrA,B��A,B ln �A,B� �of either particle A or particle
B� where �A,B=TrB,A��������. It is convenient for our
present purposes to use, instead of S��A,B� itself, the closely
related concurrence C, given by

C2 = 4 det �A,B. �2�

Both the entanglement entropy S��A,B� and the concurrence
C are preserved under the time evolution determined by the
local Hamiltonian �1�. Given an initial state

���t = 0�� = c0�00� + c1�01� + c2�10� + c3�11� , �3�

its concurrence is

C2 = 4�c0c3 − c1c2�2. �4�

The overlap between the initial state �3� and the state at time
t is given by

���t����t = 0�� = �c0�2 + ��c1�2 + �c2�2�z + �c3�2z2, �5�

where z�exp�i�t /���exp�i��, that is, �= �t�� /�.
Thus, the condition for the state at time t to be orthogonal

to the initial state is

P�z� = �c0�2 + ��c1�2 + �c2�2�z + �c3�2z2 = 0. �6�

The above polynomial equation can be cast as

�c3�2�z − z1��z − z2� = 0, �7�

where z1 and z2 are the roots of P�z�. If the initial state �3� is
to evolve to an orthogonal state, then the two roots of P�z�
have to be two �complex conjugate� numbers of modulus
equal to one. That is z1,2=exp�±i��. It that case we shall
have

�c0�2 = �c3�2 = � ,
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�c1�2 + �c2�2 = − 2� cos � . �8�

Appropriate normalization of the initial state also implies
that the concomitant coefficients can be parameterized as

�c0�2 = �c3�2 = � ,

�c1�2 = − 2	� cos � ,

�c2�2 = − 2�1 − 	�� cos � , �9�

with �=1/2�1−cos �� and �� �
 /2 ,3
 /2�, 	� �0,1�. In
other words, we have �=arccos��2�−1� /2��.

The initial state’s energy mean value and energy uncer-
tainty are, respectively,

E = �H� = � ��c1�2 + �c2�2� + 2 � �c3�2 = � ,

�E = 	�H2� − �H�2

= ��2��c1�2 + �c2�2� + 4�2�c3�2 − �2�1/2 = � 	2� . �10�

The time � required to evolve into an orthogonal state admits
the lower bound �1,2�,

Tmin = max

�

2E
,


�

2�E
� , �11�

which, together with equations �10�, lead to

Tmin =

�

2 � 	2�
. �12�

The concurrence of the �pure� state under consideration, de-
fined as C2=4�c0c3−c1c2�2 �see equations �2�–�4�� is

C2 = 4�� − ei		�1 − 	�2� cos ��2. �13�

The modulus of the coefficients ci are completely determined
by the two parameters � �or �� and 	. The dependence of C2

on the phases of the coefficients ci can be absorbed into one
single phase ei, thus incorporating a new parameter  into
the expression �13� for C2.

After some algebra, the expressions for the minimum and
maximum values for the evolution time � that are actually
realized for states of a given concurrence C2, read

�

Tmin���
=

2



	2� arccos
2� − 1

2�
� , �14�

where the maximum evolution time for a fixed C2 �or a fixed
C� corresponds to �=	C2 /2, while the minimum one to �
= �1+	C2� /4. The two curves in the �C ,� /Tmin� plane corre-
sponding, for each value of C, to the states with maximum
and minimum � /Tmin are depicted in Fig. 1. All states that
eventually evolve into an orthogonal state �that is, states
characterized by different 	’s and ’s� lie between these two
curves. Some important features of the connection between
entanglement and speed of evolution �for two qubits� tran-
spire from Fig. 1. First, we see that both the maximum and
the minimum times required to reach an orthogonal state are
monotonously decreasing functions of the concurrence. Sec-
ond, the difference between these maximum and the mini-

mum evolution times �that is, the range of possible values for
the time required to evolve to an orthogonal state� also de-
creases with increasing concurrence. Third, the lower bound
for the evolution time to an orthogonal state is saturated by
�and only by� the maximally entangled states �C=1�. These
features provide further support to the idea that entanglement
tends to speed up quantum evolution.

III. TWO ENTANGLED INDISTINGUISHABLE
PARTICLES

Here we are going to explore the connection between en-
tanglement and the speed of quantum evolution for systems
constituted by two indistinguishable particles. In this case,
the concept of entanglement exhibits some extra subtleties,
as compared with the case of distinguishable subsystems.
When dealing with indistinguishable particles, the correla-
tions that arise purely from the concomitant statistics �either
fermionic or bosonic� do not constitute a useful resource and,
consequently, must not be regarded as contributing to the
amount of entanglement of the system’s state �13�. A useful
formalism to describe the entanglement of systems consist-
ing of identical particles and that takes into account the
above remarks has been advanced by Eckert et al. in �13�.
For two identical bosons, the system of lowest dimensional-
ity exhibiting the phenomenon of entanglement is a pair of
bosons with a two-dimensional single-particle Hilbert space.
The simplest fermionic system endowed with entanglement
is a system of two fermions with a three-dimensional single-
particle Hilbert space.

