
Quantum secret sharing schemes and reversibility of quantum operations

Tomohiro Ogawa,1,* Akira Sasaki,2,† Mitsugu Iwamoto,3,‡ and Hirosuke Yamamoto4,§

1Graduate School of Information Science and Technology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan
2Sumitomo Mitsui Banking Corporation, 1–3–2, Marunouchi, Chiyoda-ku, Tokyo 100-0005 Japan

3Graduate School of Information Systems, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo,
182-8585 Japan

4Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8561 Japan
�Received 30 April 2005; published 14 September 2005�

Quantum secret sharing schemes encrypting a quantum state into a multipartite entangled state are treated.
The lower bound on the dimension of each share given by Gottesman �Phys. Rev. A 61, 042311 �2000�� is
revisited based on a relation between the reversibility of quantum operations and the Holevo information. We
also propose a threshold ramp quantum secret sharing scheme and evaluate its coding efficiency.

DOI: 10.1103/PhysRevA.72.032318 PACS number�s�: 03.67.Dd

I. INTRODUCTION

Quantum secret sharing (QSS) schemes were studied by
several authors �1–5� as quantum counterparts of classical
secret sharing �SS� schemes �6,7�. QSS schemes are methods
to encrypt an arbitrary quantum state or classical message
into a multipartite entangled state among several quantum
systems—namely, shares—in the following way: each of
shares has no information about the original state or message
while it can be reproduced by collecting several shares. QSS
schemes can be classified into two categories based on what
is encrypted—i.e., quantum states �3–5� or classical mes-
sages �1,2�. In this paper, we treat only the QSS schemes
encrypting quantum states, which we call just QSS schemes
for simplicity.

In the literature on QSS schemes in this sense, the
�k ,n�-threshold QSS scheme was proposed by Cleve et al.
�3�. In the �k ,n�-threshold QSS scheme, an arbitrary quan-
tum state is encoded into n shares so that any k out of n
shares can reproduce the original state while any k−1 or less
shares have no information about it. Recently, experimental
demonstrations �8,9� of the threshold scheme were reported.
After the work of Cleve et al., Gottesman �4� demonstrated
that any general access structure consistent with the mono-
tonicity �10� and the no cloning theorem �11–15� can be re-
alized by a QSS scheme. The same result was shown by
Smith �5� independently by using monotone span programs.
Gottesman �4� also analyzed the coding efficiency of QSS
schemes and showed that the dimension of each share must
be the same or larger than that of the original system.

In this paper, we revisit the coding efficiency of QSS
schemes in an information theoretical manner. First, we es-
tablish a relation between the reversibility of quantum opera-
tions and the Holevo information �16� in a general setting
rather than QSS schemes. This relation is a natural extension
of the idea in the classical information theory that the suffi-

cient statistic is characterized by the preservation of the mu-
tual information �17�. In classical statistical inferences, the
sufficient statistic has several equivalent characterizations
�18�: the existence of reverse channels, the preservation of
information quantities such as the relative entropy, and the
factorization theorem. On the other hand, the reversibility of
quantum operations was studied by several authors �19–21�
related to the quantum error correcting code �22,23�, while it
was also studied in terms of sufficiency in the field of the
operator algebra �24–30� �see also Refs. �31,32��.

Recently, Petz and his colleagues �33,34� have established
a theory of sufficiency in the quantum setting that is charac-
terized by the reversibility of quantum operations �or coarse-
grainings�, the preservation of information quantities, and the
quantum version �35,36� of the factorization theorem. Our
characterization of the reversibility falls into a natural variant
of theirs. However, we rather use the term reversibility in
this paper for the reasons that the characterization is closely
related to the literature in the quantum error correcting code
and that the notion of sufficiency is not yet so clear in quan-
tum statistical inferences such as the quantum estimation
theory �37–39� and quantum hypothesis testing �37,39–42�.

Second, returning to QSS schemes, we utilize the charac-
terization of the reversibility to evaluate a kind of informa-
tion that each share has about the original quantum state, and
then the evaluation leads to the lower bound on the dimen-
sion of each share given by Gottesman �4�. It should be
noted1 that a similar result on the dimension of each share
has been given in Ref. �43� by a different method using the
reference system relevant to the coherent information �21�.

