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Robust quantum gates on neutral atoms with cavity-assisted photon scattering
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We propose a scheme to achieve quantum computation with neutral atoms whose interactions are catalyzed
by single photons. Conditional quantum gates, including an N-atom Toffoli gate and nonlocal gates on remote
atoms, are obtained through cavity-assisted photon scattering in a manner that is robust to random variation in
the atom-photon coupling rate and which does not require localization in the Lamb-Dicke regime. The domi-
nant noise in our scheme is automatically detected for each gate operation, leading to signalled errors which do
not preclude efficient quantum computation even if the error probability is close to the unity.
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Neutral atoms in optical cavities have been one of the
pioneering avenues for the implementation of quantum com-
putation and networking [ 1-4]. Nevertheless, the experimen-
tal requirements associated with these approaches turn out to
be very challenging. In particular, although significant ex-
perimental advances have been reported recently in transmit-
ting and trapping single atoms in high finesse cavities
[4-12], no experiment has yet achieved a well defined num-
ber of atoms N=2 each of which is strongly coupled to the
cavity mode, individually addressable, and localized to the
Lamb-Dicke limit, as is required for the protocol of Ref. [1].
To realize a more scalable system, Chapman et al. proposed
an architecture in which a transverse optical lattice is em-
ployed to translate atoms into and out of a high-finesse cav-
ity for entangling gate operations [6]. Transport that pre-
serves internal state coherence has been demonstrated for
both ions [13] and atoms [14]. However, although the ap-
proach of Ref. [6] does solve the problem of separate ad-
dressing of many atoms in a tiny cavity, there remain signifi-
cant obstacles to achieving Lamb-Dicke confinement [15]
and strong coupling for any scheme that has yet been pro-
posed.

To overcome these difficulties and to provide several ca-
pabilities for quantum logic, in this paper we propose a
scheme for atomic quantum gates whereby atom-atom inter-
actions are catalyzed by single photons in a fashion that is
robust to various sources of practical noise. More specifi-
cally, a controlled phase-flip gate between two atoms is
achieved by cavity-assisted scattering of a single-photon
pulse from the cavity in which the atoms are localized [16].
This gate is insensitive to uncertainties in the atom-photon
coupling rate, thereby obviating the requirement for Lamb-
Dicke localization. It is also robust to all sources of photon
loss, including, for instance, atomic spontaneous emission,
photon collection and detection inefficiency, and any vacuum
component in the scattering pulse. Such noise is automati-
cally detected for each gate, leading to a finite failure prob-
ability of the gate operation. As shown in Refs. [17,18], ef-
ficient quantum computation can nevertheless be achieved
even if the associated failure probability is close to unity.
Moreover, our scheme can be readily extended to achieve a
Toffoli gate for N atoms in a single step and to realize non-
local gates on remote atoms trapped in different cavities. The
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direct N-bit gate could lead to more efficient construction of
quantum circuits, and the nonlocal gates on remote atoms
naturally integrates local computation with quantum net-
working.

To explain the idea of the gate operation, we first consider
two atoms in a single-sided cavity. To have a scalable archi-
tecture, one can follow Ref. [6] to assume there are trans-
verse optical lattice potentials to move the target atoms into
and outside the cavity [19,20]. Each atom has three relevant
levels as shown in Fig. 1. The qubit is represented by differ-
ent hyperfine levels |0) and |1) in the ground-state manifold.
The atomic transition from |1) to an excited level |e) is reso-
nantly coupled to a cavity mode a,. The state |0) is decoupled
due to the large hyperfine splitting.

To perform a collective quantum gate on the two atoms,
we reflect a single-photon pulse from the cavity. This single-
photon pulse, with its state denoted as |p), is resonant with
the bare cavity mode a.. If the photon pulse is sufficiently
long (with its bandwidth AQ) much smaller than the cavity
decay rate k), reflection of the pulse from a resonant cavity
absent an atom will leave the pulse shape almost unchanged
but will flip its global phase, as we later characterize in de-
tail. For the case that both of the atoms are in the |0) state,
this is precisely the nature of the resonant reflection since
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FIG. 1. (Color online) (A) Schematic setup for implementation
of the controlled phase flip (CPF) gate on two atoms inside the
cavity through the photon-scattering interaction. Any pair of atoms
can be transmitted into the cavity for a collective gate operation
through a transverse optical lattice potential as suggested in Refs.
[6,21]. For a more robust implementation of the gate, we add a
single-photon detector to detect the output photon pulse as illus-
trated inside the dashed box. (B) The relevant level structure of the
atoms and the coupling configuration.
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there is negligible atom-cavity coupling and hence no shift of
the resonant frequency of the cavity mode. After reflection,
the atom-photon state |0),|0),|p) evolves into —|0)|0),|p),
where the subscripts 1, 2 denote the two intracavity atoms.
However, if either or both of the atoms are in the state |1),
the effective frequency of the dressed cavity mode will be
shifted due to the atom-cavity coupling, which is described
by the Hamiltonian

