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We study the entanglement of general �pure or mixed� two-mode Gaussian states of continuous-variable
systems by comparing the two available classes of computable measures of entanglement: entropy-inspired
Gaussian convex-roof measures and positive partial transposition–inspired measures �negativity and logarith-
mic negativity�. We first review the formalism of Gaussian measures of entanglement, adopting the framework
introduced in M. M. Wolf et al., Phys. Rev. A 69, 052320 �2004�, where the Gaussian entanglement of
formation was defined. We compute explicitly Gaussian measures of entanglement for two important families
of nonsymmetric two-mode Gaussian state: namely, the states of extremal �maximal and minimal� negativities
at fixed global and local purities, introduced in G. Adesso et al., Phys. Rev. Lett. 92, 087901 �2004�. This
analysis allows us to compare the different orderings induced on the set of entangled two-mode Gaussian states
by the negativities and by the Gaussian measures of entanglement. We find that in a certain range of values of
the global and local purities �characterizing the covariance matrix of the corresponding extremal states�, states
of minimum negativity can have more Gaussian entanglement of formation than states of maximum negativity.
Consequently, Gaussian measures and negativities are definitely inequivalent measures of entanglement on
nonsymmetric two-mode Gaussian states, even when restricted to a class of extremal states. On the other hand,
the two families of entanglement measures are completely equivalent on symmetric states, for which the
Gaussian entanglement of formation coincides with the true entanglement of formation. Finally, we show that
the inequivalence between the two families of continuous-variable entanglement measures is somehow limited.
Namely, we rigorously prove that, at fixed negativities, the Gaussian measures of entanglement are bounded
from below. Moreover, we provide some strong evidence suggesting that they are as well bounded from above.
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I. INTRODUCTION

Quantum information with continuous variables �CV’s�
�1,2� is a flourishing field dedicated to the manipulation of
the information using quantum states governed by the laws
of quantum mechanics. This approach contrasts with the
usual methods involving discrete-spectrum observables �such
as, e.g., polarization, spin, energy level� of single photons,
atoms, or ions. The ability of quantum states with continuous
spectra to implement quantum cryptography �3�, quantum
teleportation �4–8�, entanglement swapping �6,9�, dense cod-
ing �10�, quantum state storage �11�, and, to some extent,
quantum computation �12� processes brings up new and ex-
citing perspectives.

The crucial resource enabling a better-than-classical ma-
nipulation and processing of information is CV entangle-
ment, introduced for the first time in the landmarck paper by
Einstein, Podolski, and Rosen �13� in 1935. There, it was
shown that the simultaneous eigenstate of relative position
and total momentum of two particles �or of a two modes of
the radiation field� contains perfect quantum correlations—
i.e., infinite CV entanglement. While this state is clearly an
unphysical, unnormalizable state, it can be approximated ar-
bitrarily well by two-mode squeezed Gaussian states with
large enough squeezing parameter. The special class of
Gaussian states �which includes thermal, coherent, and
squeezed states� thus emerges quite naturally in the CV sce-
nario. These entangled states can be easily produced and
manipulated experimentally, and moreover their mathemati-
cal description is greatly simplified due to the fact that, while

still residing in a infinite-dimensional Hilbert space, their
relevant properties �such as entanglement and mixedness� are
completely determined by the finite-dimensional covariance
matrix of two-point correlations between the canonically
conjugated quadrature operators. Therefore, clarifying the
characterization and quantification of CV entanglement in
two-mode and, eventually, multimode Gaussian states stands
as a major issue in the field of CV quantum information, as
the amount of entanglement contained in a certain state di-
rectly quantifies its usefulness for information and commu-
nication tasks like teleportation �8�.

For the prototypical entangled states of a CV system, the
two-mode Gaussian states, much is known about entangle-
ment qualification, as the separability is completely charac-
terized by the necessary and sufficient PPT �positivity of the
partially transposed state� criterion �14� and also with regard
to its quantifcation. Concerning the latter aspect, the negativ-
ity �quantifying the violation of the necessary and sufficient
PPT condition for separability� is computable for all two-
mode Gaussian states �15�. Moreover, for symmetric two-
mode Gaussian states also the entanglement of formation is
computable �16�, and it turns out to be completely equivalent
to the negativity for these states.

Another measure of CV entanglement, adapted for the
class of Gaussian states, has been introduced in Ref. �17�,
where the Gaussian entanglement of formation �an upper
bound to the true entanglement of formation� was defined as
the cost of producing an entangled mixed state out of an
ensemble of pure, Gaussian states. While the Gaussian en-
tanglement of formation coincides with the true one for sym-
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metric states, at present it is not known whether this equality
holds for nonsymmetric states as well �18�.

In this work, aimed at shedding light on the quantification
of entanglement in two-mode Gaussian states, we compute
the Gaussian entanglement of formation and, in general, the
family of Gaussian entanglement measures, for two different
classes of two-mode Gaussian states: namely, the states of
extremal, maximal and minimal, negativities at fixed global
and local purities �19,20�. We find that the two families of
entanglement measures �negativities and Gaussian measures�
are not equivalent for nonsymmetric states. Remarkably, they
may induce a completely different ordering on the set of
entangled two-mode Gaussian state: a nonsymmetric state �A
can be more entangled than another state �B, with respect to
negativities and less entangled than the same state �B, with
respect to Gaussian measures of entanglement. However, the
inequivalence between the two families of measures is some-
how bounded: we show that, at fixed negativities, the Gauss-
ian entanglement measures are rigorously bounded from be-
low. Moreover, we provide strong evidence hinting that they
should be bounded from above as well.

The paper is organized as follows. In Sec. II we set up the
notation and review the basic properties of Gaussian states of
CV systems. In Sec. III we review the main results on the
characterization of separability in Gaussian states, introduc-
ing also two families of measures of entanglement, respec-
tively the negativities and the Gaussian entanglement mea-
sures. In Sec. IV we compute the latter for two-mode
Gaussian states, solving the problem explicitly for the states
of extremal negativities at fixed purities, described in Sec.
IV A. In Sec. V we compare the orderings induced by nega-
tivities and Gaussian measures on the set of extremal two-
mode Gaussian states. In Sec. VI we compare the two fami-
lies of measures for generic two-mode Gaussian states,
finding lower and upper bounds on one of them, when keep-
ing the other fixed. Finally, in Sec. VII we summarize our
results and discuss future perspectives.

II. GAUSSIAN STATES: DEFINITIONS AND NOTATION

A continuous variable system is described by a Hilbert
space H= � i=1

n Hi resulting from the tensor product structure
of infinite dimensional Fock spaces Hi’s. Let ai be the anni-
hilation operator acting on Hi, and q̂i= �ai+ai

†� and p̂i= �ai

−ai
†� / i be the related quadrature phase operators. The corre-

sponding phase-space variables will be denoted by qi and pi.

Let X̂= �q̂1 , p̂1 , . . . , q̂n , p̂n� denote the vector of the operators

q̂i and p̂i. The canonical commutation relations for the X̂i can
be expressed in terms of the symplectic form �:

�X̂i,X̂j� = 2i�ij ,

with

� � �
i=1

n

�, � � � 0 1

− 1 0
� .

