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We describe an implementation of Grover’s fixed-point quantum search algorithm on a nuclear magnetic
resonance quantum computer, searching for either one or two matching items in an unsorted database of four
items. In this algorithm the target state �an equally weighted superposition of the matching states� is a fixed
point of the recursive search operator, so that the algorithm always moves towards the desired state. The effects
of systematic errors in the implementation are briefly explored.
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I. INTRODUCTION

Grover’s quantum search �1,2� is one of the key algo-
rithms in quantum computation �3�, allowing an unstructured
database to be searched more efficiently than can be
achieved by any classical algorithm. It is most simply de-
scribed in terms of a binary function f , with an n-bit input
register, permitting N=2n inputs, and a single output bit. This
function has the value of 1 for k desired �matching or satis-
fying� inputs and zero for the other N−k inputs, and can only
be investigated by an oracle that returns the value for any
desired input. Grover’s original algorithm uses a quantum
oracle that performs the transformation

�x� → �− 1� f�x��x� , �1�

which is applied alternately with an amplitude amplification
operator. Beginning from the state Hn�0�, where Hn is the
n-qubit Hadamard and �j� indicates an n-qubit quantum reg-
ister containing the number j, the system is rotated towards
an equally weighted superposition of the satisfying inputs. A
measurement of the register after O��N /k� steps will return
one of the satisfying inputs with high probability, while a
classical search will take O�N /k� queries on average.

Grover’s search is known to be optimal �4� when the
number of matching inputs is known, but problems occur
when k is unknown. As the basic procedure is a rotation,
once the desired state is reached further iterations will drive
the system away from this state. Thus it is necessary either to
estimate the value of k �for example, by approximate quan-
tum counting �5,6�� or to use an algorithm which is more
robust to errors in the value of k.

Recently, Grover has described a quantum algorithm �7�
that overcomes this problem by driving the system asymp-
totically towards the desired state: the algorithm will always
move towards the target and cannot overshoot. This might
seem impossible, as unitarity means that any iterative algo-
rithm cannot have a fixed point, but the algorithm overcomes
this by using a process that is recursive rather than iterative,
so that the target state can act as a fixed point. A further

consequence of the fixed-point behavior is that the algorithm
should be relatively robust to certain types of systematic er-
ror in its implementation.

II. THEORY

Grover’s algorithm comes in many forms �2�, and here we
describe just one of these, before relating it to the newer
algorithm �7�. Consider the transformation

UR0U†RfU�0� , �2�

where Rf is a phase oracle that applies a phase of � to all
basis states satisfying the function f and R0 applies this phase
shift to the initial state �0�. If we take U=Hn and �=�, then
this corresponds to the first iteration of the original Grover
algorithm. Subsequent steps are obtained by applying the last
four operations r times, thus applying successive rotations.
Larger rotations can be defined using a recursive approach,
by taking

Vr+1 = VrR0Vr
†RfVr �3�

with V0=U. For the original search algorithm U†=U and
R†=R, so that each recursive operator simply corresponds to
one of the iterative operators.

Grover’s fixed point quantum search differs significantly
from this by choosing �=� /3, so that R† does not equal R.
Thus, the recursive operators are not simply iterative, and
have to be worked out separately for each value of r; for
more details see the original paper �7�. Here we consider the
case of n=2, with either k=1 or k=2, and take U as the
pseudo-Hadamard gate �a 90y

° rotation�, as these are the ex-
amples we implement experimentally.

For the case of k=1 there is a single satisfying input �s�.
The probability of the algorithm succeeding depends on the
projection of the final state onto the satisfying input and is
given by

Pr = ��s�Vr�00��2, �4�

which simplifies to

Pr = 1 − �3/4�3r
. �5�

Clearly this converges rapidly to 1, as shown by the numeri-
cal values listed in Table I. For the case k=2 the target state*Electronic address: jonathan.jones@qubit.org
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is an equally weighted superposition of the two satisfying
states, and the success probability is given by

Pr = 1 − �1/2�3r
, �6�

which rises even more rapidly.
Note, however, that r is the order of the recursive

operator and not the number of queries, which is given by
Qr= �3r−1� /2. This query count, which is also listed in Table
I, also rises rapidly with r, so that the fixed-point algorithm is
less efficient than a traditional Grover search when the value
of k is known. This is unsurprising, as the traditional search
is known to be optimal �4� in this case! When the value of k
is unknown, however, the current algorithm outperforms pre-
viously known methods, as described by Grover �7�. It is
also relatively robust against experimental errors, as dis-
cussed below.

III. EXPERIMENT

This algorithm was implemented on a two-qubit nuclear
magnetic resonance �NMR� quantum computer �8–13�,
searching for either one or two satisfying inputs for a func-
tion with four inputs. The spin system chosen was formed by
the 1H and 13C nuclei in a sample of 10 mg of 13C labeled
sodium formate �Na+HCO2

−� dissolved in 0.75 ml of D2O at
a temperature of 20 °C.