As mentioned above, it is impossible to reduce the dimen-
sion of each share than that of the original system in QSS
schemes which have perfect security conditions. Here, the
perfect security conditions mean that any set of shares can
either reproduce the original state or obtain no information
about it, and such schemes are called perfect QSS schemes.
On the other hand, in classical ramp SS schemes �44,45�, the
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size of each share can be decreased by the sacrifice of secu-
rity conditions admitting the intermediate property for some
sets of shares. Following these classical counterparts, we
propose a ramp QSS scheme and analyze the coding effi-
ciency of it. Then, it is shown that the dimension of each
share can be reduced than that of the original system by the
sacrifice of security conditions like the classical ramp
schemes. Finally, we also demonstrate an optimal construc-
tion of the ramp QSS scheme.

II. DEFINITIONS

Let H ,J ,K be finite-dimensional Hilbert spaces, and let
L�H� and S�H� be the totalities of linear operators and den-
sity operators on a Hilbert space H, respectively. We will
treat QSS schemes encrypting a quantum state on H into a
composite system of Hilbert spaces H1 ,… ,Hn, each of
which is called a share. Let N def

= �1,… ,n� be the entire set of

shares and HN
def
= � i�NHi be the corresponding Hilbert space.

For a subset X�N of shares, let HX
def
= � i�XHi as well. The

encoding operation of a QSS scheme is described by a quan-
tum operation WN :S�H�→S�HN�, which is a completely
positive and trace preserving map. For a subset X�N, the
composition map of the encoder WN and the partial trace of
the complement N \X is denoted by WX

def
= TrN\X ·WN.

Now we will define the notion of the reversibility for
general quantum operations. A quantum operation E :S�J�
→S�K� is called reversible with respect to �w.r.t.� a subset
S�S�J� of density operators if there exists a quantum op-
eration R :S�K�→S�J� such that ∀��S ,R ·E���=�. A
quantum operation E :S�J�→S�K� is called vanishing w.r.t.
S�S�J� if there exists a density operator �0�S�K� such
that ∀��S ,E���=�0.

Remark 1. It should be noted here that a quantum opera-
tion is reversible �vanishing� w.r.t. S�S�J� iff it is revers-
ible �vanishing� w.r.t. the extreme points of the convex hull
of S. Therefore, letting S1�J� be the totality of pure states on
J, a quantum operation is reversible �vanishing� w.r.t. S�J�
iff it is reversible �vanishing� w.r.t. S1�J�.

A QSS scheme is defined by a quantum operation
WN :S�H�→S�HN� which is reversible w.r.t. S�H�. For a
QSS scheme WN, a set X�N is called qualified �forbidden� if
WX is reversible �vanishing� w.r.t. S�H�, and, in addition, a
set X�N is called intermediate if WX is neither reversible
nor vanishing w.r.t. S�H�. A QSS scheme WN is called a
perfect scheme if any set X�N is either qualified or forbid-
den. Otherwise, WN is called a ramp scheme. Although the
terms “authorized” and “unauthorized” are used in the pre-
vious works �3,4� on perfect QSS schemes, we use the terms
“qualified” and “forbidden” in this paper because we must
divide “unauthorized” sets between “intermediate” sets and
“forbidden” sets in ramp QSS schemes.

III. ACCESS STRUCTURE

The access structure of a QSS scheme is the list of for-
bidden, intermediate, and qualified sets. In classical ramp
secret sharing schemes �44,45�, intermediate sets are classi-

fied further into multilevel categories based on the condi-
tional entropy. In ramp QSS schemes, however, we do not
classify the intermediate sets for simplicity in this paper. For-
mally, the access structure of the set N is defined by a map
f :2N→ �0,1 ,2�, where 0, 1, and 2 indicate forbidden, inter-
mediate, and qualified sets, respectively. For a QSS scheme
WN, the access structure of N is determined naturally and
hence, is called the access structure of WN. It is clear that the
access structure of WN satisfies the monotonicity—i.e.,
X�Y ⇒ f�X�� f�Y�. In addition to this relation, the restric-
tion due to the no cloning theorem �11–15� �see also propo-
sition 3 in the appendix � is imposed on QSS schemes; that
is, the complement of a qualified set is necessarily forbidden.
Conversely, it was shown in Refs. �4,5� that any perfect ac-
cess structure, consistent with the monotonicity and the no-
cloning theorem, can be realized by a perfect QSS scheme.