H=1 2, gle){1]a.+|1){ela)). (1)

i=1,2

If the coupling rates g;> (A€, k,y,), where 1, is the rate of
spontaneous decay of |e), then the frequency shift will have a
magnitude comparable with g;, so that the incident single-
photon pulse will be reflected by an off-resonant cavity.
Hence, both the shape and global phase will remain un-
changed for the reflected pulse. Due to this property, the
component states [0),[1)2|p), [1)1|0),|p), and [1)4[1),|p) are
likewise unaffected by reflection process. The net effect of
these two subprocesses is that the reflection of a single-
photon pulse from the cavity actually performs a controlled
phase-flip gate (CPF) U,,=exp(i7]00),,(00|) on the two at-
oms while leaving the photon state unchanged (unentangled).
Hence, in the ideal case the reflected photon can be utilized
to catalyze subsequent gate operations.

However, in a realistic setting our scheme can be per-
formed in a more robust fashion by detecting the output
pulse with a single-photon detector. By this means, gate er-
rors due to all sources of photon loss, including atomic spon-
taneous emission, cavity mirror absorption and scattering,
imperfection in the photon source, and photon collection and
detection inefficiencies, are always signaled by the absence
of a photon count. As a result, these dominant sources of
noise only lead to probabilistic signaled errors, which yield a
finite failure probability of the gate but which have no con-
tribution to the gate infidelity if the operation succeeds (i.e.,
if a photon count is registered). For this class of errors, effi-
cient quantum computation is possible with an arbitrarily
small gate success probability p [17]. Compared with deter-
ministic gates, the required extra computational overhead
due to the small gate success probability p scales efficiently
(polynomially) both with 1/p and the computational scale
characterized by the number of qubits n [17]. Because of this
robustness, the input single-photon pulse can also be re-
placed by a simple weak coherent pulse |a) with the mean
photon number |a|>< 1. This replacement does not give any
essential problem in terms of scaling, although the individual
gate efficiency (the success probability) is indeed signifi-
cantly reduced by a factor of |a/*.

Before going to the detailed theoretical characterization of
the gate fidelity and efficiency, we next present some exten-
sions of the above scheme. First, our scheme can be readily
extended to perform a Toffoli gate on N atoms in a single
time step. If one reflects a single-photon pulse from a cavity
with N atoms trapped inside, the pulse will have a flip of its
global phase if and only if all the atoms are in the |0) state.
So, this reflection performs a Toffoli gate
=exp(im|00- - -0)5.. {00+ --0|) on all the atoms while leav-
ing the photon state unentangled. This direct N-bit gate could
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FIG. 2. (Color online) Schematic of the setup for implementa-
tion of nonlocal gates on two atoms 1 and 2 trapped in distant
cavities. Not shown are circulators (e.g., Faraday devices) to redi-
rect the output beams along paths distinct from the inputs. See the
text for further explanation.

lead to more efficient construction of circuits for quantum
computation. For instance, the reflection operation in the
Grover’s search algorithm can be realized in a single step
with the N-bit Toffoli gate [21].