All experiments were performed on a Varian Unity Inova
spectrometer with a nominal 1H frequency of 600 MHz. The
1H and 13C frequencies were adjusted to be in exact reso-
nance with the respective nuclei so that the spin Hamiltonian
in the rotating frame, written using Product Operator nota-
tion �14�, is given by the Ising coupling as

H = �J 2HzCz �7�

with J=194.8 Hz. The measured relaxation times were T1
H

=6.5 s, T2
H=1.2 s, T1

C=16 s, and T2
C=0.6 s. A repetition de-

lay of 120 s was used in all experiments; this is more than
seven times the longest T1 so that saturation effects can be
ignored. The rf pulse powers were adjusted so that a 90°
rotation took 15 �s for both spins.

The current search algorithm requires the implementation
of U gates and R gates, as well as the inverse operations. The
U gates were implemented as simultaneous 90y

° pulses, while
the R gates were decomposed into periods of evolution under
the Ising coupling and composite z rotations �15�, con-

structed from x and y pulses. Rf gates were implemented for
each of the four functions f with k=1 and the six functions
with k=2; note that the R0 gate is identical to Rf for the
function with �00� as the single satisfying input. Each gate
was locally optimized by combining pulses, but no optimi-
zation across gates was performed. To explore the effects of
systematic errors, experiments were performed using both
naive rf pulses and BB1 composite pulses �16,17� that cor-
rect for systematic errors in pulse lengths arising from rf
inhomogeneity.

A pseudopure initial �00� state was prepared by spatial
averaging �12�. Experiments were performed for each of the
functions with k=1 and k=2, with the order r of the recur-
sive search operator taking the values r=0,1 ,2 ,3. The r
→� limit was simulated by directly transforming the initial
state into the desired target state. The state of the spin system
was then probed to obtain information on the performance of
the algorithm.

For the case of k=1, the target state is a single eigenstate
and the analysis is simple. A crush gradient was applied to
dephase any off-diagonal error terms in the density matrix
�18� and the 1H NMR spectrum was observed after a 90y

° 1H
pulse. The state of the first qubit, stored on the 1H nucleus, is
then encoded in the sign of the NMR resonance, and the state
of the second qubit, stored on the 13C nucleus, is revealed, by
which of the two components of the 1H multiplet are ob-
served. For more details see �12�. Note that this approach is
only practical in systems with relatively small numbers of
qubits, and in large spin systems it would be necessary to
measure all the spin states directly.

Finally, the success probability Pr of the algorithm can be
estimated from the intensity of the NMR spectrum compared
with a reference spectrum �19�. Because NMR experiments
are only sensitive to the traceless part of the density matrix
the observed signal strength is not directly proportional to
Pr, but rather to the fractional signal Fr, which is given by
Fr= �4Pr−1� /3. In particular, no signal is expected for the
case Pr=1/4.

For the case of k=2 the situation is slightly more compli-
cated, as the target state is a superposition of the two match-
ing states, but we chose to analyze the data in the same way.
For four of the six functions this results in a 1H NMR spec-
trum containing both components of the multiplet, with the
result encoded in the signs of these two lines, while for the
other two functions no signal is expected. For the four func-
tions giving rise to visible signals the success probability and
fractional signal are related by Fr=2Pr−1, so that no signal
is expected for the case Pr=1/2.

IV. RESULTS

We began by implementing the four functions with k=1
using naive rf pulses, with the results shown in Fig. 1. The
spectra all have the form expected, showing one major com-
ponent in each multiplet. A positive line indicates that the
first qubit is in state �0�, while a negative line indicates state
�1�. A signal in the left-hand component indicates that the
second qubit is in state �0�, while the right-hand component
indicates state �1�. The minor signals visible on the other

TABLE I. Success probabilities �Pr� and the total number of
queries used �Qr� for the rth stage of Grover’s fixed-point quantum
search algorithm with n=2; for more details see the main text.

r Pr �k=1� Pr �k=2� Qr

0 0.2500 0.5000 0

1 0.5781 0.8750 1

2 0.9249 0.9980 4

3 0.9996 1.0000 13

4 1.0000 1.0000 40
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component of each multiplet, as well as the minor phase
distortions visible in some spectra, can be ascribed to errors
in the implementation.

As expected, the signal intensity initially rises towards the
limiting value, although it seems to fall slightly at r=3. This
point is explored in more detail in Fig. 2, which compares
the integrated intensity of the largest component with the
theoretically expected values. Initially the experimental data
points lie quite close to the theoretical line, but for r=3 the
match is much less good. We originally ascribed this to the
effects of errors in the pulse sequence, and in particular to
the cumulative effects of pulse length errors, and sought to
reduce these effects by using BB1 composite pulses �16,17�.
The outline results of this approach are also shown in Fig. 2
�raw data not shown�.