A quantum operation E is called a pure state channel if
E��� is a pure state for any pure state �. A QSS scheme WN is
called a pure state scheme if it is a pure state channel. Oth-
erwise, it is called a mixed state scheme. Gottesman �4�
showed that any perfect QSS scheme is regarded as a sub-
system of a pure state QSS scheme. The following lemma is
a slight extension of his result including ramp QSS schemes.

Lemma 1. Any mixed state QSS scheme WN is realized by
discarding one share from a pure state QSS scheme WN�.
Moreover, the access structure of WN� is determined uniquely
by that of WN.

Proof. From the Stinespring dilation theorem �46�, there
exists a Hilbert space HZ and an isometry V :H�HN � HZ
such that

WN��� = TrZ�V�V*� . �1�

Let N�=N�Z; then WN is realized from the pure state QSS
scheme WN����=V�V* by discarding one share Z. We note
that the access structure of WN� for a set X�N not including
Z is the same as that of WN. Hence we will consider the
access structure of WN� for X�N� which includes Z. It fol-
lows from proposition 3 in the appendix that X is qualified iff
N� \X is forbidden and, equivalently, that X is forbidden iff
N� \X is qualified. Furthermore, we can also see that X is
intermediate iff N� \X is intermediate. Therefore, the access
structure f�X� is determined uniquely by the complement
N� \X�N.�

IV. REVERSIBILITY AND HOLEVO INFORMATION

In this section, turning to a general setting, we will dem-
onstrate that the Holevo information �16� is closely related to
the reversibility of quantum operations.

For � ,��S�J�, let

D�� � �� def
= Tr���log � − log ��� �2�

be the quantum relative entropy. Then, for any quantum op-
eration E :S�J�→S�K�, it yields the monotonicity �47–49�,
i.e.,

D�� � �� � D„E��� � E���… , �3�

and the equality holds iff E is reversible w.r.t. �� ,�� �29� �see
also Refs. �31,32��. Furthermore, in the case of equality,
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there is a canonical reverse operation depending only on �,
which is given by

R���� def
= �1/2E*

„E���−1/2�E���−1/2
…�1/2. �4�

Here E* :L�K�→L�J� is the dual of E satisfying

∀� � S�J�, ∀ Y � L�K�, Tr�E���Y� = Tr��E*�Y�� .

The above fact is summarized as the following proposition.
Proposition 1 (Petz [29]; see also Refs. [31,32]). Given a

quantum operation E :S�J�→S�K� and � ,��S�J�, let R�

be the quantum operation defined by Eq. �4�. Then the fol-
lowing three conditions are equivalent.

�a� D�� ���=D(E��� �E���).
�b� R� ·E���=�.
�c� E is reversible w.r.t. �� ,��.

This fact can be easily extended to a general relation be-
tween the Holevo information and the reversibility of a quan-
tum operation w.r.t. a subset S�S�J�. Let P�S� be the set of
probability measures on S�S�J�, and let

E��·� = �
S

· ��d�� �5�

be the expectation by a probability measure ��P�S�. Given
an ensemble ��P�S� and a quantum operation E, the
Holevo information is defined by

I��;E� def
= E��D„E��� � E����…� = H„E����… − E��H„E���…� ,

�6�

where ��
def
= E���� and H��� def

= −Tr�� log �� is the von Neu-
mann entropy. Moreover, let P+�S� be the set of probability
measures on S�S�J� which are positive almost everywhere
on S. More specifically,

P+�S� def
= �� � P�S�	 ∀ O � O�S�,��O� � 0� , �7�

where O�S� is the totality of open sets on S and is defined in
terms of the relative topology induced by the inclusion
S�S�J�. Then we have the following theorem.

