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We discuss the potential of quantum key distribution �QKD� for long-distance communication by proposing
an analysis of the errors caused by dark counts. We give sufficient conditions for a considerable improvement
of the key generation rates and the security thresholds of well-known QKD protocols such as the Bennett-
Brassard 1984, Phoenix-Barnett-Chefles 2000, and six-state protocols. This analysis is applicable to other QKD
protocols like the Bennett 1992 protocol. We examine two scenarios: a sender using a perfect single-photon
source and a sender using a Poissonian source.
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The goal of quantum key distribution �QKD� is to extend
a shared secret key for use as a one-time pad to encode
classical messages. The advantage of QKD is that its security
is based on the laws of quantum mechanics and not on the
unproven complexity of a mathematical problem as in clas-
sical cryptography. These last few years, many encouraging
experiments demonstrated QKD, some spanning more than
100 km through optical fibers �1�. The main source of errors
is usually due to dark counts from the detectors. A dark count
is when a detector fires independently �or in the absence� of
a qubit state encoded by the sender, Alice. If qubit losses are
considerable, then the receiver, Bob, will receive many
empty pulses, and dark counts from his detectors will induce
a high error rate.

In this paper, for simplicity, we refer specifically only to
four different QKD protocols: the Bennett 1992 �B92�,
Phoenix-Barnett-Chefles 2000 �PBC00�, Bennett-Brassard
1984 �BB84�, and six-state protocols, which are two-, three-,
four-, and six-state protocols, respectively �2–5�. In the B92
protocol, Alice encodes random bits using two nonorthogo-
nal states—say, ��1� and ��2�—and sends them to Bob. He
makes the measurement corresponding to the positive

operator-valued measure �POVM� ����̄1���̄1� ,���̄2���̄2� ,1
−���̄1���̄1�−���̄2���̄2�	, where ��̄ j� is orthogonal to �� j� and
� equals 1 / �1+ ���1 ��2���. Bob’s measurement either deter-
mines which state Alice did not send �from which Bob can
deduce the encoded bit� or is inconclusive. The PBC00 pro-
tocol is similar to the B92 protocol but uses three nonor-
thogonal states—say, ��1�, ��2�, and ��3�—that form an equi-
lateral triangle in the X-Z plane of the Bloch sphere. She
encodes her random bits using random bases from either
���1� , ��2�	, ���2� , ��3�	, or ���3� , ��1�	. Bob performs the

POVM � 2
3 ��̄1���̄1� , 2

3 ��̄2���̄2� , 2
3 ��̄3���̄3�	. After Bob mea-

sures all of the qubits, Alice declares publicly which basis
she used for each. By deduction, Bob can sometimes retrieve
Alice’s state. Alice and Bob discard the other results. It can
be shown that, neglecting the qubit losses, the rate of con-
clusive results is 1 / �2−ex� where ex is the bit error rate. A
conclusive result corresponds to any pair of qubits not dis-
carded by Alice and Bob.

To implement the BB84 protocol, Alice encodes a random

bit in either ��0�,�1�	 or its conjugate basis ����,���	. For each
qubit, Bob randomly measures in one of these bases. They
only keep results for which they used the same basis. The
six-state protocol is identical to the BB84 protocol except
that Alice and Bob choose from three different bases:
��0�,�1�	,����,���	, and ��1/
2���0�+ i�1�� , �1/
2���0�− i�1��	.
We can modify the BB84 and six-state protocols by choosing
bases with nonequal probabilities, increasing the chance of
agreement �6�. The rate of results for which identical bases
are used converges asymptotically to 1. Below, we calculate
the key generation rates of the BB84 and six-state protocols
using this asymptotic result.

