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We present a small network for the testing of the entanglement of two ballistic electron waveguide qubits.
The network produces different output conditional on the presence or absence of entanglement. The structure
of the network allows for the determination of successful entanglement operations through the measurement of
the output of a single qubit. We also present a simple model of a dynamic Coulomb-like interaction and use it
to describe some characteristics of a proposed scheme for the entanglement of qubits in ballistic electron
waveguides.
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I. INTRODUCTION

A simple quantum computer consists of an array of qubits
and a series of gates formed by single-qubit and two-qubit
unitary transformations. A single-qubit gate rotates the state
of the qubit. The two-qubit gate creates an entangled pair of
qubits. Any proposed system for quantum computation must
provide a mechanism for pairwise entanglement of qubits.

The possibility of performing quantum computation in
ballistic electron waveguides was first proposed by Ioniciou
et al. �1�. In their approach, a single-electron wave packet
and two parallel waveguides are used to form a “flying qu-
bit,” with one waveguide designated as the �0� state and the
other as the �1� state. Subsequent work by Akguc et al. �2�
and Snyder and Reichl �3� focused on the computation of
stationary states of networks �rather than use the time evo-
lution of wave packets� of such qubits. They showed that it is
possible to obtain stationary-state solutions to the
Schrödinger equation for fairly complex quantum networks
of qubits and quqits.

One proposed mechanism for the entanglement of
waveguide-based qubits is the Coulomb interaction between
electrons in different qubits. For example, a small segment of
the waveguides in two qubits �which we call qubit A and
qubit B� which represent the �1� state could be brought close
to one another or could be separated by a dielectric that
allows interaction between electrons in the �1� waveguides.
This must be done in such a manner that electrons cannot
tunnel between the qubits �see Fig. 1�. If electrons in the �1�
waveguides pass the interaction region at the same time, they
can interact and create a phase change in the network state
�1, 1� with no change in the remaining states �1, 0�, �0, 1�, and
�0, 0�. This is sufficient to entangle the network. In Akguc et
al. �2� a simple static model of this entanglement mechanism
showed that a phase change of ei� could be achieved for the
state �1, 1�. In subsequent sections, we analyze a dynamic
model of the electron scattering process in the interaction
region which confirms this prediction. We also analyze a
simple two-qubit network which could allow a test for the
efficiency of this entanglement mechanism.

The waveguide structures we consider can be formed at
the interface of a GaAs/AlxGa1−xAs semiconductor hetero-
structure. At temperatures, T�0.1–2.0 K, an electron travels
ballistically with a phase coherence length of the order of

L��30–40 �m �4�. The gate structures themselves have
been shown to be anywhere from 0.17 to 0.4 �m in length
�2,5�. The small network presented here contains few enough
gates to be realizable with the coherence length presently
achievable in semiconductor heterostructures.

In Sec. II, we will present an electron waveguide network
consisting of two qubits and a series of single-qubit and two-
qubit gates which can be used to test for entanglement. We
first construct the network with ideal single-qubit transfor-
mations and ideal entangling two-qubit transformations. We
also construct the network with nonideal entanglement gates
and compare the outputs to the idealized case. We will see
that the output of the nonideal network could be used to
determine whether or not the entanglement gates behave as
expected. Then, in Sec. III, we present a simple model of an
electron scattering process that can achieve entanglement of
a pair of qubits. A classical description of the dynamics is
first discussed, and then a steady-state quantum scattering
analysis of the same model is used to describe the behavior
of the mutual phase acquired by the entangled electron cur-
rent in the pair of waveguides. In Sec. IV, we make some
concluding remarks.