Theorem 1. Let I :S�J�→S�J� be the identity map.
Given a quantum operation E :S�J�→S�K� and S�S�J�,
the following three conditions are equivalent.

�a� E is reversible �vanishing� w.r.t. S.
�b� ∀��P+�S� , I�� ;E�= I�� ;I��=0�.
�c� ∃��P+�S� , I�� ;E�= I�� ;I��=0�.

Proof.�a� ⇒ �b�: From the definition of the reversibility,
there exists a quantum operation R such that ∀�
�S ,R ·E���=�. Taking the expectation of � by an arbitrary
��P+�S�, we have R ·E����=��. Then it follows from “�c�
⇒ �a�” of proposition 1 that

∀� � S,D�� � ��� = D„E��� � E����… . �8�

Taking the expectation of the above equality by � leads to
�b�.

�b� ⇒ �c�: Obvious.
�c� ⇒ �a�: First, note that

I��;I� − I��;E� = E��D�� � ��� − D„E��� � E����…� � 0,

�9�

since the monotonicity of the quantum relative entropy leads
to

D�� � ��� − D„E��� � E����… � 0 �10�

for each term in the expectation of �9�. Therefore we can see
from the definition of P+�S�, along with the continuity of E
and the quantum relative entropy that Eq. �8� is a necessary
condition for I�� ;I�− I�� ;E�=0. Using “�a� ⇒ �b�” of
proposition 1, we have that ∀��S ,R��

·E���=�, which im-
plies �a�.

As for the vanishing property, we can show the assertion
in the same way as the reversibility by using D�� ����0 and
D�� ���=0⇔�=�. �

V. CODING EFFICIENCY OF QSS SCHEMES

Let S1�H� be the totality of pure states on H, and note
that a quantum operation is reversible �resp. vanishing� w.r.t.
S�H� iff it is reversible �vanishing� w.r.t. S1�H�. Therefore it
suffices to treat the reversibility of a QSS scheme WN w.r.t.
S1�H�. For a pure state ensemble ��P+(S1�H�), the Holevo
information is given by I�� ;I�=H����, since H���=0 for
any pure state ��S1�H�, and hence, the following theorem
immediately follows from theorem 1.

Theorem 2. For any QSS scheme WN, the following three
conditions are equivalent.

�a� X is qualified �forbidden�.
�b� ∀��P+(S1�H�) , I�� ;WX�=H�����=0�.
�c� ∃��P+(S1�H�) , I�� ;WX�=H�����=0�.

Remark 2. Theorem 2 can be regarded as a variant of the
perfect error correcting condition �21� without using refer-
ence systems, while theorem 1 is an extension of these con-
ditions to the reversibility condition w.r.t. general subsets of
S�H�.

Remark 3. As is clear by definition, it is also interesting to
observe from theorem 2 that the access structure of QSS
schemes does not depend on � in P+(S1�H�). We note that
this fact holds in classical perfect SS schemes. Actually, cor-
responding statements are given by a different approach in
Ref. �50�.

Now we consider the coding efficiency of QSS schemes.
A set X�N is called significant if there exists a forbidden set
Y �N such that X�Y is qualified.

Theorem 3. For any significant set X�N of any QSS
scheme WN, it holds that

∀� � P+„S1�H�…,H���� � H�WX����� . �11�

Proof. From lemma 1, WN is supposed to be a pure state
scheme without loss of generality. Moreover, for any signifi-
cant set X�N we can choose a forbidden sets Y �N such
that X�Y is qualified and X�Y =Ø. Then it holds that
I�� ;WXY�=H���� and I�� ;WY�=0 for any ��P+(S1�H�)
from theorem 2, and hence, we have
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H���� = I��;WXY� − I��;WY�

= H„WXY����… − E��H„WXY���…�

− H„WY����… + E��H„WY���…�

� H„WX����… − E��H��WX	WY�� , �12�

where the last inequality follows from the subadditivity of
the von Neumann entropy and we have written the condi-
tional entropy as