The states of a CV system can be equivalently described
by a positive trace-class operator �the density matrix �� or by

quasiprobability distributions such as the Wigner function
�21�. States with Gaussian characteristic functions and qua-
siprobability distributions are referred to as Gaussian states.
Such states are at the heart of information processing in CV
systems �2� and are the subject of our analysis. By definition,
a Gaussian state � is completely characterized by the first
and second statistical moments of the quadrature field opera-
tors, which will be denoted, respectively, by the vector of

first moments X̄���X̂1	 , �X̂1	 , . . . , �X̂n	 , �X̂n	� and the covari-
ance matrix �CM� � of elements

�ij �
1

2
�X̂iX̂j + X̂jX̂i	 − �X̂i	�X̂j	 , �1�

where, for any observable ô, the expectation value �ô	
�Tr��ô�. Notice that the entries of the CM can be expressed
as energies by multiplying them by the quantity ��, where �
is the frequency of the considered mode. In fact, for any
n-mode state �even non Gaussian� the quantity ��Tr� /4 is
simply the average of the noninteracting Hamiltonian

i=1

n �ai
†ai+1/2�. First moments can be arbitrarily adjusted by

local unitary operations �displacements�, which cannot affect
any property related to entropy or entanglement. Therefore,
they will be unimportant to the present scope and we will set
them to 0 in the following, without any loss of generality.

The canonical commutation relations and the positivity of
the density matrix � imply

� + i� � 0. �2�

Inequality �2� is the necessary and sufficient constraint the
matrix � has to fulfill to be a CM corresponding to a physi-
cal Gaussian state �22,23�. More in general, the previous
condition is necessary for the CM of any, generally non-
Gaussian, state. We note that such a constraint implies �
�0.

A major role in the theoretical and experimental manipu-
lation of Gaussian states is played by unitary operations
which preserve the Gaussian character of the states on which
they act. Such operations are all those generated by Hamil-
tonian terms at most quadratic in the field operators. As a
consequence of the Stone–Von Neumann theorem, any such
unitary operation at the Hilbert-space level corresponds, in
phase space, to a symplectic transformation—i.e., to a linear
transformation S which preserves the symplectic form �, so
that �=ST�S. Symplectic transformations on a
2n-dimensional phase space form the �real� symplectic group
Sp�2n,R�. Such transformations act linearly on first moments
and by congruences on covariance matrices: ��ST�S. One
has DetS=1, ∀S�Sp�2n,R�. Ideal beam splitters, phase
shifters, and squeezers are all described by some kind of
symplectic transformation. A particularly important symplec-
tic transformation is the one realizing the decomposition of a
Gaussian state in normal modes. Through this decompostion,
thanks to the Williamson theorem �24�, the CM of an n-mode
Gaussian state can always be written in the so-called Will-
iamson normal or diagonal form

� = ST�S , �3�

where S�Sp�2n,R� and � is the CM,
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� = diag��1,�1, . . . ,�n,�n� , �4�

corresponding to a tensor product of thermal states with a
diagonal density matrix �� given by

�� = �
i

2

�i + 1

k=0

� ��i − 1

�i + 1
��k	ii�k� , �5�

where �k	i denotes the number state of order k in the Fock
space Hi.

The quantities �i’s form the symplectic spectrum of the
CM �, and they can be computed as the eigenvalues of the
matrix �i���. Such eigenvalues are in fact invariant under
the action of symplectic transformations on the matrix �.
The symplectic eigenvalues �i encode essential information
on the Gaussian state � and provide powerful, simple ways
to express its fundamental properties. For instance, in terms
of the symplectic eigenvalues �i, the uncertainty relation �2�
reads

�i � 1. �6�

Moreover, the entropic quantities of Gaussian states can
be as well expressed in terms of their symplectic eigenvalues
and invariants �20�. Notably, the purity Tr�2 of a Gaussian
state � is simply given by the symplectic invariant Det�
=�i=1

n �i
2, being �25�

� � Tr�2 =
1


Det�
. �7�

Two-mode states

This work is focused on two-mode Gaussian states: we
thus briefly review here some of their basic properties. The
expression of the two-mode CM � in terms of the three 2
�2 matrices �, �, �, which will be useful in the following,
takes the form

� � � � �

�T �
� . �8�

For any two-mode CM � there is a local symplectic opera-
tion Sl=S1 � S2 which brings � to the so-called standard
form �sf �14,26�:

Sl
T�Sl = �sf ��

a 0 c+ 0

0 a 0 c−

c+ 0 b 0

0 c− 0 b
� . �9�

States whose standard form fulfills a=b are said to be sym-
metric. Let us recall that any pure state ��=1� is symmetric
and fulfills c+=−c−=
a2−1. The correlations a, b, c+, and c−
are determined by the four local symplectic invariants

Det�= �ab−c+
2��ab−c−

2�, Det�=a2, Det�=b2, and Det�
=c+c−. Therefore, the standard form corresponding to any
CM is unique �up to a common sign flip in c− and c+�.

For two-mode states, the uncertainty principle �2� can be
recast as a constraint on the Sp�4,R� invariants Det� and
	���=Det�+Det�+2Det� �27�:

	��� 
 1 + Det� . �10�

The symplectic eigenvalues of a two-mode Gaussian state
will be denoted as �− and �+, with �−
�+, with the uncer-
tainty relation �6� reducing to

�− � 1. �11�

A simple expression for the �� can be found in terms of the
two Sp�4,R� invariants �invariants under global, two-mode
symplectic operations� �15,27�

2��
2 = 	��� � 
	2��� − 4Det� . �12�

III. ENTANGLEMENT OF GAUSSIAN STATES

In this section we recall the main results on the qualifica-
tion and quantification of entanglement for Gaussian states
of CV systems.

A. Qualification: PPT criterion

The positivity of the partially transposed state �Peres-
Horodecki PPT criterion �28�� is necessary and sufficient for
the separability of two-mode Gaussian states �14� and, more
generally, of all �1+n�-mode Gaussian states under
�1�n�-mode bipartitions �29� and of symmetric and bisym-
metric �m+n�-mode Gaussian states under �m�n�-mode bi-
partitions �30�. In general, the partial transposition �̃ of a
bipartite quantum state � is defined as the result of the trans-
position performed on only one of the two subsystems in
some given basis. In phase space, the action of partial trans-
position amounts to a mirror reflection of one of the four
canonical variables �14�. The CM � is then transformed into
a new matrix �̃ which differs from � by a sign flip in Det�.

Therefore the invariant 	��� is changed into 	̃����	��̃�
=Det�+Det�−2 Det�. Now, the symplectic eigenvalues �̃�

of �̃ read

�̃� =
	̃��� � 
	̃2��� − 4Det�

2
. �13�

The PPT criterion for separability thus reduces to a simple
inequality that must be satisfied by the smallest symplectic
eigenvalue �̃− of the partially transposed state,

�̃− � 1, �14�

which is equivalent to

	̃��� 
 Det� + 1. �15�

Moreover, the above inequalities imply Det�=c+c−
0 as a
necessary condition for a two-mode Gaussian state to be en-
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tangled. Therefore, the quantity �̃− encodes all the qualitative
characterization of the entanglement for arbitrary �pure or
mixed� two-mode Gaussian states.