II. ENTANGLEMENT TESTING NETWORK

In this section, we describe a simple quantum network
that can test the effectiveness of an entanglement gate. The
network is shown in Fig. 2. It consists of a sequence of

FIG. 1. �Color online� Each qubit is a pair of waveguides. The
spatial location of the electron in the waveguides determines the
state of the qubit. Here both qubits are in state �1�. The waveguides
representing state �1� are brought near each other to facilitate the
Coulomb interaction of the electrons, effecting a two-qubit unitary
transformation.
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single-qubit �NOT gates Q̂ and two-qubit entanglement gates

V̂. �In Akguc et al. �2�, it was shown that a single-qubit �NOT

gate could be constructed in electron waveguides by using a
properly constructed cavity which connects the two wave-
guide leads of the qubit.� Electrons are injected into the net-
work from the left in a state ��L�=c1�0,0�+c2�0,1�
+c3�1,0�+c4�1,1�. This state is then acted on by a sequence
of gates

N̂ = Q̂B · Q̂A · V̂AB · Q̂B
3 · Q̂A

3 · V̂AB · Q̂B · Q̂A, �1�

where

QA =
1

2	
1 + i 0 1 − i 0

0 1 + i 0 1 − i

1 − i 0 1 + i 0

0 1 − i 0 1 + i

 , �2�

QB =
1

2	
1 + i 1 − i 0 0

1 − i 1 + i 0 0

0 0 1 + i 1 − i

0 0 1 − i 1 + i

 , �3�

and

V =	
1 0 0 0

0 ei�1 0 0

0 0 ei�2 0

0 0 0 ei�

 . �4�

All three matrices act on the state vector �L
= �c1 ,c2 ,c3 ,c4�T, where T denotes transpose. We write the
two-qubit entanglement matrix in terms of phases �1, �2,
and �, so we can describe some general features of this ma-
trix.

When N̂ acts on the input state ��L�, we obtain an output

state ��R�= N̂��L�, which gives the distribution of electrons
exiting the quantum network on the right. For example, if
�1=�2=0 and �=�, an input state ��L�= �1,1� on the left
leads to an output state ��R�=ei3�/2�0,1� on the right. In this
example a series of single-qubit operations and two entangle-
ment operations produces an unentangled output state. Al-
though the output state is unentangled, the particular form of
the output state will depend upon a successful entanglement
of the qubits in the middle of the computation.

We can indirectly test if the gate V̂ is successful in entan-
gling the two qubits by means of the network outlined above.

A specific realization of the gate V̂ is defined by the choice of

the parameters �1, �2, and �. Through these parameters we
define two types of the gate V̂, one which entangles the qu-
bits and one which does not. As the parameters are varied the
output of the network is found for both types of V̂ gate. We
find that the entangling gate and the nonentangling gate give
very different outputs in both the two-qubit and one-qubit
bases, allowing for the determination of successful entan-
gling operations in the network through the measurement of
the output of only one of the qubits.

A perfect entanglement gate V̂ changes the phase only of
the two-qubit state �1, 1� and is represented by V̂ where �1
=�2=0 and �=�. A two-qubit gate that does not entangle the
qubits changes the phase of the single-qubit states �1A� and
�1B� so that the two qubits remain separable. Such a gate is
represented by the matrix V̂ where �1+�2=�. Due to the
spatial symmetry of the quantum network, we can choose
�1=�2=� /2 to represent a nonentangling two-qubit gate.
Therefore, if we begin with an input state ��L�= �1,1� and act
on it with a network N̂ containing the perfect entangling gate
V̂, where �=� and �1=�2=0, we find, as above, N̂�1,1�
=ei3�/2�0,1�. A network containing the nonentangling gate
where �1=�2=� /2 and �=� gives N̂�1,1�=ei3�/2�1,0�,
which is easily distinguishable from the case when entangle-
ment is present. In Fig. 3, we plot the probability P
= ���R �0,1��2 of finding the ideal output ��L�= �0,1� as a
function of � for both the entangled case and the unentangled
case. We find that the respective outputs are most different
when �=� and equal when no phase change occurs.

We can find the amount of probability exiting an indi-
vidual waveguide in a given network by

ProbA��1�� = ��R���1��1����R� . �5�

The probability of finding electrons in the �0� and �1� states of
qubit A for both the entangled network and the unentangled

FIG. 2. A schematic of the entanglement testing network. Boxes
represent individual transformations. Q and Q3 are single-qubit
transformations. V is a two-qubit transformation.