Second, the above scheme can also be extended to per-
form nonlocal gates on two remote atoms trapped in different
cavities, as illustrated in Fig. 2. A similar nonlocal gate was
also proposed recently in a different system with rare-earth
atoms [22]. For this purpose, one uses a single-photon (or
weak-coherent) pulse which is in an equal superposition state
(|H)+|V))/2 of the H and V polarization components. With
a polarization beam splitter (PBS1), the H and V components
of the pulse are “bounced” back from the atom-cavity system
and a mirror M, respectively, with the reflection from M
leaving the incident pulse unchanged. The overall reflection
from the cavity and the mirror M actually performs the gate
operation Uy, =exp(im|0H);,(0H|) on atom 1 and the photon
pulse p, so that there is a phase flip only when the atom is in
the state |0) and the photon is in the polarization |H) [16].
The pulse is reflected successively from the two cavity
setups, with a half-wave plate (HWP1) inserted into the op-
tical path between the two reflections which performs a
Hardmard rotation on the photon’s polarization |HY— (|H)
+|V)/\2,|V)— (|V)=|H)) /2. The photon is detected by
two single-photon detectors D1 and D2 after the reflections,
corresponding to a measurement of its polarization in the
basis (|V)=|H))/2 (after the HWP2 and the PBS3; see Fig.
2). For a detection event in D2, a phase flip operation o7 is
performed on the atom 1, while no operation is applied if D1
clicks. The net effect of these operations is the desired CPF
gate Uj,=exp(im]00),,(00|) on the two remote atoms 1, 2.
Among other applications, this nonlocal gate and its exten-
sion to multiple atom-cavity systems provide a convenient
avenue for quantum networking. As before for the case of a
single cavity, in this distributed setting any noise leading to
photon loss is always signaled by the absence of a photon
count from either D1 or D2.

We now present a more detailed theoretical model of our
scheme and characterize the influence of some practical
sources of noise. The input single-photon pulse with a nor-
malized shape function fj,(f) and a duration T can be de-
scribed by the state |p)=[1f,,(1)ai (1)dt|vac), where |vac) de-
notes the vacuum state and a (7) is the one-dimensional
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optical field operator with the commutation relation
[ain(?),al (1')]=8(t—1") [23]. The cavity mode a, is driven by
the input field a;,(¢) through the Langevin equation [23]

d, = - ila..H] - (k12)a, — kap(), ()

where « is the cavity decay rate and the Hamiltonian H is
given in Eq. (1) for the case of two atoms; generalization to
multiple atoms is straightforward. To account for atomic
spontaneous emission with a rate 7y,, we add an effective
term (—ivy,)|e)e| to the Hamiltonian H. The output field
Aoy(?) of the cavity is connected with the input through the
input-output relation a,,(f)=a;,(r) +ka,.

The final atom-photon state can be numerically solved
from the above set of equations through discretization of the
continuum optical fields (for details on the numerical
method, see Refs. [16,24]). We use the following two quan-
tities to characterize the imperfections in our scheme. (1)
Due to various sources of photon loss, photons in the cavity
may be lost with then no photon count at the detectors.
Hence, we calculate the success probability of a photon
count at the detector to characterize the efficiency of the
scheme. (2) Even if a photon emerges, there may still be
imperfections of the atomic gate mainly due to the shape
distortion of the photon pulse after reflection from the cavity,
which can be characterized through the gate fidelity. Without
loss of the photon, the final atom-photon state can be written
as |q’out>=Zi,izci1i2|i1i2>a|l?>i,i2’ where Eilizci1i2|i1i2>a(il’i2
=0,1) is the general form for the input state of the two
atoms. The output photon state |p>,-l,-2 corresponds to the
atomic component |ijiy),, and is given by |[p);;
=f gﬁﬁ;(t)aiut'(t)dﬂvac) with a shape iluilz(t). Ideally, the out-
put state W) would have the shape functions f35'(r)=
—f.,(1) and il‘}‘z(t) =f.,(t) (for i;,i,#0), which realizes a per-
fect CPF gate U;, on the atoms. Hence to characterize the
gate imperfection, we calculate the fidelity F
=|[(Wi | W )% which is directly extendable to any number
of atoms. In the following calculation of the fidelity F, we
choose the input state [(|0)+]1))/12]%N for the case of N
atoms.