H��WX	WY� def
= H„WXY���… − H„WY���… . �13�

Now let Z=N \ �X�Y� and note that WN=WXYZ is a pure state
channel. Then it follows from proposition 3 in the Appendix
that qualified X�Y implies forbidden Z and forbidden Y
implies qualified X�Z. Hence, since Z has the same prop-
erty as Y ,Z also satisfies the same inequality as �12�—i.e.,

H���� � H„WX����… − E��H��WX	WZ�� . �14�

Since WXYZ��� is a pure state, we have H(WXY���)
=H(WZ���) and H(WXZ���)=H(WY���). Consequently, it fol-
lows from Eqs. �12� and �14� that

H���� � H„WX����… −
1

2
E��H��WX	WY� + H��WX	WZ��

= H„WX����… , �15�

which has been asserted. �
Corollary 1 (Gottesman [4]). For any significant share i

�N of any QSS scheme WN, we have

dim H � dim Hi. �16�

Proof. Let � be the uniform distribution on S1�H� in theo-
rem 3—namely, the invariant measure with respect to the
special unitary group. Then we have ��= I /dim H and the
dimension of each share is bounded below as

log dim H = H���� � H„Wi����… � log dim Hi. �17�

�
Remark 4. The arguments and the theorems so far are

valid even in the classical cases. That is verified by replacing
the corresponding notions with the classical ones. For ex-
ample, quantum operations, the Holevo information, and
pure states are replaced with channels, the mutual informa-
tion, and � distributions, respectively. In this case, it should
be noted that the proof of theorem 3 is already finished in
�12�, since the conditional entropy is nonnegative in the clas-
sical cases.

VI. RAMP QSS SCHEMES

From corollary 1, it is impossible to reduce the dimension
of each share than that of the original system in perfect QSS
schemes, since any share except useless ones should be sig-
nificant in perfect QSS schemes. On the other hand, in clas-
sical ramp SS schemes such as �k ,L ,n�-threshold ramp SS
schemes �44,45�, the size of each share can be decreased by
taking into account the trade-off between the security condi-
tion and the coding efficiency. We utilize this idea in the

quantum setting to propose �k ,L ,n�-threshold ramp QSS
schemes in the following sense.

Definition 1. A QSS scheme WN is called a
�k ,L ,n�-threshold ramp QSS scheme if the following condi-
tions are fulfilled.

�a� X�N is forbidden iff 	X	�k−L.
�b� X�N is qualified iff 	X	�k.

Note that the above conditions imply
�c� X�N is intermediate iff k−L	 	X		k,

and the �k ,L ,n�-threshold ramp QSS scheme reduces to the
�k ,n�-threshold QSS scheme �3� if L=1.

Cleve et al. �3� showed that the condition n�2k−1 must
be satisfied for the �k ,n�-threshold QSS scheme to exist. As
an extension of this condition, we have the following lemma.

Lemma 2. For a �k ,L ,n�-threshold ramp QSS scheme, it
holds that n�2k−L. Especially, we have n=2k−L if it is a
pure state QSS scheme.

Proof. From definition 1, X is a qualified set if 	X	=k. In
this case, it follows from proposition 3 in the Appendix that
the complement N \X is forbidden, which implies 	N \X	=n
−k�k−L. In the case of a pure state QSS scheme, we can
also show that n�2k−L in the same way.

Similarly to theorem 3 and corollary 1, we can evaluate
the coding efficiency of the ramp scheme as follows.

Theorem 4. For �k ,L ,n�-threshold ramp QSS schemes, it
holds that

∀� � P+„S1�H�…,
1

L
H���� �

1

n


i�N

H„Wi����… . �18�

Proof. For any set X�N with the cardinality 	X	=L, there
exists Y �N such that X�Y =Ø and 	Y	=k−L. Then X�Y is
qualified while Y is forbidden. Therefore it follows from
theorem 3 that

H���� � H„WX����… � 

i�X

H„Wi����… , �19�

where we used the subadditivity of the von Neumann en-
tropy. Finally we can show �18� by taking the arithmetic
mean of �19� for all X�N satisfying 	X	=L. �

Corollary 2. For �k ,L ,n�-threshold ramp QSS schemes,
we have

1

L
dim H �

1

n


i�N

dim Hi. �20�

The above corollary implies that the dimension of each
share can be decreased by the factor 1 /L in the average sense
than that of the original system.