FIG. 3. A plot of the probability of finding the output state �1, 0�
as a function of the phase angle � for both the entangled and unen-
tangled cases. �a� Entangled network with �1=�2=0. �b� Unen-
tangled network with �1=�2=� /2. When � is near � the entangled
and unentangled situations are most easily distinguished.
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network is plotted in Fig. 4. We see that the amount of prob-
ability exiting the �1� waveguide in relation to the �0� wave-
guide of qubit A is much greater for the entangled network
than the unentangled network for phases angles near �.
There is a significant range of phase angles when the two
networks would be distinguishable.

In the situation above we have used the spatial symmetry
of the network to set �1=�2=� /2 for a nonentangling gate

V̂. An imperfect nonentangling gate need not split the phase
angle � equally between the two individual qubits. We then
write �2=�−�1 and, given an input state ��L�= �1,1�, we
analyze the output of the network as both � and �1 are var-
ied. We find that when �=� the output states of the entan-
gling network and the nonentangling network are distin-
guishable for all values of �1. As above, the networks are
most distinguishable when �1=�2=� /2. For the entangling
network, the probability of finding the output state ��R�
= �0,1� when �=� is 1. For the nonentangling network, the
probability of finding the output state ��R�= �0,1� when �
=� is never larger than 1/4 for all values of �1.

III. DYNAMIC MODEL OF COULOMB ENTANGLER

In Akguc et al. �2�, we presented a static model of Cou-
lomb coupling between electrons in separate leads of a wave-
guide quantum network. We considered two parallel wave-
guide leads belonging to separate qubits, corresponding, for
example, to the �1� states in the two qubits. We introduced a
dielectric window between the leads that allowed electrons
in the two leads to interact via their Coulomb interaction if
they pass the dielectric window at the same time. We as-
sumed that each electron produces a repulsive potential bar-
rier in the path of the electron in the opposite lead. We then
found that for certain energies the electrons could resonantly

pass the barrier and create a phase shift of ei�/2 for each
electron state, giving an overall phase shift of ei� for the
network state �1,1�. In this and the next sections, we reexam-
ine that picture but with a dynamic model of the actual scat-
tering process.

In order to obtain an exactly soluble model of the scatter-
ing process, we simplify the model slightly. In the waveguide
network, the actual scattering process takes place in the fixed
�in space� dielectric window if two electrons �in different
waveguides� pass that window at the same time. The inter-
action they feel will be that of a finite-range repulsive pulse
�due to their mutual Coulomb interaction� whose shape,
width, and strength are determined by the shape and width of
the dielectric window and the distance between the wave-
guide leads. In our dynamic model we will neglect the de-
pendence on the repulsive interaction due to the finite trans-
verse width of the waveguide leads and we will allow the
electrons to interact when they come within the range of
their mutual repulsive interaction. We will choose our initial
conditions so that this interaction occurs in a certain interval
of space. Below we first consider a classical version of the
model, and then we consider the fully quantum scattering
process.

A. Classical model of Coulomb entangler

Let us consider two one-dimensional straight wires, infi-
nitely long in the x direction and separated by a distance d in
the y direction. Electron A travels in the upper wire, and
electron B travels in the lower wire. Both electrons travel in
the positive x direction in their respective wires. We assume
that the two electrons have nearly the same kinetic energy.
Their velocities differ only by a small amount so that vA
=v0+�v and vB=v0−�v. Initially the separation of the two
particles in the x direction is large enough that no appre-
ciable interaction takes place. We assume that electron A is
initially to the left of electron B but is closing the gap be-
tween them as they move up the x axis.

We can write the total Hamiltonian for the system in the
form

H =
1

2m
pA

2 +
1

2m
pB

2 +
V0

cosh2���xA − xB��
= Etot, �6�

where pA=mvA and xA �pB=mvB and xB� are the momentum
and position of particle A �particle B�, V0 is the maximum
interaction strength, 1 /� is the width of the interaction po-
tential between the two electrons, and Etot is the total energy
of the system. In a Coulomb-like interaction the distance
between the wires, d, determines the maximum interaction
strength V0 between the particles but otherwise does not add
to an understanding of the interaction itself.