Mayers �7� produced the first unconditional security proof
of the BB84 protocol. Shor and Preskill �8� proposed a sim-
pler proof based on ideas from Lo and Chau �9�. Their secu-
rity proof has been generalized to other protocols including
the B92, PBC00, and six-state protocols �10–13�. We im-
prove the secret key generation rate of these QKD protocols
by proposing a slight modification of these proofs. Our main
idea is based on a variation of a theorem proved in Ref. �14�.
We assume that an eavesdropper, Eve, can perform any at-
tack consistent with quantum mechanics, but cannot get any
information about Alice’s or Bob’s laboratories or control
their apparatus. We discuss later how realistic these assump-
tions are and how it is possible to slightly relax them. We
study two cases: one where Alice’s source can create a single
photon on demand and another where it follows a Poisson
distribution. For simplicity, we give details only about Shor
and Preskill’s security proof of the BB84 protocol and not
other protocols.

At the end of this paper, we compare the updated error
rate thresholds and key generation rates of the BB84,
PBC00, and six-state protocols with previous results. The
same arguments could improve other QKD protocols, includ-
ing the B92 protocol. However, the B92 protocol’s phase
estimation bound depends on qubit losses in the channel and
the number of inconclusive results, complicating the analy-
sis. Since our goal is to describe a general technique to im-
prove security thresholds, we only treat the simpler cases as
examples.

The Shor-Preskill proof first shows the security of an en-
tanglement distillation protocol �EDP� for QKD and subse-

PHYSICAL REVIEW A 72, 032321 �2005�

1050-2947/2005/72�3�/032321�6�/$23.00 ©2005 The American Physical Society032321-1

http://dx.doi.org/10.1103/PhysRevA.72.032321


quently reduces the EDP to the BB84 protocol. For conve-
nience, we define ��±�= �1/
2���0��0�± �1��1�� and ��±�
= �1/
2���0��1�± �1��0��.

The structure of the EDP that can be reduced to the BB84
protocol in Shor and Preskill’s proof is as follows.

�i� Alice creates n pairs of the form ��+� and sends the
second half of each pair to Bob after randomly applying the
identity or the Hadamard gate on it.

�ii� After Bob confirms that he has received all of Alice’s
states, Alice publicly declares the random rotation that she
used on each qubit. Bob undoes the transformations on the
corresponding qubits.

�iii� With no eavesdropping or channel noise, Alice and
Bob will share n perfect pairs of the form ��+�. They can
now measure their qubits in the same basis to share a secret
key. However, noise and eavesdropping induce errors. If the
bit and phase error rates are low enough, then error correc-
tion can be applied to obtain m perfect pairs of the form ��+�
where m�n.

�iv� Alice and Bob can estimate the bit error rate by com-
paring bit measurements from a sample of pairs, called test
bits. A bit �or X� error on a pair occurs when Alice and Bob
share either ��+� or ��−�. A phase �or Z� error corresponds to
��−� or ��−�. A Y error corresponds to ��−� or ��+�. Y error
estimation could provide information about the correlation
between bit and phase errors. Because Alice randomly ap-
plies the identity or Hadamard gate, it can be shown that the
bit error rate ex and the phase error rate ez are approximately
equal, independent of channel noise and Eve’s strategy. In
the BB84 protocol, Alice and Bob have no information about
Y errors.

�v� Depending on the bit error rate measured on the test
bits, Alice and Bob apply error correction on the other pairs.
If we suppose one-way error correction using CSS codes �15�,
a lower bound for generation rate m /n for the perfect pairs is
given asymptotically by

S = pc�1 − H�ex,ez�� , �1�

where H is the Shannon entropy �H�ex ,ez�=H�ex�+H�ez �ex�
is the entropy of the bit-phase error pattern� and pc is the rate
of conclusive results. For simplicity, we assume that the pro-
portion of test bits is negligible. �

Shor and Preskill showed that this EDP, and thus the
BB84 protocol, were unconditionally secure with a key gen-
eration rate given by Eq. �1�. Since H�ex� is asymptotically
the fraction of bits sacrificed for bit error correction, it im-
plies that H�ez �ex� is an upper bound on the fraction of in-
formation that Eve has about the key after bit error correc-
tion. A consequence is that privacy amplification, as
introduced in Ref. �16�, can be used to simplify the post-
processing of the QKD protocol. As shown in Ref. �17�,
privacy amplification can generate a secret key by sacrificing
a number of bits asymptotically proportional to Eve’s infor-
mation.