A. Bosons

Using the second quantization formalism, the general
�pure� state of two bosons �with a two-dimensional single-
particle Hilbert space� can be written under the guise �13� of

FIG. 1. Curves in the �C ,� /Tmin� plane corresponding, for each
value of C, to the states of two �distinguishable� qubits with maxi-
mum and minimun � /Tmin. The points represent randomly generated
individual states that evolve to an orthogonal state. All depicted
quantities are dimensionless.
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�V� = �
i,j=0

1

vijbi
†bj

†�0� , �15�

where bi
† and bi denote bosonic creation and anhilation op-

erators, and the coefficients vij constitute the symmetric ma-
trix

V̂ = 
v00 v01

v10 v11
� . �16�

That is, vij =v ji. Normalization imposes the condition
2�i,j=0

1 �vij�2=1.
The Hamiltonian associated with two noninteracting

bosons is

Ĥ = �
k=0

1

�kbkbk
†, �17�

where b0
†�0� is the single-particle ground state with energy

�0=0, and b1
†�0� is the single-particle excited state with en-

ergy �1=�. The state �15� evolves according to the time-
dependent Schroedinger equation,

i�
d

dt
�V�t�� = Ĥ�V�t�� = �

i,j=0

1

��i + � j�vij�t�bi
†bj

†�0� . �18�

The general solution of this evolution equation is given by
the time-dependent coefficients,

vij�t� = vij�0�exp− i
��i + � j�

�
t� . �19�

The time � required to evolve into an orthonormal state is

�V�0��V���� = 2 �
i,j=0

1

�vij�0��2 exp− i
��i + � j�

�
�� = 0.

�20�

Setting z�e−i���/��=e−i�, the orthogonality condition �20� can
be recast as a polynomial equation in z that has to admit
roots of modulus equal to 1. From this last requirement, and
taking into account the symmetries in the coefficients vij, it
follows that the coefficients can be parameterized as

�v00�2 = � ,

�v01�2 = − � cos � ,

�v11�2 = � , �21�

with ��0 and �� �
 /2 ,3
 /2�. The normalization con-
straints also implies that �=1/4�1−cos ��. The expectation
values of the energy and its square read

E = �H� = 2 �
i,j=0

1

�vij�0��2��i + � j� = � ,

�H2� = 2 �
i,j=0

1

�vij�0��2��i + � j�2 = �4� + 1��2, �22�

and consequently the minimum evolution time �11� is

Tmin =

�

2�
. �23�

The formula for the concurrence in the two-boson case is
�13�

CB = 4�v00v11 − v01
2 � , �24�

which is clearly time independent.
For a given value of the concurrence, the minimum and

maximum times for evolution to an orthogonal state can be
obtained in the same way as in the case of two distinguish-
able qubits. The equations relating the minimum and maxi-
mum times with the concurrence are, respectively,

C =
1 + cos��min�
1 − cos��min�

�25�

and

C =
1

1 − cos��max�
, �26�

where �min,max=exp�−i��min,max /��. The curves associated
with equations �25� and �26� depicting the extremum evolu-
tion times as a function of C, are exhibited in Fig. 2.

Comparing Fig. 2 with Fig. 1, we see that the same gen-
eral trends exhibited by a system of two distinguishable qu-
bits are also observed in the case of two identical boson.

B. Fermions

Now we are going to study a system of two identical
fermions with a three-dimensional single-particle Hilbert
space. In second quantization notation, the general �pure�
state of such a system is

FIG. 2. Curves in the �C ,� /Tmin� plane corresponding, for each
value of C, to the states of two bosons with maximum and minimun
� /Tmin. The points represent randomly generated individual states
that evolve to an orthogonal state. All depicted quantities are
dimensionless.