The center-of-mass momentum and position of the elec-
trons are P= pA+ pB and X= 1

2 �xA+xB�, respectively. Their
relative momentum and position are x=xA−xB and p= 1

2 �pA

− pB�, respectively. In terms of these coordinates, the Hamil-
tonian takes the form

FIG. 4. The output probability for each state of qubit A. �a�
Entangled network with �1=�2=0. �b� Unentangled network with
�1=�2=� /2. For the entangled network the amount of electron
current in the �1�A state is large compared to the �0�A state for phase
angle � near �. The opposite is true for the unentangled network.
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H =
P2

4m
+

p2

m
+

V0

cosh2��x�
= Etot. �7�

We see that the center-of-mass momentum and the center-of-
mass energy Ec.m.= P2 /4m are constants of the motion.

All the interesting dynamics occurs in the relative motion
of the two electrons whose Hamiltonian is given by

Hr =
p2

m
+

V0

cosh2��x�
= Er, �8�

where Er is the energy contained in the relative motion of the
particles. The character of this motion is determined by the
relationship between the energy of relative motion, Er=Etot
−Ec.m., and the interaction strength V0. The phase-space dia-
gram for the relative motion is plotted in Fig. 5. Electrons
with relative energy 0�Er�V0 interchange their momenta
during the collision but not their relative postions �the phase-
space motion corresponds to the curves that cross the x axis
in Fig. 5�. Trajectories with relative energy V0�Er�	 in-
terchange their position and not their relative momenta dur-
ing the collision �the curves that cross the p axis in Fig. 5�.

The case where electrons A and B have approximately the
same velocity—so vA=v0+�v and vB=v0−�v with �v

v0 and both travel in the positive x direction—corresponds
to the case 0�Er�V0. Electron A will catch up to electron B
and they will undergo a collision with the result that they
interchange their velocities but not their positions. We com-
bine the solutions for the center-of-mass coordinate and the
relative coordinate for the case Er�V0 and obtain

xA�t� =�Ec.m.

m
t −

1

2�
sinh−1��V0

Er
− 1

�cosh
− ��4Er

m
t�� . �9�

and

xB�t� =�Ec.m.

m
t +

1

2�
sinh−1��V0

Er
− 1

�cosh
+ ��4Er

m
t�� . �10�

For these solutions, the interaction is centered at x=0 at time
t=0. In the asymptotic regions where both particles are far
away from the interaction �t→	, t→−	� the particles move
with constant velocity. The particles exchange velocity dur-
ing the interaction and do not pass each other.

In ballistic electron waveguides built using
GaAsuAlxGa1−xAs heterostructures the energy of the trav-
eling electrons at low temperatures is very close to the Fermi
energy of the electron gas �6�. We would therefore expect
that the energies of any two electrons traveling through a
Coulomb coupler structure would be quite similar, resulting
in a small relative energy with respect to the interaction po-
tential. This corresponds classically to the case Er�V0 con-
sidered above.

B. Quantum scattering model of Coulomb entangler

Let us now consider the quantum realization of the clas-
sical model described above. The Schrödinger equation for
the two-particle system is

−
�2

2m

 �2

�xA
2 +

�2

�xB
2 �
 +

V0


cosh2���xA − xB��
= Etot
 , �11�

where 
=
�xA ,xB� is the energy eigenstate of the two-
particle system. If we again change to center-of-mass and
relative coordinates, the Schrödinger equation takes the form

−
�2

2m

1

2

�2

�X2 + 2
�2

�x2�
 +
V0


cosh2��x�
= E
 , �12�

where 
 is now a function of the center-of-mass and relative
coordinates. The center-of-mass momentum and energy are
again constants of motion for this system. We assume a sepa-
rable form for the two-particle wave function, 
�X ,x�
=��X���x�. The solution for the center-of-mass wave func-
tion is

��X� = eiKX, �13�

where K= P /�=�4mEc.m. /�2 is the center-of-mass wave vec-
tor. The solution for the wave function describing the relative
motion is �7�

��x� = �1 − �2�−ik/2�F
− ik

�
− s,

− ik

�
+ s + 1,

− ik

�
+ 1,

1

2
�1

− ��� , �14�

where F is a hypergeometric function, k=�mEr /�2, �
=tanh��x�, and s= 1

2 �−1+�1−4mV0 /�2�2�. The center-of-
mass solution ��X� is chosen to represent the state of two
particles traveling in the positive x direction and is normal-
ized to unity.