B. Negativities

From a quantitative point of view, a measure of entangle-
ment which can be computed for general Gaussian states is
provided by the negativity N, first introduced in Ref. �31�,
later thoroughly discussed and extended in Refs. �15,32� to
CV systems. The negativity of a quantum state � is defined
as

N��� =
��̃�1 − 1

2
, �16�

where �̃ is the partially transposed density matrix and �ô�1
=Tr�ô� stands for the trace norm of the Hermitian operator ô.
The quantity N��� is equal to �
i�i�, the modulus of the sum
of the negative eigenvalues of �̃, quantifying the extent to
which �̃ fails to be positive. Strictly related to N is the
logarithmic negativity EN, defined as EN� ln��̃�1, which
constitutes an upper bound to the distillable entanglement of
the quantum state � and is related to the entanglement cost
under PPT preserving operations �33�. Both the negativity
and logarithmic negativity have been proven to be monotone
under LOCC �local operations and classical communica-
tions� �15,32,34�, a crucial property for a bona fide measure
of entanglement. Moreover, the logarithmic negativity pos-
sesses the nice property of being additive.

For any two-mode Gaussian state � it is easy to show that
both the negativity and logarithmic negativity are simple de-
creasing functions of �̃− �15,20�:

��̃�1 =
1

�̃−

⇒ N��� = max�0,
1 − �̃−

2�̃−
� , �17�

EN��� = max�0,− ln �̃−� . �18�

These expressions directly quantify the amount by which the
necessary and sufficient PPT condition �14� for separability
is violated. The symplectic eigenvalue �̃− thus completely
qualifies and quantifies �in terms of negativities� the en-
tanglement of a two-mode Gaussian state �: for �̃−�1 the
state is separable; otherwise, it is entangled. Finally, in the
limit of vanishing �̃−, the negativities grow unboundedly.

C. Entanglement of formation

In the special instance of symmetric two-mode Gaussian
states, the entanglement of formation �EOF� �35� can be
computed as well �16�. We recall that the EOF EF of a quan-
tum state � is defined as

EF��� = min
�pi,��i	�



i

piE���i	� , �19�

where the minimum is taken over all the pure states realiza-
tions of �:

� = 

i

pi��i	��i� .

The asymptotic regularization of the entanglement of forma-
tion coincides with the entanglement cost EC���, defined as
the minimum number of singlets �maximally entangled anti-
symmetric two-qubit states� which is needed to prepare the
state � through LOCC �36�.

The optimal convex decomposition of Eq. �19� has been
found for symmetric two-mode Gaussian states and turns out
to be Gaussian; that is, the absolute minimum is realized
within the set of pure two-mode Gaussian states �16�, yield-
ing

EF = max�0,h��̃−�� , �20�

with

h�x� =
�1 + x�2

4x
ln� �1 + x�2

4x
� −

�1 − x�2

4x
ln� �1 − x�2

4x
� .

�21�

Such a quantity is, again, a monotonically decreasing func-
tion of �̃−, thus providing a quantification of the entangle-
ment of symmetric states equivalent to the one provided by
the negativities.

As a consequence of this equivalence, it is tempting to
conjecture that there exists a unique quantification of en-
tanglement for two-mode Gaussian states, embodied by the
smallest symplectic eigenvalue �̃− of the partially transposed
CM, and that the different measures simply provide trivial
rescalings of the same unique quantification. In particular,
the ordering induced on the set of entangled Gaussian state is
uniquely defined for the subset of symmetric two-mode
states, and it is independent of the chosen measure of en-
tanglement. However, regrettably, in Sec. V we will indeed
show that different measures of entanglement induce, in gen-
eral, different orderings on the set of nonsymmetric two-
mode Gaussian states.

D. Gaussian convex-roof extended measures

In this subsection we consider a family of entanglement
measures exclusively defined for Gaussian states of CV sys-
tems. The formalism of Gaussian entanglement measures
�Gaussian EM’s� has been introduced in Ref. �17� where the
Gaussian EOF has been defined and analyzed. Furthermore,
the framework developed in Ref. �17� is general and enables
to define generic Gaussian EM’s of bipartite entanglement by
applying the Gaussian convex roof—that is, the convex roof
over pure Gaussian decompositions only—to any bona fide
measure of bipartite entanglement defined for pure Gaussian
states. The original motivation for the introduction of Gauss-
ian EM’s stems from the unfortunate fact that the optimiza-
tion problem, Eq. �19�, for the computation of the EOF of
nonsymmetric two-mode Gaussian states has not yet been
solved, and it stands as an open problem in the theory of
entanglement �18�. However, the task can be somehow sim-
plified by restricting to decompositions into pure Gaussian
states only. The resulting measure, named the Gaussian EOF
in Ref. �17�, is an upper bound to the true EOF and coincides
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with it for symmetric two-mode Gaussian states.
In general, we can define a Gaussian EM GE as follows.

For any pure Gaussian state � with CM �P, one has

GE��P� � E��� , �22�

where E can be any proper measure of entanglement of pure
states, defined as a monotonically increasing function of the
entropy of entanglement �i.e., the von Neumann entropy of
the reduced density matrix of one party�.

For any mixed Gaussian state � with CM �, one has �17�

GE��� � inf
�P
�

GE��P� . �23�

If the function E is taken to be exactly the entropy of en-
tanglement, then the corresponding Gaussian EM is known
as Gaussian EOF �17�. In Ref. �37� the properties of the
Gaussian EOF have been further investigated, and interesting
connections with the capacity of bosonic Gaussian channels
have been established.

In general, the definition, Eq. �23�, involves an optimiza-
tion over all pure Gaussian states with CM �P smaller than
the CM � of the mixed state whose entanglement one wishes
to compute. Despite being a simpler optimization problem
than that appearing in the definition, Eq. �19�, of the true
EOF �which, in CV systems, would imply considering de-
compositions over all, Gaussian and non-Gaussian pure
states�, the Gaussian EM’s cannot be expressed in a simple
closed form, not even in the simplest instance of �nonsym-
metric� two-mode Gaussian states. It is the aim of the present
paper to compute Gaussian EM’s for two relevant classes of,
generally nonsymmetric, two-mode Gaussian states—
namely, the states of extremal �maximal and minimal� nega-
tivity at fixed global and local purities �19,20�—which will
be reviewed in Sec. IV A. This will provide an insight into
the problem of the ordering �38� of two-mode Gaussian
states with respect to different measures of entanglement,
leading to results somehow similar to those obtained for sys-
tems of two qubits �39�, where in general the EOF and the
negativity are found to be inequivalent.

Before moving on to the explicit computations, let us re-
call, as an important side remark, that any Gaussian EM is an
entanglement monotone under Gaussian LOCC. The proof
given in Sec. IV of Ref. �17� for the Gaussian EOF, in fact,
automatically extends to every Gaussian EM constructed via
the Gaussian convex roof of any proper measure E of pure-
state entanglement.