VII. CONSTRUCTION OF RAMP SCHEMES

In this section, we will show a method to realize
�k ,L ,n�-threshold ramp QSS schemes which has the optimal
coding efficiency in the sense of corollary 2. The encoding
and reverse operations used here are regarded as extensions
of Ref. �3� to the ramp QSS scheme.

Let F be a finite field with q def
= 	F	�n, and let J j�j

=1,… ,L� and Hi�i�N= �1,… ,n�� be isomorphic Hilbert
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spaces with dimension dim J j =dim Hi=q and an orthonor-
mal basis �	s��s�F indexed by F. We will construct a pure

state QSS scheme WN which maps a quantum state on H def
=

� j=1
L J j into the composite system of shares HN

def
= � i�NHi.

Note that n=2k−L holds from lemma 2. Since the pure state
QSS scheme WN is represented by an isometry V :H→HN as

WN��� = V�V*, �21�

it suffices to specify the images V	sL� of the basis

	sL� = 	s1� � ¯ � 	sL�, sL = �s1, ¯ ,sL� � FL,

on H. For this purpose, we utilize the polynomial of degree
k−1 on F specified by coefficients c= �c1 ,… ,ck��Fk—i.e.,

pc�x� = 

i=1

k

cix
i−1. �22�

By providing publicly revealed constants x1 ,… ,xn�F which
are different from each other, define the isometry V by

V	sL� def
=

1
�C



c�D�sL�

	pc�x1�,…,pc�xn�� , �23�

where

D�sL� def
= ��c1,…,ck� � Fk	ci = si�i = 1,…,L�� ,

and C is a normalization constant to be specified later. Now,
in order to verify that V is actually an isometry, let us intro-
duce the following notations for X= �i1 ,… , im��N:

Mb
a�X�

def
= 


xi1
a … xim

a

xi1
a+1 … xim

a+1

] ]

xi1
b … xim

b
� �a 	 b� , �24�

pc�X� def
= „pc�xi1

�,…,pc�xim
�… . �25�

Then we have pc�X�= �c1 ,… ,ck�Mk−1
0 �X�, and the following

lemma is useful for later discussions.
Lemma 3. For each sL�FL, the map c�D�sL�� pc�X� is

injective if 	X	�k−L. Especially, it is one-to-one if 	X	=k
−L. Similarly, the map c�Fk� pc�X� is injective if 	X	�k,
and it is one-to-one if 	X	=k.

Proof. The injective property is verified by the following
relation:

pc�X� = �s1,…,sL,cL+1,…,ck��ML−1
0 �X�

Mk−1
L �X�

� , �26�

since Mk−1
L �X� has the full column rank if 	X	�k−L. In ad-

dition, it is one-to-one if 	X	=k−L, since 	D�sL�	= 	Fk−L	. In
the same way, we can show the remaining part of the
lemma. �

From the above lemma, we can see that 	pc�N���c�Fk�
are orthogonal to each other, and hence, V	sL��sL�FL� are
also orthogonal to each other, which ensures that V is iso-
metric. At the same time, the normalizing constant is deter-
mined as C=qk−L.

Next, we will show that thus constructed QSS scheme WN
is actually a �k ,L ,n�-threshold ramp scheme.

a. Qualified sets. In order to verify that X is qualified for
	X	�k, it suffices to show that X= �1,… ,k� is qualified, be-
cause of the symmetrical way to construct WN and the mono-
tonicity of the access structure. The following local opera-
tions on X realize the reverse operation of WX.