We are considering the scattering of two electrons for the
case Er�V0, traveling along the pair of waveguides in the

FIG. 5. The phase space of the relative motion. The dashed line
is the separatrix between electrons with relative energy 0�Er

�V0 and electrons with relative energy V0�Er�	. Electrons with
relative energy 0�Er�V0 �inside the separatrix� interchange their
momenta during the collision and not their relative postions. Tra-
jectories with relative energy V0�Er�	 �outside the separatrix�
interchange their position and not their momenta during the colli-
sion. �All units dimensionless.�
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positive x direction. Initially the electrons enter the system
from the left such that electron A begins to the left of elec-
tron B and electron A has a slightly larger momentum than
electron B. The repulsive interaction potential between the
two electrons falls off rapidly enough that asymptotically �t
→ ±	� the electrons are free.

From the discussion of the classical version of this prob-
lem �for Er�V0� we see that there are two asymptotic re-
gimes. In one regime �x→−	�, electron A remains to the left
of electron B, but during the collision they interchange mo-
menta �this is the only case that is allowed classically�. How-
ever, quantum mechanically the regime �x→ +	� is also al-
lowed. This would require the wave function to tunnel
through the barrier in the relative motion problem. We can
now write the asymptotic form of the solution for the relative
motion problem in the form

��x → 	� = Teikx, ��x → − 	� = eikx + Re−ikx. �15�

The coefficient T is the probability amplitude that the elec-
trons interchange position and not momentum during the col-
lision. The coefficient R is the probability amplitude that the
electrons interchange momentum and not postion during the
collision �the classically allowed case�. The term eikx is the
wave function for the relative motion before the collision. If
we take the asymptotic limits �x→ ±	� of the hypergeomet-
ric function, we obtain the following expressions for the
probability amplitudes T and R:

T =

�
− ik

�
− s��
− ik

�
+ s + 1�

�
− ik

�
��
− ik

�
+ 1� , �16�

R =

�
 ik

�
��
 ik

�
− s��
 ik

�
+ s + 1�

�
− ik

�
���− s���s + 1�

, �17�

where ��x� is the gamma function.
We can now write the total wave function for the system

in the asymptotic regions �xA→−	, xB→−	� and �xA→
+	, xB→ +	�. For �xA→−	, xB→−	� the total wave func-
tion is


�xA,xB� = eikAxAeikBxB, �18�

where kA= pA /� and kB= pB /� are the incident wave vectors
of electrons A and B. For �xA→ +	, xB→ +	� the total wave
function is


�xA,xB� = TeikAxAeikBxB + ReikBxAeikAxB. �19�

This simple model of Coulomb entanglement predicts no
reflection of an individual electron due to the collision, but
simply a mutual phase shift of the two electrons and a pos-
sible exchange of momenta. This bodes well for future
implementations of such structures in quantum processing
devices, as reflection of individual electron probability at the
computational gates plays a large role in determining the
fidelity of a computation �2,3�.

As stated above, in ballistic electron waveguides in
GaAsuAlxGa1−xAs semiconductor heterostructures the in-
coming energies of each electron is expected to be near the
Fermi energy of the device, EF. We assume that widths
of the waveguides are equal so that the energy required for
the first transverse mode is the same. For electrons in the
first propagating channel of the waveguide leads, this
means that the momenta of the electrons will be
given by kA=�2m�EF±�E� /�2− �� /w�2 and kB

=�2m�EF±�E� /�2− �� /w�2 where �E is the deviation in en-
ergy from the Fermi energy due to the finite temperature of
the semiconductor material. For low temperatures we can
expect �E to be very small and therefore the relative momen-
tum of the two electrons to be very small. From the above
discussion, we see that as the relative momentum k→0, R
→−1, and T→0. This would correspond to the electrons
exchanging momentum and leaving the interaction region
with a mutual phase change of ei�. This is just what is
needed to obtain optimum entanglement in the network de-
scribed in the previous section.