IV. GAUSSIAN ENTANGLEMENT MEASURES FOR TWO-
MODE GAUSSIAN STATES

The problem of evaluating Gaussian EM’s for a generic
two-mode Gaussian state has been solved in Ref. �17�. How-
ever, the explicit result contains so “cumbersome” expres-
sions �involving the solutions of a fourth-order algebraic
equation� that the authors of Ref. �17� considered them not
particularly useful to be reported explicitly in their paper.

We recall here the computation procedure �17� that we
will need in the following. For any two-mode Gaussian state
with CM ���sf in standard form, Eq. �9�, a generic Gauss-

ian EM GE is given by the entanglement E of the least en-
tangled pure state with CM �P
�. Denoting by �q ��p� the
2�2 submatrix obtained from � by canceling the even �odd�
rows and columns, we have, explicitly,

�q = � a c+

c+ b
�, �p = � a c−

c− b
� . �24�

All the covariances relative to the “position” operators of the
two modes are grouped in �q and analogously for the “mo-
mentum” operators in �p. The total CM can then be written
as a direct sum �=�q � �p. Similarly, the CM of a generic
pure two-mode Gaussian state in standard form �it has been
proven that the CM of the optimal pure state has to be as
well in the form with all diagonal two by two sub-blocks
�17�� can be written as �P=�q

P
� �p

P, where the global purity
of the state imposes ��p

P�−1=�q
P��. The pure states involved

in the definition of the Gaussian EM must thus fulfill the
condition

�p
−1 
 � 
 �q. �25�

This problem is endowed with a nice geometric descrip-
tion �17�. Writing the matrix � in the basis constituted by the
identity matrix and the three Pauli matrices,

� = �x0 + x3 x1

x1 x0 − x3
� , �26�

the expansion coefficients �x0 ,x1 ,x3� play the role of space-
time coordinates in a three-dimensional Minkowski space. In
this picture, for example, the rightmost inequality in Eq. �25�
is satisfied by matrices � lying on a cone, which is equiva-
lent to the �backwards� light cone of Cq in the Minkowski
space, and similarly for the leftmost inequality. Indeed, one
can show that, for the optimal pure state �opt

P realizing the
mininum in Eq. �23�, the two inequalities in Eq. �25� have to
be simultaneously saturated �17�. From a geometrical point
of view, the optimal � has then to be found on the rim of the
intersection of the forward and the backward cones of �p

−1

and �q, respectively. This is an ellipse, and one is left with
the task of minimizing the entanglement E of �P=� � �−1

�see Eq. �22�� for � lying on this ellipse �40�.
At this point, let us pause to briefly recall that any pure

two-mode Gaussian state �P is locally equivalent to a two-
mode squeezed state with squeezing parameter r, described
by a CM

�sq
P =�

cosh�2r� 0 sinh�2r� 0

0 cosh�2r� 0 − sinh�2r�
sinh�2r� 0 cosh�2r� 0

0 − sinh�2r� 0 cosh�2r�
� .

�27�

The following statements are then equivalent: �i� E is a
monotonically increasing function of the entropy of en-
tanglement, �ii� E is a monotonically increasing function of
the single-mode determinant m�Det��Det� �see Eq. �8��,
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�iii� E is a monotonically decreasing function of the local
purity �i��1��2 �see Eq. �7��, �iv� E is a monotonically
decreasing function of the smallest symplectic eigenvalue �̃−

P

of the partially transposed CM �̃P, and �v� E is a monotoni-
cally increasing function of the squeezing parameter r. This
chain of equivalences is immediately proven by simply re-
calling that a pure state is completely specified by its single-
mode marginals and that for a single-mode Gaussian state
there is a unique symplectic invariant �the determinant�, so
that all conceivable entropic quantities are monotonically in-
creasing functions of this invariant �20�. In particular, state-
ment �ii� allows us to minimize directly the single-mode de-
terminant over the ellipse:

m = 1 +
x1

2

Det�
, �28�

with � given by Eq. �26�.
To simplify the calculations, one can move to the plane of

the ellipse with a Lorentz boost which preserves the relations
between all the cones; one can then choose the transforma-

tion so that the ellipse degenerates into a circle �with fixed
radius� and introduce polar coordinates on this circle. The
calculation of the Gaussian EM for any two-mode Gaussian
state is thus finally reduced to the minimization of m from
Eq. �28� at given standard-form covariances of � as a func-
tion of the polar angle � on the circle �40�. So far, this tech-
nique has been applied to the computation of the Gaussian
EOF by minimizing Eq. �28� numerically �17� �see also
�41��. In addition to that, as already mentioned, the Gaussian
EOF has been exactly computed for symmetric states, and it
has been proven that in this case the Gaussian EOF is the
true EOF �16�.

In this work we present analytical calculations of the
Gaussian EM’s for two relevant classes of nonsymmetric
two-mode Gaussian states: the states of extremal negativities
at fixed global and local purities �20�, which will be intro-
duced in the next subsection. We begin by writing the gen-
eral expression of the single-mode determinant Eq. �28� in
terms of the covariances of a generic two-mode state �see Eq.
�9�� and of the polar angle �. After some tedious but straight-
forward algebra, one finds

m��a,b,c+,c−� = 1 + „�c+�ab − c−
2� − c− + cos �
�a − b�ab − c−

2���b − a�ab − c−
2���2

…

� �2�ab − c−
2��a2 + b2 + 2c+c+� −

cos ��2abc−
3 + �a2 + b2�c+c−

2 + ��1 − 2b2�a2 + b2�c− − ab�a2 + b2 − 2�c+�

�a − b�ab − c−

2���b − a�ab − c−
2��

+ sin ��a2 − b2�
1 −
�c+�ab − c−

2� + c−�2

�a − b�ab − c−
2���b − a�ab − c−

2���−1

, �29�

where we have assumed c+� �c−� without any loss of gener-
ality. This implies that, for any entangled state, c+�0 and
c−
0. The Gaussian EM �defined in terms of the function E
on pure states; see Eq. �22�� of a generic two-mode Gaussian
state coincides then with the entanglement E computed on
the pure state with m=mopt, with mopt�min��m��. Accord-
ingly, the symplectic eigenvalue �̃− of the partial transpose of
the corresponding optimal pure-state CM �opt

P , realizing the
infimum in Eq. �23�, would read �see Eq. �13��

�̃−opt
P � �̃−��opt

P � = 
mopt − 
mopt − 1. �30�

As an example, for the Gaussian EOF one has

GEF
��� = h„�̃−opt

P �mopt�… , �31�

with h�x� defined by Eq. �21�.
Finding the minimum of Eq. �29� analytically for a ge-

neric state is a difficult task. Numerical investigations show
that the equation ��m�=0 can have from one to four physical
solutions �in a period� corresponding to extremal points and
the global minimum can be attained in any of them depend-
ing on the parameters of the CM � under inspection. How-

ever, a closed solution can be found for two important
classes of nonsymmetric two-mode Gaussian states, as we
will now show.