The reduction of the EDP to the BB84 protocol assumes
that Alice uses a source which emits a single photon on
demand. In a more realistic situation, Alice’s source would
emit a photon pulse following a Poisson distribution. Unfor-

tunately, when Alice sends two or more photons containing
the same quantum information at the same time, Eve can
measure one to gain information about the key without de-
tection. Accounting for this attack �but assuming Eve has no
information about the random phase of the signal emitted by
a coherent light source�, a more general equation of the se-
cret key generation rate, combining results from Refs.
�14,12�, and using the improvement suggested in Ref. �18�, is
given asymptotically by

S = pc��0 + �1 − H�ex� − �1H�ez
1�ex�� , �2�

where �1 is the fraction of the conclusive results correspond-
ing to single-photon pulses, �0 is the fraction of the conclu-
sive results corresponding to empty pulses �the presence of
background noise, for example�, and ex

1�ez
1� is the bit �phase�

error rate restricted to conclusive results from single-photon
pulses. ex�ez� is still the bit �phase� error rate over all con-
clusive results. If Alice has a source that emits a single pho-
ton on demand, then �0=0, �1=1, ej

1=ej for j� �x ,y ,z	, and
S= pc�1−H�ex ,ez�� as expected.

To prove Eq. �2�, it was argued that since Alice and Bob
want an identical key and cannot differentiate multiphoton
from single-photon pulses, they must correct all bit errors,
asymptotically losing a fraction H�ex� of the results in the
process. To apply privacy amplification on the remaining bits
and obtain a secret key, Alice and Bob must upper bound
Eve’s information. If we assume that the phase of the signal
is random,1 there is no coherence between states with differ-
ent photon numbers. Thus, we can categorize each bit of the
resulting key as being associated with an empty, single-
photon, or multiphoton pulse. Assuming the worst case, Eve
has full information about the results associated with multi-
photon pulses. On the other hand, she has no information
about Alice’s bits corresponding to empty pulses. By the
Shor-Preskill arguments discussed earlier, the fraction of in-
formation that Eve could extract from the results correspond-
ing to single-photon pulses is upper bounded by H�ez

1 �ex�.
Consequently, Eve’s information about Alice’s remaining
key is upper bounded by �1−�0−�1�+�1H�ez

1 �ex�. After pri-
vacy amplification, Eve has no information about Alice’s
key. The same is true of Bob’s key since it is identical to
Alice’s. Therefore, the secret key generation rate is given by
Eq. �2�.

Similarly, since the Shor-Preskill proof can be adapted to
the B92, PBC00, and six-state protocols �10–12�, these pro-
tocols can be shown unconditionally secure with a key gen-
eration rate given by Eq. �2�.

The above argument does not differentiate between a
single photon emitted by Alice that is successfully measured
by Bob and a single photon that is lost in the channel �or
taken by Eve� followed by a dark count measured by Bob.
However, these cases may be analyzed separately. Consider
the following four types of conclusive results.

�i� Successful measurement of a qubit state �physically

1Recently, it was shown that Eve could use extra information
about the phase of the signal to her advantage �19�, though the
extent is unknown.
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corresponding to a photon received from the channel� that
originated from a single-photon pulse. Note that the qubit
state could have been manipulated by Eve.

�ii� Successful measurement of a qubit state that origi-
nated from a multiphoton pulse.

�iii� Empty pulses from Alice followed by a successful
measurement of a qubit state by Bob �i.e., Eve may send a
qubit state to Bob even if Alice emits nothing�.

�iv� Dark count events: Bob does not receive a qubit state,
but one of his detectors fires.