The results from our calculations are summarized in Fig.
3. First, Fig. 3(a) shows the component pulse shape i}‘;tz(t)
corresponding to a Gaussian input f;,(¢) for the case of two
atoms. Only the component fgo(f) has a notable shape dis-
tortion; all others are basically indistinguishable from the
input. To account for random variation in the coupling rates
gi» we have also calculated i}‘};(t) for g; varying from 2« to
6«. The output pulse shapes are nearly identical for g; vary-
ing in this range, which is typical of current experiments
[4-10]. Figure 3(b) shows the corresponding fidelity F of the
CPF (or Toffoli) gate from the shape distortion noise with the
atom number N=2,3,4,5. The fidelity F improves with in-
crease of the pulse duration 7 since the shape distortion is
reduced for longer pulses. F' also increases with the atom
number N, which is a bit surprising but actually reasonable:
for the N-atom state [(|0)+]1))/y2]®Y, the fraction of the
component [0)*" goes down as 1/2V, and the pulse shape
distortion noise comes dominantly from this component. Be-
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FIG. 3. (Color online) (A) The shape functions |f(¢)| for the
input pulse (solid curve) and the reflected pulses with the atoms in
different component states |i,i,),. The shape function for the atom
in the state |00), is shown by the dash-dot curve. With the coupling
rate g in a typical range from 2« to 6k, the shape functions for the
atoms in all the other component states are indistinguishable from
that of the input pulse (the solid curve). We have assumed a Gauss-
ian shape for the input pulse with f,,(r) <exp[—(t—T/2)*/(T/5)],
where ¢ ranges from 0 to 7 and T=210/ « for this example. (B) The
gate fidelity versus the number of atoms with the pulse duration T
=100/ k (the dotted curve) and T=210/ (the solid curve), respec-
tively. (C) The photon loss probability Py, due to atomic spontane-
ous emission shown as a function of the coupling rate g in units of
« with the atom number N=2,3,4. The dotted curves shows Py,
calculated from the empirical formula given in the text for N=4.
(D) Comparison of the photon loss Py, for a constant coupling rate
g=3k (the solid curve) and for a time varying rate g;(f)=3«[1
+sin(vt+ ¢;)/3] (the dotted curve) for the ith atom, where v=k/6
corresponds to a typical atom’s axial oscillation frequency in the
trap, and ¢; are taken as random numbers accounting for the atoms’
random initial positions. g;(r) is chosen so that its maximum and
minimum differ by a factor of 2, which exceeds that in current
experiments [9]. Other parameters for (A) and (B) are y,=« and
g=3k, and for (C) and (D), y,=« and T=210x.

cause the component |0)®*"Y dominates the contribution to the
gate infidelity, F' is also very insensitive to variation of the
coupling rates g;. We have verified that there is no notable
change of F (8F <107*) in Fig. 3(b) for g; varying from 2«
to 6.

Any source of photon loss has no contribution to the gate
fidelity but instead influences gate efficiency (success prob-
ability). A fundamental source of photon loss is atomic spon-
taneous emission. Figure 3(c) shows the failure probability
Pg, of the gate due to this source of noise, with the noise rate
¥s=k. For N atoms with equal g;=g, the probability P, can
be well fit by an empirical formula Py~ Py,
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=30 [NU/n!(N-n)12"][1+ng*/ ky,]™". The empirical Py,
can be understood as a probability averaged over all the
Dicke-state components in the input state [(|0)+]1))/y2]*%,
with the nth Dicke-component having an effective coupling
rate \ng to the cavity mode. We have also simulated the loss
probability Py, when the coupling rates g; are different and
vary during the gate operation, for instance, as would be
caused by the atoms’ thermal motion. With some typical
choice of the relevant experimental parameters, the result is
shown in Figure 3 D, which is qualitatively similar to the
constant coupling rate case with an effective average over
|g:|. Other sources of photon loss can be similarly character-
ized. For instance, with a finite photon collection and detec-
tion efficiency 7, the success probability of each gate will be
simply reduced by a factor of 7.

In summary, we have proposed a new scheme for robust
atomic gates by way of interactions mediated by cavity-
assisted photon scattering. These gates are robust to all
sources of photon loss that are typically the dominant source
of noise in experimental implementations, and are further-
more insensitive to randomness in the coupling rates caused
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by fluctuations in atomic position. Beyond two-atom gates
illustrated in Fig. 1, our scheme can also be employed for
realization of an N-atom Toffoli gate in a single step and for
the implementation of nonlocal gates on distant atoms as in
Fig. 2. We have characterized the efficacy of our scheme
through exact numerical simulations that incorporate various
sources of experimental noise. These results demonstrate the
practicality of our scheme by way of current experimental
technology.

Note added. After submission of this work, we were in-
formed that a similar idea was also investigated by the au-
thors X.-M. Lin et al. (unpublished).
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