A. Parametrization of two-mode covariance matrices
and definition of extremal states

We have shown in Refs. �19,20� that, at fixed global pu-
rity ��Tr�2 of the global state � and at fixed local purities
�1,2�Tr�1,2

2 of each of the two reduced single-mode states
�i=Trj�i�, the smallest symplectic eigenvalue �̃− of the par-
tial transpose of the CM � of a generic two-mode Gaussian
state �which qualifies its separability by the PPT criterion
and quantifies its entanglement in terms of the negativities� is
strictly bounded from above and from below. This entails the
existence of two disjoint classes of extremal states, namely,
the states of maximum negativity for fixed global and local
purities �GMEMS� and the states of minimum negativity for
fixed global and local purities �GLEMS� �20�. The negativi-
ties of the two extremal classes of Gaussian states, moreover,
turn out to remain very close to each other for all the

G. ADESSO AND F. ILLUMINATI PHYSICAL REVIEW A 72, 032334 �2005�

032334-6



possible assignments of the three purities, allowing for a re-
liable fexperimental estimate of the negativity of a generic
two-mode Gaussian state in terms of the average negativity
�19�. The latter is determined by knowledge of the three
purities alone, which, in turn, may be experimentally mea-
sured in direct, possibly efficient, ways �42�.

Recalling these results, one can provide a very useful and

insightful parametrization of the entangled two-mode Gauss-
ian states in standard form �see also �43��. In fact, the coef-
ficients appearing in Eq. �9� can be rewritten, in general,
according to the following, useful parametrization:

a = s + d, b = s − d , �32�

c± =
1

4
s
2

− d
2
�
�4d

2
+

1

2
�g2

+ 1��� − 1� − �2d
2

+ g��� + 1��2

− 4g
2

±
�4s
2

+
1

2
�g2

+ 1��� − 1� − �2d
2

+ g��� + 1��2

− 4g
2� , �33�

where the two local purities are regulated by the parameters
s and d, being �1= �s+d�−1 ,�2= �s−d�−1, and the global pu-
rity is �=g−1. The coefficient � embodies the only remaining
degree of freedom needed for the complete determination of
the negativities, once the three purities have been fixed. It
ranges from the minimum �=−1 �corresponding to the
GLEMS� to the maximum �= +1 �corresponding to the
GMEMS�. Therefore, as it varies, � encompasses all possible
entangled two-mode Gaussian states compatible with a given
set of assigned values of the purities. The constraints that the
parameters s, d, and g must obey for Eq. �9� to denote a
proper CM of a physical state are s�1, �d�
s−1, and

g � 2�d� + 1, �34�

If the global purity is large enough so that inequality �34�
is saturated, GMEMS and GLEMS coincide, the CM be-
comes independent of �, and the two classes of extremal
states coalesce into a unique class, completely determined by
the marginals s and d. We denote these states as GMEMMS
�20�—that is, Gaussian two-mode states of maximal negativ-
ity at fixed local purities. Their CM is simply characterized
by c±= ±
s2− �d+1�2, where we have assumed, without any
loss of generality, that d�0 �corresponding to choose, for
instance, mode 1 as the more mixed one: �1
�2�.

In general �19�, a GMEMS ��= +1� is entangled for

g 
 2s − 1, �35�

while a GLEMS ��=−1� is entangled for smaller g: namely,

g 
 
2�s2 + d2� − 1. �36�

To have a physical insight into these peculiar two-mode
states, let us recall �20� that GMEMS are simply nonsym-
metric thermal squeezed states, usually referred to as maxi-
mally entangled mixed states in CV systems. On the other
hand, GLEMS are mixed states of partial minimum uncer-
tainty, in the sense that the smallest symplectic eigenvalue of

their CM is equal to 1, saturating the uncertainty inequality
�11�.

We are now equipped with the necessary tools, and in the
next subsection we move on to compute Gaussian EM’s for
the two extremal classes of nonsymmetric two-mode Gauss-
ian states, the GLEMS and GMEMS.

B. Gaussian entanglement of minimum-negativity states
(GLEMS)

We want to find the optimal pure state �opt
P entering in the

definition Eq. �23� of the Gaussian EM. To do this, we have
to minimize the single-mode determinant of �opt

P , given by
Eq. �29�, over the angle �. It turns out that, for a generic
GLEMS, the coefficient of sin � in the last line of Eq. �29�
vanishes, and the expression of the single-mode determinant
reduces to the simplified form

m�
GLEMS = 1 +

�A cos � + B�2

2�ab − c−
2���g2 − 1�cos � + g2 + 1�

, �37�

with A=c+�ab−c−
2�+c−, B=c+�ab−c−

2�−c−, and a ,b ,c± are
the covariances of GLEMS, obtained from Eqs. �32� and �33�
setting �=−1.

The only relevant solutions �excluding the unphysical and
the trivial ones� of the equation ��m�=0 are �=� and

� = ± �* � arccos�3 + g2

1 − g2 −
2c−

c+�ab − c−
2� + c−

� .

Studying the second derivative ��
2m� for �=� one finds im-

mediately that, for

g �
−
2c+�ab − c−

2� + c−

c−
�38�

�remember that c−
0�, the solution �=� is a minimum. In
this range of parameters, the other solution �=�* is unphysi-
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cal �in fact �cos �*��1�, so m�=� is the global minimum.
When, instead, inequality �38� is violated, m� has a local
maximum for �=� and two minima appear at �= ±�*. The
global minimum is attained in any of the two, given that, for

GLEMS, m� is invariant under reflection with respect to the
axis �=�. Collecting, substituting, and simplifying the ob-
tained expressions, we arrive at the final result for the opti-
mal m:

mopt
GLEMS =�

1, g � 
2�s2 + d2� − 1 �separable state� ,

16s2d2

�g2 − 1�2 , 
�4s2 + 1�d2 + s2 + 4s
�s2 + 1�d2 + s2�d�
d2 + s2 
 g 
 
2�s2 + d2� − 1,

− g4 + 2�2d2 + 2s2 + 1�g2 − �4d2 − 1��4s2 − 1� − 
�

8g2 , 2�d� + 1 
 g 

�4s2 + 1�d2 + s2 + 4s�d�
�s2 + 1�d2 + s2

d2 + s2 .
�

�39�

Here ���2d−g−1��2d−g+1��2d+g−1��2d+g+1��g−2s
−1��g−2s+1��g+2s−1��g+2s+1�.

Immediate inspection crucially reveals that mopt
GLEMS is not

in general a function of the symplectic eigenvalue �̃− alone.
Therefore, unfortunately, the Gaussian EM’s and, in particu-
lar, the Gaussian EOF are not equivalent to the negativities
for GLEMS. Further remarks will be given in the following,
when the Gaussian EM’s of GLEMS and GMEMS will be
compared and their relationship with the negativities will be
elucidated.