The dark count events are independent of Alice’s or Eve’s
actions. We define pc

emp, pc
sq, and pc

mq as the rate of conclusive
results corresponding to qubit states, received by Bob, asso-
ciated with empty pulses, single-photon pulses, and multi-
photon pulses, respectively. We define pc

dk as the rate of con-
clusive results associated with dark counts. Note that

pc = pc
emp + pc

sq + pc
mq + pc

dk. �3�

We remark that the background noise has two different
contributions: intrinsic and extrinsic. The intrinsic contribu-
tion is caused by elements from Bob’s laboratory while the
extrinsic contribution is from external sources. The Sun and
backscattering light in the two-way QKD are examples of
external sources of background noise. Based on our assump-
tions, Eve may control the external sources of background
noise, but not the ones inside Bob’s laboratory. Following
our previous definitions, the only contribution to pc

dk is intrin-
sic. Any external sources will contribute to pc

emp, pc
sq, and pc

mq

since they correspond to Bob receiving a qubit state from the
channel. For convenience, in this paper, dark counts always
refer to the intrinsic contribution of background noise. We
assume for simplicity that dark counts are independent of
other measurement results.

We now explain how it is possible to achieve a better
bound for the secret key generation rate than Eq. �2�. As
before, a fraction H�ex� of the results are lost due to bit error
correction. Assuming again that the phase of the signal is
random from Eve’s perspective, each bit of the resulting key
corresponds to one of the four types of conclusive results
described above. From previous arguments, Eve has a frac-
tion H�ez

sq �ex� of information about conclusive results from
category �i� and, in the worst case scenario, full information
about those from category �ii�. ex

sq and ez
sq are defined as the

bit and phase error rates on the conclusive results restricted
to category �i�. When Alice emits an empty pulse and it is
followed by a successful measurement of a qubit state by
Bob, we assume that the qubit state was created by Eve. A
conservative assumption is that Eve has full information
about Bob’s results from category �iii�.2 Supposing dark
count rates are the same in all detectors and independent of
Eve and other measurement results, Bob’s results from cat-
egory �iv� are completely random and Eve has no informa-

tion about them.3 Consequently, the fraction of information
that Eve has on Bob’s key after bit error correction is upper
bounded by �1/ pc��pc

emp+ pc
mq+ pc

sqH�ez
sq �ex��. Therefore, the

secret key generation rate is lower bounded by

Sb = pc
sq + pc

dk − pcH�ex� − pc
sqH�ez

sq�ex� . �4�

We emphasize that it is not necessary for Alice and Bob to
know which events correspond to each class of conclusive
results.

In the derivation of Eq. �4�, we bounded Eve’s informa-
tion about Bob’s key. However, we could have instead
bounded Eve’s information about Alice’s key. In this case,
Eve has no information about the bit chosen by Alice when
she sends a vacuum states. But she could have some infor-
mation about Alice’s portion of the key corresponding to
dark counts �unless Alice sent an empty pulse�. Using similar
arguments, we obtain

Sa = pc
sq + pc�0 − pcH�ex� − pc

sqH�ez
sq�ex� . �5�

Combining Eqs. �4� and �5�, we obtain a new lower bound
for the secret key generation rate,

S = max�Sa,Sb� . �6�

2In the case of the B92 protocol, it is easy to show that this
assumption is necessary, but it might be too strict for other proto-
cols like the PBC00, BB84, and six-state protocols.

3For simplicity, we suppose that the dark count rates are uniform
over all detectors and that they are independent of other measure-
ment results. If dark count rates differ from detectors, we suggest
two options. In one, Bob uses a random transformation to switch
the role of the detectors in the measurement. For example, in the
BB84 protocol, Bob could apply, at random, an extra Y operation on
the received qubits to switch the role of the detectors when measur-
ing in the ��0�,�1�	 and ����,���	 bases. A second option is to bound
Eve’s information from an estimate of the probability that a detector
fires relative to the others in the case of a dark count. Assuming
dark counts are independent of other measurement results, in the
BB84 and six-state protocols, with only two detectors, Eve’s infor-
mation is bounded by 1−H�q� where q is the probability that the
first detector fires in the case of a dark count. It is interesting to note
that if Eve has some control over the probability q and could
change it from one dark count event to another, then, by entropic
concavity, Eve’s information is bounded by 1−H�qworst

ave �, where
qworst

ave is the worst estimate of the average of q. Determining the
value of qworst

ave can be very hard, but it is related to the level of
confidence that Alice and Bob have on their ability to counter or
detect Eve if she tries to change the properties of the detectors.
Similarly, if dark counts are correlated to other measurement re-
sults, we can upper bound Eve’s information with restrictions on the
correlations.