To determine how the reflection and transmission ampli-
tudes might vary in an implementation of the network at
finite temperature, we use numerical values similar to those
used in �2� for GaAsuAlxGa1-xAs quantum networks. We
define a unit of length, �0=40 nm, and a unit of energy, E0
=�2 /2m�0

2=0.000 355 eV, where m=0.067me is the effec-
tive electron mass in GaAsuAlxGa1-xAs semiconductor
structures and me is the mass of the free electron. If we
assume that the leads have a transverse width w=160 Å, the
electrons propagate in the first channel for Fermi energies
61.7�EF /E0�246.8. We use an interaction potential of V0
=32.14E0 and an interaction region of length 1/�=�0 /2.
Figure 6 shows the behavior of the phase angle of the reflec-
tion amplitude as the relative momentum varies. For small
values of the relative momentum the reflection amplitude
and, therefore, the mutual phase between the electron cur-
rents approach ei�. Figure 7 shows how the reflection prob-
ability varies with the relative momentum. Reflection domi-
nates for small relative momentum.

In order to maintain quantum coherence in these types of
devices, temperatures must be on the order of a few kelvins
�6�. When both qubits are formed at the same semiconductor
heterostructure we can assume the same Fermi energy value
in both qubit structures. At the low temperatures associated

FIG. 6. Plot of the phase angle � of the probability amplitude
R=ei� versus relative momentum k. The phase angle is very near �
when the relative momentum is very small.
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with these types of semiconductor devices the electrons
travel with an energy very near the Fermi level. Therefore
the average deviation from the Fermi level of each of our
two traveling electrons corresponds to the relative energy of
the electrons incident on the interaction region. At small tem-
peratures the electron energy deviates from the Fermi energy
an average amount �E�kBT, where kB is Boltzmann’s con-
stant and T is the temperature. For a temperature of 4 K we
find the average separation in energy to be �E�E0. This
allows us to find the average deviation in each electron lon-
gitudinal momentum �k. Taking values for the leads of width
w=160 Å and Fermi energy EF /E0=150 we find �k
�0.0027 nm−1. Then using a relative momentum of k=�k we

find near unit probability for momentum exchange and an
amplitude phase angle very near � so that the phase angle of
the amplitude, R=ei�, is �=�±�� where ��=0.13 rad.

IV. CONCLUSIONS

We have presented a network for the testing of entangle-
ment in ballistic electron waveguide qubits. The entangling
properties of the Coulomb gate are distinguishable for phase
angles close to �. The simple model of a Coulomb-like cou-
pler predicts a mutual phase angle of the �1, 1� state very near
� when the relative momentum between the two particles is
very small. There is no reflection of individual electrons at
the Coulomb region. All incoming probability continues for-
ward through the Coulomb coupler region towards the output
side of the network.

ACKNOWLEDGMENTS

The authors thank the Robert A. Welch Foundation �Grant
No. F-1051� and the Engineering Research Program of the
Office of Basic Energy Sciences at the U.S. Department of
Energy �Grant No. DE-FG03-94ER14465� for support of this
work. L.E.R. thanks the Office of Naval Research �Grant No.
N00014-03-1-0639� for partial support of this work.

�1� Radu Ioniciouiu, Gehan Amaratunga, and Florin Udrea, Int. J.
Mod. Phys. B 15, 125 �2001�.

�2� Gursoy B. Akguc, Linda E. Reichl, Anil Shaji, and Michael G.
Snyder, Phys. Rev. A 69, 042303 �2004�.

�3� Michael G. Snyder and Linda E. Reichl, Phys. Rev. A 70,
052330 �2004�.

�4� S. Datta, Electronic Transport in Mesoscopic Systems �Cam-

bridge University Press, Cambridge, England, 1995�.
�5� J. Harris, R. Akis, and D. K. Ferry, Appl. Phys. Lett. 79, 2214

�2001�.
�6� J. P. Bird, R. Akis, D. K. Ferry, A. P. S. de Moura, Y.-C. Lai,

and K. M. Indlekofer, Rep. Prog. Phys. 66, 583 �2003�.
�7� L. D. Landau and E. M. Lifshitz, Quantum Mechanics �Perga-

mon, New York, 1977�.

FIG. 7. The probability �R�2 of momentum exchange during the
collision.

L. E. REICHL AND M. G. SNYDER PHYSICAL REVIEW A 72, 032330 �2005�

032330-6