C. Gaussian entanglement of maximum-negativity states
(GMEMS)

The minimization of m� from Eq. �29� can be carried out
in a simpler way in the case of GMEMS, whose covariances
can be retrieved from Eq. �33� setting �=1. First of all, one
can notice that, when expressed as a function of the
Minkowski coordinates �x0 ,x1 ,x3�, corresponding to the sub-
matrix �, Eq. �26�, of the pure state �P=� � �−1 entering in
the optimization problem, Eq. �23�, the single-mode determi-
mant m of �P is globally minimized for x3=0. In fact, from
Eq. �28�, m is minimal, with respect to x3, when Det�=x0

2

−x1
2−x3

2 is maximal. Next, one can show that for GMEMS
there always exists a matrix �, with x3=0, which is a simul-
taneous solution of the two matrix equations obtained by
imposing the saturation of the two sides of inequality �25�.
As a consequence of the above discussion, this matrix would
denote the optimal pure state �opt

P . Solving the system of
equations Det��q−��=Det��−�p

−1�=0, where the matrices
involved are explicitly defined combining Eqs. �24� and �33�
with �=1, one finds the following two solutions for the co-
ordinates x0 and x1:

x0
± =

�g + 1�s ± 
��g − 1�2 − 4d2��− d2 + s2 − g�
2�d2 + g�

,

x1
± =

�g + 1�
− d2 + s2 − g ± s
�g − 1�2 − 4d2

2�d2 + g�
. �40�

The corresponding pure state �P±=�± � �±−1
turns out to be,

in both cases, a two-mode squeezed state described by a CM
of the form, Eq. �27�, with cosh�2r�=x0

±. Because the single-
mode determinant m=cosh2�2r� for these states, the optimal
m for GMEMS is simply equal to �x0

−�2. Summarizing,

mopt
GMEMS = �

1, g � 2s − 1 �separable state� ,

��g + 1�s − 
��g − 1�2 − 4d2��− d2 + s2 − g��2

4�d2 + g�2 , 2�d� + 1 
 g 
 2s − 1.� �41�

Once again, also for the class of GMEMS the Gaussian EM’s
are not simple functions of the symplectic eigenvalue �̃−

alone. Consequently, they provide a quantification of CV en-

tanglement of GMEMS inequivalent to the one determined
by the negativities. Furthermore, we will now show how
these results raise the problem of the ordering of two-mode
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Gaussian states according to their degree of entanglement, as
quantified by different families of entanglement measures.

V. EXTREMAL ORDERING OF TWO-MODE
GAUSSIAN STATES

Entanglement is a physical quantity. It has a definite
mathematical origin within the framework of quantum me-
chanics, and its conceptual meaning in the end stems from
and is rooted in the existence of the superposition principle.
Further, entanglement has a fundamental operative interpre-
tation as that resource that in principle enables information
processing and communication in better-than-classical real-
izations �8�. One would then expect that, picking two states
�A and �B out of a certain �subset of� Hilbert space, the
question—is �A more entangled than �B?—should have a
unique, well-defined answer, independent of the measure that
one chooses to quantify entanglement. But contrary to the
common expectations, this is generally not the case for
mixed states. Different measures of entanglement will in
general induce different, inequivalent orderings on the set of
entangled states belonging to a given Hilbert space �38�, as
they usually measure different aspects of quantum correla-
tions existing in generic mixed states.

In the context of CV systems, when one restricts oneself
to symmetric, two-mode Gaussian states, which include all
pure states, the known computable measures of entanglement
all correctly induce the same ordering on the set of entangled
states. We will now show that, indeed, this nice feature is not
preserved moving to mixed, nonsymmetric two-mode Gauss-
ian states. We aim at comparing Gaussian EM’s and nega-
tivities on the two extremal classes of two-mode Gaussian
states �20�, introducing thus the concept of extremal order-
ing. At fixed global and local purities, the negativity of
GMEMS �which is the maximal one� is obviously always
greater than the negativity of GLEMS �which is the minimal
one�. If for the same values of purities the Gaussian EM’s of
GMEMS are larger than those of GLEMS, we will say that
the extremal ordering is preserved. Otherwise, the extremal
ordering is inverted. In this latter case, which is clearly the
most intriguing, the states of minimal negativities are more
entangled, with respect to Gaussian EM’s, than the states of
maximal negativities, and the inequivalence of the orderings,
induced by the two different families of entanglement mea-
sures, becomes manifest.

The problem can be easily stated. By comparing mopt
GLEMS

from Eq. �39� and mopt
GMEMS from Eq. �41�, one has that in the

range of global and local purities or, equivalently, of param-
eters �s ,d ,g�, such that

mopt
GMEMS � mopt

GLEMS, �42�

the extremal ordering is preserved. When inequality �42� is
violated, the extremal ordering is inverted. The boundary be-
tween the two regions, which can be found imposing the
equality mopt

GMEMS=mopt
GLEMS, yields the range of global and

local purities such that the corresponding GMEMS and
GLEMS, despite having different negativities, have equal
Gaussian EM’s. This boundary surface can be found numeri-
cally, and the result is shown in the three-dimensional plot of
Fig. 1.

One can see, as a crucial result, that a region where the
extremal ordering is inverted does indeed exist. The Gauss-
ian EM’s and the negativities are thus definitely not equiva-
lent for the quantification of entanglement in nonsymmetric
two-mode Gaussian states. The interpretation of this result is
quite puzzling. On the one hand, one could think that the
ordering induced by the negativities is a natural one, due to
the fact that such measures of entanglement are directly in-
spired by the necessary and sufficient PPT criterion for sepa-
rability. Thus, one would expect that the ordering induced by
the negativities should be preserved by any bona fide mea-
sure of entanglement, especially if one considers that the
extremal states GLEMS and GMEMS have a clear physical
interpretation �20�. Therefore, as the Gaussian EOF is an
upper bound to the true EOF, one could be tempted to take
this result as evidence that the Gaussian EOF overestimates
the true EOF, at least for GLEMS, and that, moreover, the
true EOF of GLEMS should be lower than the true EOF of
GMEMS, at fixed values of the purities. If this were the case,
the true EOF would not coincide with the Gaussian EOF,

FIG. 1. �Color online� Comparison between the ordering in-
duced by Gaussian EM’s on the classes of states with extremal
�maximal and minimal� negativities. This extremal ordering of the
set of entangled two-mode Gaussian states is studied in the space of
the CM parameters �s ,d ,g�, related to the global and local purities
by the relations �1= �s+d�−1, �2= �s−d�−1, and �=g−1. The inter-
mediate, meshed surface is constituted by those global and local
mixednesses such that the Gaussian EM’s give equal values for the
corresponding GMEMS �states of maximal negativities� and
GLEMS �states of minimal negativities�. Below this surface, the
extremal ordering is inverted �GMEMS have fewer Gaussian EM’s
than GLEMS�. Above it, the extremal ordering is preserved
�GMEMS have more Gaussian EM’s than GLEMS�. However, it
must be noted that this does not exclude that the individual order-
ings induced by the negativities and by the Gaussian EM’s on a pair
of nonextremal states may still be inverted in this region. Above the
uppermost, lighter surface, GLEMS are separable states, so that the
extremal ordering is trivially preserved. Below the lowermost,
darker surface, no physical two-mode Gaussian states can exist. All
the quantities plotted are dimensionless.
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whose evaluation would consequently necessarily involve a
decomposition over non-Gaussian states. However, this is
only a qualitative and speculative argument: proving or dis-
proving that the Gaussian EOF is the true EOF for any two-
mode Gaussian state is still an open question under lively
debate �18�.