TABLE I. Bit error rate thresholds for the BB84, PBC00, and
six-state protocols using a single-photon source and assuming fixed
values of ex

sq, which is the bit error rate of the results not associated
with dark counts.

ex
sq=0 ex

sq=0.01 ex
sq=0.1

PBC00 50% 43% insecure

BB84 50% 44% 13%

Six-state protocol 50% 46% 19%
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We remark that the concavity of entropy and �1ez
1

= �psq / pc�ez
sq+ ��1− psq / pc�ez

dk imply that �1H�ez
1 �ex�

	 �psq / pc�H�ez
sq �ex�+ ��1− psq / pc�H�ez

dk �ex�. We can rewrite
this as �1�1−H�ez

1 �ex��� �psq / pc��1−H�ez
sq �ex��, since it can

be argued that ez
dk= 1

2 . Therefore, the secret key generation
rate given by Eq. �5� �and Eq. �6�� is always greater than or
equal to the one given by Eq. �2�.

To evaluate Eq. �6�, Alice and Bob must be able to deter-
mine all quantities involved in it. For this purpose, we study
two different situations: Alice has a source that emits a single
photon on demand or one that follows a Poisson distribution.

In both situations, ex is estimated from test bits and pc
dk

can be calculated from the predetermined dark count prob-
ability C of the detectors and the number of empty pulses not
associated with dark counts that Bob receives. If C is not
fixed, Bob might block his detection units randomly and es-
timate pc

dk from these results. For this to be true, it is impor-
tant that Eve is not allowed to reduce the dark count prob-
ability without being detected. But is this a valid

assumption? In practice, Eve could try to cool down the de-
tectors or send bright pulses to disable them at will. Further-
more, there might be some uncertainty in the measurement
of pc

dk, even in the absence of an eavesdropper. Since a dark
count could be interpreted as Eve sending a random state to
Bob, we remark that lower bounds for C and pc

dk are suffi-
cient to obtain a better key generation rate using Eq. �6�.
Establishing a high level of confidence on a lower bound for
pc

dk seems very hard in practice. However, it might be pos-
sible through experimental research and tests on reducing
dark count rates of detectors.

If Alice has a source that emits single photons, �0=0 and
pc

mq=0, then Eq. �6� reduces to Eq. �4� and ex= �1/ pc�

�pc

sqex
sq+ pc

dkex
dk�, where ex

dk is the bit error rate over conclu-
sive events associated with dark counts. ex

dk= 1
2 which implies

that Bob can estimate ex
sq from the value of ex measured on

test bits. H�ez
sq �ex�=H�ez

sq �ex
sq� can be evaluated depending

on the protocol used. It can easily be shown that, for the
six-state protocol, ex

sq=ey
sq=ez

sq �12�. For the BB84 protocol,

FIG. 1. Semilogarithmic graph
of the key generation rate of the
PBC00, BB84, and six-state pro-
tocols as a function of distance, l,
for ex

sq=0.01 and C=10−6 calcu-
lated using the old method �Eq.
�2�� and the new one �Eq. �6�� as-
suming a perfect single-photon
source �pc

mq=0�.

FIG. 2. Semilogarithmic graph
of the key generation rate of the
BB84 protocol as a function of
distance, l, for ex

sq=0.01 and C
=10−6 assuming a Poissonian
source and combined with the de-
coy state method with �̄=0.5. We
compare the key generation rates
calculated using Eqs. �2� and �6�.
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ex
sq=ez

sq and 0�ey
sq�2ex

sq �8�. For the PBC00 protocol, it was
shown that ez

sq= 5
4ex

sq and 1
4ex

sq�ey
sq�

9
4ex

sq �11�.
In the absence of errors due to dark counts, pc

dk=0. By
solving S�ex�=0, we find that the bit error rate threshold is
12.6% for the six-state protocol, 11.0% for the BB84 proto-
col, and 9.81% for the PBC00 protocol. If we now suppose
that ex

sq is fixed, then the bit error rate threshold increases as
shown in Table I. Note that the bit error rate threshold de-
pends on the contribution of errors not associated to dark
counts.