�i� Perform the unitary transformation on X corresponding
to pc�X�Mk−1

0 �X�−1, which turns the summation in �23� into



c�D�sL�

	c1,…,ck,pc�xk+1�,…,pc�xn�� . �27�

�ii� Noting that n−k=k−L, perform the unitary transfor-
mation on X corresponding to the linear transformation:

�c1,…,ck�� I ML−1
0 �N \ X�

0 Mk−1
L �N \ X�

� . �28�

Then �27� yields

	sL� 

c�D�sL�

	pc�N \ X��	pc�N \ X�� , �29�

which can be represented by lemma 3 as

	sL� 

yk−L�Fk−L

	yk−L�	yk−L� . �30�

Thus, we have recovered 	sL� on �1,… ,L� from V	sL� by the
local operations on X.

b. Forbidden sets. When 	X	�k−L ,N \X is qualified since
	N \X	�k. Therefore it follows from proposition 3 in the ap-
pendix that X is forbidden.

c. Intermediate sets. In the case 	X	=k− l�0	 l	L�, we
show that X is intermediate. For this purpose, it is sufficient
to show that for X= �1,… ,k− l� ,WX is neither reversible nor
vanishing w.r.t. a subset S= �	sL��sL	�sL�FL included by S�H�.
Taking theorem 2 into account, let us calculate the Holevo
information

I��;WX� = H„WX����… − E��H„WX�	sL��sL	…��
and H���� for the uniform distribution � on S. Then the von
Neumann entropy is easily calculated as H����=L log q
since ��= I /qL. On the other hand, from lemma 3 and

	N \ X	 = n − �k − l� = �2k − L� − �k − l� � k − L ,

we have

WX�	sL��sL	� =
1

C



c,d�D�sL�

�pd�N \ X�,pc�N \ X��	pc�X���pd�X�	

=
1

C



c�D�sL�

	pc�X���pc�X�	 . �31�

Lemma 3 with 	X	=k− l�k−L also enables us to see that
	pc�X�� in the summation in Eq. �31� are orthogonal to each
other, and hence, we have H�WX�	sL��sL	��= �k−L�log q for
all sL�FL. Next, letting Y = �1,… ,k�, we have
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WY���� =
1

qL 

sL�FL

WY�	sL��sL	�

=
1

qLC



sL�FL



c,d�D�sL�

�pd�N \ Y�,pc�N \ Y��


	pc�Y���pd�Y�	

=
1

qk 

sL�FL



c�D�sL�

	pc�Y���pc�Y�	 = I/qk, �32�

where the third and last equalities follow from lemma 3.
Then we have WX����= I /qk−l and H(WX����)= �k− l�log q.
Consequently, it holds that

0 	 I��;WX� = �L − l�log q 	 L log q = H���� . �33�

Therefore it follows from theorem 2 that WX is neither re-
versible nor vanishing w.r.t. S.

At last, it is confirmed that WN actually realizes the
�k ,L ,n�-threshold ramp scheme. It is clear from the con-
struction of WN that the coding efficiency of WN is optimal in
the sense of corollary 2.

VIII. CONCLUDING REMARKS

In this paper, we have revisited the lower bound on the
dimension of each share in QSS schemes given by Gottes-
man �4� and gave a rigorous proof for the lower bound �theo-
rem 3 and corollary 1�. The key idea of the proof was as
follows. First, we have established a fundamental relation
between the reversibility of quantum operations and the
Holevo information �theorem 1�. Then, we have treated the
qualified or forbidden condition as the reversible or vanish-
ing condition for the corresponding quantum operation.
These steps gave us clear insights into QSS schemes and
even into classical SS schemes �see remark 4�. For example,
we can easily see from these pictures that the qualified or
forbidden condition is independent of the probability of the
source ensemble in both classical and quantum cases �remark
3�.

We have also proposed a ramp QSS scheme called the
�k ,L ,n�-threshold QSS ramp scheme so that the dimension
of each share could be decreased than that of the original
system by the sacrifice of security conditions. Finally, we
have analyzed the coding efficiency of the �k ,L ,n�-threshold
ramp scheme and shown an optimal construction to attain the
lower bound on the efficiency.

One may wonder that a forbidden party with the forbid-
den set of shares could disturb the protocol in QSS schemes
by using the property of the entanglement. In other words,
what happens if the forbidden party would try to break the
protocol to measure their particles and to announce the out-
come publicly?