On the other hand, one could take the simplest discrete-
variable instance, constituted by a two-qubit system, as a test
case for comparison. There, although for pure states the
negativity coincides with the concurrence, an entanglement
monotone equivalent to the EOF for all states of two qubits
�44�, the two measures cease to be equivalent for mixed
states, and the orderings they induce on the set of entangled
states can be different �39�. This analogy seems to support
again the stand that, in the arena of mixed states, a unique
measure of entanglement is a chimera and cannot really be
expected, due to the different operative meanings and physi-
cal processes �in the cases when it has been possible to iden-
tify them� that are associated to each definition: one could
think, for instance, of the operative difference existing be-
tween the definitions of distillable entanglement and en-
tanglement cost. In other words, from this point of view,
each inequivalent measure of entanglement introduced for
mixed states should capture physically distinct aspects of
quantum correlations existing in these states. Then, joining
this kind of outlook, one could hope that the Gaussian EM’s
might still be considered as proper measures of CV entangle-
ment, especially if one were able to prove the conjecture that
the Gaussian EOF is the true EOF for a broader class of
Gaussian states beyond the symmetric ones. One could then
live with the existence of inverted orderings of entangled
states and see it as a not so annoying problem.

Whatever be the case, we have shown that two different
families of measures of CV entanglement can induce differ-
ent orderings on the set of two-mode entangled states. This is
more clearly illustrated in Fig. 2, where we keep fixed one of
the local mixednesses and we classify, in the space of the
other local mixedness and of the global mixedness, the dif-
ferent regions related to entanglement and extremal ordering
of two-mode Gaussian states, improving and completing a
similar diagram previously introduced in Ref. �19� to de-
scribe separability in the space of purities.

VI. GAUSSIAN MEASURES OF ENTANGLEMENT
VERSUS NEGATIVITIES

In this section we wish to give a more direct comparison
of the two families of entanglement measures for two-mode
Gaussian states. In particular, we are interested in finding the
maximum and minimum values of one of the two measures
if the other is kept fixed. A very similar analysis has been
performed by Verstraete et al. �39� in their comparative
analysis of the negativity and the concurrence for states of
two-qubit systems.

Here it is useful to perform the comparison directly be-
tween the symplectic eigenvalue �̃−��� of the partially trans-
posed CM �̃ of a generic two-mode Gaussian state with CM
� and the symplectic eigenvalue �̃−��opt

P � of the partially
transposed CM �̃opt

P of the optimal pure state with CM �opt
P ,

which minimizes Eq. �23�. In fact, the negativities are all
monotonically decreasing functions of �̃−���, while the
Gaussian EM’s are all monotonically decreasing functions of
�̃−��opt

P �.
To start with, let us recall once more that for pure states

and for mixed symmetric states �in the set of two-mode
Gaussian states�, the two quantities coincide. For nonsym-
metric states, one can immediately prove the bound

�̃−��opt
P � 
 �̃−��� . �43�

In fact, from Eq. �23�, �opt
P 
� �17�. For positive matrices,

A�B implies ak�bk, where the aks�bks� denote the ordered
symplectic eigenvalues of A�B� �45�. Because the ordering
A�B is preserved under partial transposition, inequality �43�
holds true. This fact induces a characterization of symmetric
states, which saturate inequality �43�, as the two-mode
Gaussian states with minimal Gaussian EM’s at fixed nega-
tivities.

It is then natural to raise the question whether an upper
bound on the Gaussian EM’s at fixed negativities exists as
well. It seems hard to address this question directly, as one
lacks a closed expression for the Gaussian EM’s of generic
states. But we can promptly give partial answers if we re-
strict to the classes of GLEMS and GMEMS, for which the
Gaussian EM’s have been explicitly computed in the previ-
ous section.

FIG. 2. �Color online� Summary of entanglement properties of
two-mode Gaussian states in the projected space of the local mix-
edness b=�2

−1 of mode 2 and of the global mixedness g=�−1, while
the local mixedness of mode 1 is kept fixed at a reference value a
=�1

−1=5. Below the thick curve, obtained imposing the equality in
inequality �42�, the Gaussian EM’s yield GLEMS more entangled
than GMEMS, at fixed purities: the extremal ordering is thus in-
verted. Above the thick curve, the extremal ordering is preserved. In
the coexistence region �see Ref. �19��, GMEMS are entangled while
GLEMS are separable. The boundaries of this region are given by
Eq. �36� �dashed line� and Eq. �35� �dash-dotted line�. In the sepa-
rability region, GMEMS are separable too, so all two-mode Gauss-
ian states whose purities lie in that region are not entangled. The
shaded regions cannot contain any phisical two-mode Gaussian
state. All the quantities plotted are dimensionless.
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Let us begin with the GLEMS. We can compute the
squared symplectic eigenvalue �̃−

2��GLEMS�= �4�s2+d2�−g2

−1−
�4�s2+d2�−g2−1�2−4g2� /2. Next, we can reparam-
etrize the CM �obtained by Eq. �33� with �=−1� to make �̃−

appear explicitly: namely, g=
�̃−
2�4�s2+d2�−1− �̃−

2� / �1+ �̃−
2�.

At this point, one can study the piecewise function mopt
GLEMS

from Eq. �39� and find out that it is a convex function of d in
the whole space of parameters corresponding to entangled
states. Hence, mopt

GLEMS and, thus, the Gaussian EM are maxi-
mized at the boundary �d�= �2�̃−s− �̃−

2 −1� /2, resulting from
the saturation of inequality �34�. The states maximizing
Gaussian EM’s at fixed negativities, if we restrict to the class
of GLEMS, have then to be found in the subclass of
GMEMMS �states of maximal negativity for fixed marginals
�20�, defined after inequality �34��, depending on the param-
eter s and on the eigenvalue �̃− itself, which completely de-
termines the negativity�. For these states,

mopt
GMEMMS�s, �̃−� = � 2s

1 − �̃−
2 + 2�̃−s

�2

. �44�

The further optimization over s is straightforward because
mopt

GMEMMS is an increasing function of s, so its global maxi-
mum is attained for s→�. In this limit, one has simply

mmax
GMEMMS��̃−� =

1

�̃−
2 . �45�

From Eq. �30�, one thus finds that for all GLEMS the fol-
lowing bound holds:

�̃−��opt
P � �

1

�̃−���
�1 − 
1 − �̃−

2���� . �46�

One can of course perform a similar analysis for
GMEMS. But after analogous reasonings and computations,
what one finds is exactly the same result. This is not so
surprising, keeping in mind that GMEMS, GLEMS, and all
two-mode Gaussian states with generic s and d but with glo-
bal mixedness g saturating inequality �34� collapse into the
same family of two-mode Gaussian states, the GMEMMS,
completely determined by the local single-mode properties
�they can be viewed as a generalization of the pure two-mode
states: the symmetric GMEMMS are in fact pure�. Hence,
the bound of inequality �46�, limiting the Gaussian EM’s
from above at fixed negativities, must hold for all GMEMS
as well.