Table I reflects the potential of a special analysis for dark
counts. For any of the previous QKD protocols, if the errors
are only caused by dark counts �ex

sq=0�, then the bit error
rate threshold is 1

2 , which implies that there is no bound on
the distance for communication. However, we must keep in
mind that this result is derived using many special condi-
tions. In practice, ex

sq is nonzero, and since there is decoher-
ence in the channel and extrinsic sources of background
noise, ex

sq usually increases with the distance of communica-
tion. We also assumed that Alice and Bob perfectly know the
dark counts rates of their detectors, that they are the same for
all detectors, that they are independent of other measure-
ments, and that Eve cannot lower them. However, even if
one or more of these assumptions are not respected, it is still
possible to slightly modify Eq. �6�, as we explained earlier,
and obtain an improvement over Eq. �2�.

In Fig. 1, we observe that our method of calculating the
key generation rate, using Eq. �6�, improves the achievable
distance for the PBC00, BB84, and six-state protocols as-
suming a single-photon source. For simplicity, we suppose
that the dark count probability C is the same for all detectors
and that ex

sq is fixed and independent of distance. We assume
no qubit losses at l=0, where l is the length of the channel,
and neglect events when two different detectors fire simulta-
neously. Under these conditions, for the BB84 and six-state
protocols, pc

sq�� and pc
dk�2C�1−��, where �=e−Al is the

probability that a photon successfully travels through the
channel and A is the attenuation in the fiber. For the PBC00
protocol, pc

sq��1/ �2−ex��� and pc
dk�2C�1−��. Note that,

since pc
dk / pc is always equal or higher in the PBC00 protocol

than for the BB84 or six-state protocols, the PBC00 proto-
col’s maximum achievable distance is lower for the same bit
error rate.

We now consider the case where Alice uses a source that
follows a Poisson distribution �pc

mq�0�. We only provide the
result for the BB84 protocol, but our arguments are valid for
other QKD protocols, including the B92, PBC00, and six-
state protocols.

Decoy states �20� could be used to evaluate pc
sq and ex

sq

precisely. References �21,22� explain how Alice could ran-
domly vary the average photon number � of her source to
obtain, from statistics, precise estimates of the rate of con-
clusive results associated with single-photon pulses, pc�, and
the corresponding bit error rate ex

1. pc
sq and ex

sq can be easily
derived from the following two relations: pc�= pc

sq

+2Ce−�̄�̄�1−�� and ex
1=e−�̄�̄��ex

sq+2C�1−��ex
dk� / �pc��,

where �̄ is the global average photon number. Figure 2
shows that the decoy state method can also be improved by
using Eq. �6�.

If we do not use decoy states, a worst case estimate of pc
sq

and ex
sq is possible. However, Eq. �6� provides only a small

improvement since, without decoy states, multiphoton pulses
are usually a much more important limiting factor than dark
counts.

In this paper, we showed that a high confidence in the
stability of the dark counts of the detectors against the pos-
sible attack of an eavesdropper implies a significant increase
of the robustness of most QKD protocols against dark
counts, one of most important contributors of noise in quan-
tum communication. We studied particularly the cases of the
PBC00, BB84, and six-state protocols. We explained how to
get an improvement of the secret key generation rate and of
the achievable distance in some nonideal situations, includ-
ing when Alice uses a Poissonian photon source, when Alice
and Bob know only a lower bound for the dark count rates of
their detectors, and when the dark count rates are not uni-
form over the detectors. Further improvements to the secret
key generation rate might come from using two-way error
correction �23� and by artificially adding some errors in the
key �24�.

Our results benefited from discussions with Daniel Got-
tesman and Hoi-Kwong Lo, whose contributions are greatly
appreciated. We thank Nicolas Gisin who proposed using
reverse reconciliation. We also thank Tony Anderson for his
assistance. J.-C.B. and R.L. acknowledge support from the
Government of Ontario, J.B. and R.L. from NSERC, and
R.L. from CIAR, MITACS and ARDA.
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