While this approach did give slightly improved results for
r�2 �especially for the case r=0 where the search operator
comprises a single 90° pulse�, it does not remove the drop in
intensity seen at r=3, which we now believe arises from

errors in the implementation of the R gates. The errors are
different for the four different functions �the error arising
from noise in the experimental spectra was estimated by rep-
etition and is much smaller than the scatter observed�, con-
sistent with this suggestion.

The lack of improvement from the use of BB1 pulses may
seem disappointing, but is in fact quite interesting in its own
right. We have assumed that the U operator is implemented
by a 90y

° pulse, but Grover’s algorithm can be made to work
with many different operators �2�. In combination with the
fact that Grover’s newer algorithm always moves towards
the target state, this makes the algorithm intrinsically tolerant
of pulse length errors �7�. In fact the experimental spectra
observed are of remarkably high quality, given that the case
of r=3 corresponds to the implementation of 26 two-qubit
gates �13 instances of Rf and 13 of R0� and around 200 rf
pulses.

Finally we consider the situation when there are two
matching states; that is, k=2. The search operators were
implemented directly, rather than by applying two single-
match operators in sequence, and are slightly simpler than
for the case of a single target state �in some cases the func-
tion operators Rf do not require two qubit gates�. There are
six possible search operators Rf, all of which were imple-
mented using both naive and BB1 composite pulses, but here
we concentrate on two cases: firstly where the target states
are �00� and �01� �giving a 1H spectrum with both compo-
nents of the multiplet positive�, and secondly where they are
�10� and �01� �giving a spectrum with the left-hand compo-
nent negative and the right-hand component positive�.

The experimental results from these cases are summarized
in Fig. 3, where the intensity of each spectrum was obtained
using either the sum or the difference of the integrals of the
two components as appropriate. We show results obtained
using naive pulses, but as before the results with BB1 pulses
were very similar. As before, the experimental data broadly
follow the theoretical curve, and this time the results for r
=2 and r=3 have almost the same intensity, as predicted by
Table I. This slight improvement may reflect the fact that the
Rf gates are slightly simpler for k=2 than for k=1.

In principle, one could also study the cases of k=3 and
k=4, but these are not particularly interesting. There is a

FIG. 1. Experimental 1H NMR spectra from an implementation of Grover’s fixed-point quantum search algorithm on a two-qubit NMR
quantum computer with one matching state. For a description of the readout scheme see the main text. Spectra are shown for the cases r
=0,1 ,2 ,3, and a simulation of the r→� limit was obtained by directly transforming the initial state into the target state. Spectra are plotted
using NMR conventions, with frequency �measured by the offset from the rf frequency� increasing from right to left. A horizontal axis is
plotted below the bottom left spectrum and can be applied to all spectra. The vertical scale is arbitrary, but the same for all spectra.

FIG. 2. Experimental success probability for the cases r
=0,1 ,2 ,3 for the four possible functions with a single matching
state. Results are shown for both simple single-qubit gates imple-
mented by naive rf pulses and for BB1 composite pulses. Fractional
intensities are obtained by comparing the spectral intensities with
those in the spectra obtained by directly transforming the initial
state into the target state, and these are converted to probabilities as
described in the main text. The theoretical result is shown as a
smooth curve even though it is strictly only defined for integer
values of r; experimental values are shown as squares, circles, dia-
monds, and stars for target states of �00�, �01�, �10� and �11�,
respectively.
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correspondence between the functions with k and those with
N−k satisfying inputs, and for quantum oracles �controlled
phase gates� the operators differ only by global phases. Thus
the case of k=3 is indistinguishable from that of k=1, as
phase shifting three states in one direction is equivalent to
shifting the fourth state in the opposite direction. The case of
k=4 is trivial, as applying phase shifts to all the states is

nothing more than a global phase, and thus the function op-
erator corresponds to the identity operation.

V. CONCLUSIONS

Our experimental results are broadly consistent with those
predicted for an implementation of Grover’s fixed-point
quantum search algorithm. The observed success probability
initially rises with the order of the �recursively defined�
search operator, although a falloff is observed at r=3, which
we ascribe to experimental errors in the operators Rf and R0.
Despite these experimental errors, the results are remarkably
good given the complexity of the pulse sequences involved.

As predicted by Grover �7�, the algorithm is remarkably
robust to systematic errors which are equivalent for a gate
and its inverse. This is largely true of the U gates, which are
implemented using rf pulses, and the use of BB1 gates to
correct systematic errors has little effect except in the case
r=0. It is not true for the R gates, as our implementation of
R† is somewhat different from that of R, and the errors in
these two gates will not be equivalent.

This error-tolerance property can in principle be used to
develop methods for more general correction of systematic
errors �7�, but we do not address this point here.
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states. For further details see Fig. 2. Experimental values were ob-
tained using naive pulses and are shown as circles for matching
states of �00� and �01� and stars for matching states of �10� and �01�.
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