At this point, it is tempting to conjecture that inequality
�46� holds for all two-mode Gaussian states. Unfortunately,
the lack of a closed, simple expression for the Gaussian EM
of a generic state makes the proof of this conjecture impos-
sible, at the present time. However, one can show, by ana-
lytical power-series expansions of Eq. �29�, truncated to the
leading order in the infinitesimal increments, that, for any
infinitesimal variation of the parameters of a generic CM
around the limiting values characterizing GMEMMS, the
Gaussian EM’s of the resulting states lie always below the
boundary imposed by the corresponding GMEMMS with the
same �̃−. In this sense, the GMEMMS are, at least, a local
maximum for the Gaussian EM versus negativity problem.

Furthermore, extensive numerical investigations of up to 1
�106 CM’s of randomly generated two-mode Gaussian
states provide confirmatory evidence that GMEMMS attain
indeed the global maximum �see Fig. 3�. We can thus quite
confidently conjecture, however, at the moment, without a
complete formal proof of the statement, that GMEMMS, in
the limit of infinite average local mixedness �s→��, are the
states of maximal Gaussian EM’s at fixed negativities,
among all two-mode Gaussian states.

A direct comparison between the two prototypical repre-
sentatives of the two families of entanglement measures—
respectively, the Gaussian EOF GEF

and the logarithmic
negativity EN—is plotted in Fig. 4. For any fixed value of
EN, inequality �43� provides in fact a rigorous lower bound
on GEF

, namely,

GEF
� h�exp�− EN�� , �47�

while inequality �46� provides the conjectured lower bound

GEF

 h�exp�EN��1 − 
1 − exp�− 2EN��� , �48�

where we exploited Eqs. �18� and �31� and h�x� is given by
Eq. �21�.

The existence of lower and upper bounds on the Gaussian
EM’s at fixed negativities �the latter strictly proven only for
extremal states� limits to some extent the inequivalence aris-
ing between the two families of entanglement measures for
nonsymmetric two-mode Gaussian states.

FIG. 3. �Color online� Comparison between Gaussian EM’s and
negativities for two-mode Gaussian states. On the horizontal axis
we plot the symplectic eigenvalue �̃−��� of the partially transposed
CM �̃ of a generic two-mode Gaussian state with CM �. On the
vertical axis we plot the symplectic eigenvalue �̃−��opt

P � of the par-
tially transposed CM �̃opt

P of the optimal pure state with CM �opt
P ,

which minimizes Eq. �23�. The negativities are all monotonically
decreasing functions of �̃−���, while the Gaussian EM’s are all
monotonically decreasing functions of �̃−��opt

P �. The equations of
the two boundary curves are obtained from the saturation of in-
equality �43� �upper bound� and inequality �46� �lower bound�, re-
spectively. The dots represent 50 000 randomly generated CM’s of
two-mode Gaussian states. Of up to 1�106 random CM’s, none has
been found to lie below the lower solid-line curve, enforcing the
conjecture that it be an absolute boundary for all two-mode Gauss-
ian states. All the quantities plotted are dimensionless.
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VII. SUMMARY AND OUTLOOK

In this work we focused on the simplest conceivable
states of a bipartite CV system: two-mode Gaussian states.
We have shown that, even in this simple instance, the theory
of quantum entanglement hides several subtleties and reveals
some surprising aspects. In particular, we have studied the
relations existing between different computable measures of
entanglement, showing how the negativities �including the
standard logarithmic negativity� and the Gaussian convex-
roof extended measures �Gaussian EM’s, including the
Gaussian entanglement of formation �17�� are inequivalent
entanglement quantificators for nonsymmetric two-mode
Gaussian states. We have computed Gaussian EM’s explic-
itly for the two classes of two-mode Gaussian states having
extremal �maximal and minimal� negativities at fixed purities
�20�. We have highlighted how, in a certain range of values
of the global and local purities, the ordering on the set of
entangled states, as induced by the Gaussian EM’s, is in-
verted with respect to that induced by the negativities. The
question whether a certain Gaussian state is more entangled
than another, thus, has no definite answer, not even when
only extremal states are considered, as the answer comes to
depend on the measure of entanglement one chooses. Ex-
tended comments on the possible meanings and conse-

quences of the existence of inequivalente orderings of en-
tangled states have been given in Secs. V and VI.
Furthermore, we have proven the existence of a lower bound
holding for the Gaussian EM’s at fixed negativities and that
this bound is saturated by two-mode symmetric Gaussian
states. Finally, we have provided some strong numerical evi-
dence and partial analytical proofs restricted to extremal
states that an upper bound on the Gaussian EM’s at fixed
negativities exists as well and is saturated by states of maxi-
mal negativity for given marginals in the limit of infinite
average local mixedness.

We believe that our results will raise renewed interest in
the problem of the quantification of entanglement in CV sys-
tems, which seemed fairly well understood in the special
instance of two-mode Gaussian states. Moreover, we hope
that the present work may constitute a first step toward the
solution of more general problems concerning the entangle-
ment of Gaussian states, such as the computation of the en-
tanglement of formation for generic two-mode Gaussian
states �18� and the proof of its identity with the Gaussian
EOF in a larger class of Gaussian states beyond the symmet-
ric instance. On the other hand, the explicit expressions,
computed in the present work, now available for the Gauss-
ian EOF of GMEMS and GLEMS, might serve as well as a
basis to find an explicit counterexample to the conjecture that
the decomposition over all pure Gaussian states, in the defi-
nition of the EOF, is the optimal one for all two-mode Gauss-
ian states.

Finally, the results collected in the present work might
prove useful as well in the task of quantifying multipartite
entanglement of Gaussian states. For instance, we should
mention here that any two-mode reduction of a pure three-
mode Gaussian state is a GLEMS, as a consequence of the
Schmidt decomposition operated at the CM level �46�.
Therefore, thanks to the results that we have derived here, its
Gaussian EOF can be explicitly computed and can be com-
pared with the entropy of entanglement between one refer-
ence mode and the remaining two in the global state. One
has then available the tools and can apply them to investigate
the sharing structure of multipartite CV entanglement of
three-mode and, more generally, multimode Gaussian states
�47�.
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FIG. 4. �Color online� Comparison between the Gaussian en-
tanglement of formation GEF

and the logarithmic negativity EN for
two-mode Gaussian states. Symmetric states accomodate on the
lower boundary �solid line�, determined by the saturation of in-
equality �47�. GMEMMS with infinite, average local mixedness, lie
on the dashed line, whose defining equation is obtained from the
saturation of inequality �48�. All GMEMS and GLEMS lie below
the dashed line. The latter is conjectured, with strong numerical
support, to be the upper boundary for the Gaussian EOF of all
two-mode Gaussian states, at fixed negativity. All the quantities
plotted are dimensionless.
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