CONNECTION BETWEEN ENTANGLEMENT AND THE… PHYSICAL REVIEW A 72, 032337 �2005�

032337-3



�W� = �
i,j=0

3

wijf i
†f j

†�0� , �27�

where f i
† and f i denote fermionic creation and anhilation op-

erators, respectively, and the coefficients wij constitute the
antisymmetric matrix

Ŵ =�
0 w01 w02 w03

w10 0 w12 w13

w20 w21 0 w23

w30 w31 w32 0
� . �28�

That is, wij =−wji. Normalization imposes the condition
�i,j=0

3 �wij�2=1/2. The Hamiltonian describing two noninter-
acting particles is given by

Ĥ = �
k=0

1

�kfkfk
†, �29�

and the coefficients,

wij�t� = wij�0�exp− i
��i + � j�

�
t� , �30�

describe a general solution of the concomitant time-
dependent Schroedinger equation. Let z�e−i���/��=e−i�. The
evolution time to an orthogonal state follows from the con-
dition

�W�0��W���� = 2 �
i,j=0

3

�wij�0��2 exp− i
��i + � j�

�
�� = 4z��w01�2

+ �w02�2z + ��w03�2 + �w12�2�z2 + �w13�2z3

+ �w23�2z4� = 0. �31�

The polynomial equation �31� may have either �i� fourth real
roots, �ii� two real roots and two complex �complex conju-
gated� roots, or �iii� two pairs of complex conjugated roots.
Since we are interested in solutions of the type e−i��/���, the
most general case of interest is �iii�. Consequently, the two
solutions of �31� corresponding to �positive� times of evolu-
tion into an orthogonal state are of the form z1�e−i� and
z2�e−i�. Taking into account the antisymmetric nature of
wij, we get the following relations:

�w01�2 = x �32�

�w02�2 = − 2x�cos � + cos �� �33�

�w03�2 + �w12�2 = 2x�1 + 2cos � cos �� �34�

�w13�2 = − 2x�cos � + cos �� �35�

�w23�2 = x , �36�

where the value of the parameter x is determined by the
normalization requirement. We want to find the fastest solu-
tion to the first orthogonal state. The time � required to reach
an orthogonal state is

� =
�

�
� min��,�� . �37�

Let us consider the case �=
. Then, the time required to
arrive to an orthogonal state is equal to �=�� /� and the
coefficients characterizing the quantum state are

�w01�2 =
1

32�1 − cos ��
�38�

�w02�2 =
1

16
�39�

�w03�2 + �w12�2 =
1 − 2 cos �

16�1 − cos ��
�40�

�w13�2 =
1

16
�41�

�w23�2 =
1

32�1 − cos ��
, �42�

with the obvious condition cos ��1/2 �that is, �
� �
 /3 ,
��. The energy and energy square expectation val-
ues read

E = �H� = 2 �
i,j=0

3

�wij�0��2��i + � j� = 3� ,

�H2� = 2 �
i,j=0

3

�wij�0��2��i + � j�2 =
�2

2
21 − 19 cos �

1 − cos �
� ,

�43�

and, consequently, the minimum evolution time �11�, after
some calculation, is

Tmin =

�

2�
	2�1 − cos ��

3 − cos �
. �44�

The formula for the concurrence in the two-fermion case is
�13�

CF = 8�w01w23 − w02w13 + w03w12� , �45�

which is clearly time independent �for the Hamiltonian �29��.
One can check that the lowest value of � /Tmin corresponds

to cos �=1/2. That is, the state closest to saturating the
lower bound for the time required to reach an orthogonal
state is given by �=
 /3. In this case, the fermionic concur-
rence reads

CF =
�ei01+i23 − ei02+i13�

2
, �46�

where �ij denotes the phase associated with the coefficient
wij. Now, with an appropriate choice of the �’s, we can make
�46� either 0 or 1. In other words, among those states that
saturate the lower bound on the time to evolve to an orthogo-
nal state, there are states of zero entanglement, as well as
maximum entangled states.
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Figure 3 exhibits a plot in the �C ,� /Tmin� plane of a set of
randomly generated states of two fermions that evolve to an
orthogonal state. Each point represents one of those states. It
transpires from the figure that for each value of the concur-
rence C, the time � /Tmin needed to reach an orthogonal state

may adopt any value, from 1
3
	10 up to a maximum equal to

2.
We see that, as far as the connection between entangle-

ment and the speed of quantum evolution is concerned, the
behavior of fermionic systems differs considerably from the
behavior of systems consisting either of bosons or of distin-
guishable particles.

IV. CONCLUSIONS

We have explored, for bipartite systems of low dimen-
sionality, some aspects of the connection between entangle-
ment and the speed of quantum evolution. We considered �i�
two-qubits �distinguishable� systems and �ii� systems com-
posed of two �bosonic or fermionic� identical particles with
single-particle Hilbert spaces of lowest dimensionality.

Our present results corroborate that there is a clear corre-
lation between the amount of entanglement and the speed of
quantum evolution for systems of two-qubits and systems of
two identical bosons. On the contrary, such a clear correla-
tion is lacking in the case of systems of identical fermions.
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