The answer of the question is as follows. Let X�N be a
qualified set for a QSS scheme WN. Then, Y def

= N \X is forbid-
den and there exists a decoding operation RX for X recover-
ing any pure state � from WN���:

�IY � RX�WN��� = WY��� � � = �0 � � , �34�

where IY is the identity map and �0
def
= WY���. Note that pure

states have no entanglement with another systems and that �0
does not depend on �. Then, we can see that Eq. �34� also
holds for mixed states � and that any malicious operation EY

by the forbidden party Y could not interfere with the quali-
fied set of shares—i.e.,

�IY � RX��EY � IX�WN��� = �EY � IX��IY � RX�WN���

= EY��0� � � . �35�

However, the above arguments are not valid for interme-
diate sets of shares; i.e., a measurement on an intermediate
set of shares may affect the quantum state of another inter-
mediate set through the effects of the entanglement. For this
reason, it is a challenging problem to classify intermediate
sets in ramp QSS schemes. We need to study security condi-
tions for ramp QSS schemes and to develop tools to quantify
the information that an intermediate set of share has. These
developments are left to further studies.

APPENDIX: NO-CLONING AND NO-DELETING
THEOREM

In this paper, we have used a fundamental result in QSS
schemes shown by Cleve et al. �3�—that is, if a set of shares
X�N is qualified, the complement N \X is necessarily for-
bidden, and, in addition, the converse is also true in pure
state QSS schemes. These properties are regarded as variants
of the no cloning theorem �11–15� and the no deleting theo-
rem �51,52�. Another proof of this property relevant to the
no-cloning theorem is given by an information theoretical
manner in Ref. �43�. In this appendix , we will review these
results in our notations for readers’ convenience following
the original proof �3� which utilizes the perfect error correct-
ing condition �19,20�. Here we introduce a notation E
��Ea�a by which we mean that E is a quantum operation
represented by the Kraus representation �53� E���
=
aEa�Ea

*.
Proposition 2 ([19,20]). Let C :��S�H��V�V*�S�J�

be a quantum operation defined by an isometry V :H→J,
and let E :S�J�→S�K� be a quantum operation represented
by E��Ea�a. Then the following conditions are equivalent.

�a� E ·C is reversible w.r.t. S�H�.
�b� For each pair of indices a and b, there exists Cab

�C such that V*Ea
*EbV=CabIH.

Proposition 3 �Cleve-Gottesman-Lo �3��. Given a quan-
tum operation WXY :S�H�→S�HX � HY�, let WX

def
= TrY ·WXY

and WY
def
= TrX ·WXY. If WXY is a pure state channel and revers-

ible, then the following conditions are equivalent.
�a� WX is reversible w.r.t. S�H�.
�b� WY is vanishing w.r.t. S�H�.

In the case of general quantum operations, �a� implies �b�.
Proof. First, we show the equivalence when WXY is a pure
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state channel and reversible. In this case, WXY is written as
WXY���=V�V* by an isometry V :H→HX � HY. Let �	a��a be
an orthonormal basis on HY. Then it follows from proposi-
tion 2 with E=TrY ��IX � �a	�a that �a� holds iff there exists
Cab�C such that

∀�a,b�,V*�IX � 	a��b	�V = CabIH. �A1�

Moreover, Eq. �A1� is equivalent to the existence of a linear
functional C :L�HY�→C such that

∀A � L�HY�,V*�IX � A�V = C�A�IH. �A2�

Now we can easily see the equivalence of Eq. �A2� and �b�
from the following equalities:

Tr�WY���A� = Tr�WXY����IX � A�� = Tr��V*�IX � A�V� .

�A3�

In the general case, let WXY���=TrZ�U�U*� be the Stine-
spring representation �46�, where U :H→HX � HY � HZ is
an isometry. Then WXYZ���=U�U* is a pure state channel
and reversible. From the above argument, if WX is reversible
w.r.t. S�H�, then WYZ is vanishing, and hence WY is also
vanishing w.r.t. S�H�.�
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