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We present a way to realize an n-qubit controlled phase gate with superconducting quantum-interference
devices �SQUIDs� by coupling them to a superconducting resonator. In this proposal, the two logical states of
a qubit are represented by the two lowest levels of a SQUID. An intermediate level of each SQUID is utilized
to facilitate coherent control and manipulation of quantum states of the qubits. It is interesting to note that an
n-qubit controlled phase gate can be achieved with n SQUIDs by successively applying a � /2 Jaynes-
Cummings pulse to each of the n−1 control SQUIDs before and after a � Jaynes-Cummings pulse on the target
SQUID.
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I. INTRODUCTION AND MOTIVATION

Quantum computing has attracted much interest since it
was clear that quantum computers are in principle able to
solve hard computational problems much more efficiently
than classical computers �1–3�. In the past decade, various
physical systems have been considered for building up
quantum-information processors. Among them, cavity QED
analogs with solid-state systems are particularly appealing.
Theoretically, it was predicted earlier that the strong-
coupling limit, which is difficult to achieve with atoms in a
microwave cavity, can readily be realized with superconduct-
ing charge qubits �4,5�, superconducting flux qubits �6�, or
semiconducting quantum dots �7�. Recently, the strong-
coupling cavity QED has been experimentally demonstrated
with superconducting charge qubits and flux qubits �8,9� and
semiconductor quantum dots embedded in a microcavity
�10–12�. The results of these experiments make solid-state
qubit cavity QED a very attractive approach to the quantum-
information process.

It is known that a quantum-computing network can be
decomposed into two-qubit gates and one-qubit rotations
�13�. So far, a large number of theoretical proposals for re-
alizing two-qubit gates have been presented with many
physical systems. Moreover, two-qubit controlled-NOT

�CNOT� gates or controlled phase gates have been experimen-
tally demonstrated in cavity QED �14�, ion traps �15�, NMR
�16�, quantum dots �17�, and superconducting charge qubits
�18�. On the other hand, research on quantum computing has
recently moved toward the physical realization of multiqubit
quantum gates. Several schemes for realizing three-qubit
Toffoli gates have been proposed with neutral atoms in an
optical lattice �19� or hybrid atom-photon qubits via cavity
QED �20�. In addition, experimental realization of a con-
trolled phase gate in a three-qubit NMR quantum system has
been reported recently �21�.

In this paper, our goal is to present a way to realize an
n-qubit controlled phase gate with superconducting
quantum-interference devices �SQUIDs�, coupled to a super-
conducting resonator. In this proposal, the two lowest levels
�0� and �1� of each SQUID represent the two logical states of
a qubit while a higher-energy level �2� of each SQUID is

used to facilitate coherent control and manipulation of quan-
tum states of the qubits �Fig. 1�. The method presented here
essentially operates by having the resonator be �a� resonant
with the �0�↔ �2� transition of each SQUID sequentially,
while �b� largely detuned from the �1�↔ �2� transition and the
�0�↔ �1� transition of each SQUID during the gate operation.
We find that an n-qubit controlled phase gate can be achieved
with n SQUIDs, by successively applying a � /2 Jaynes-
Cummings pulse to each of the n−1 control SQUIDs before
and after a � Jaynes-Cummings pulse on the remaining
SQUID �the target qubit�.

As shown below, this scheme has the following advan-
tages. �i� No tunneling between the qubit levels �0� and �1� is
required so that the storage time of each qubit can be made
very long. �ii� No measurement on SQUIDs or photons is
needed, therefore the operation is simplified. �iii� No auxil-
iary SQUIDs are needed, thus saving precious hardware re-
sources. �iv� Coupling constants of each SQUID with the
resonator could be nonidentical to accommodate inevitable
nonuniformity in device parameters.

The motivation for this work is threefold. �i� SQUIDs
have recently attracted much attention in the quantum-
information community. Reasons for this are that SQUIDs
are relatively easy to scale up and have been demonstrated to
have relatively long decoherence times among solid-state qu-
bits �9,22–27� and therefore have been considered as a prom-
ising candidate for building up superconducting quantum
computers and information processors �28–37�. �ii� In the
present proposal, the strong coupling between a SQUID and
the resonator is analogous to atomic cavity quantum electro-
dynamics. Although many schemes for realizing two-qubit
quantum gates with a variety of physical systems using cav-
ity QED �5,32–34,38–45� or trapped ions �46–49� have been
proposed, realization of a multiqubit controlled quantum gate
based on cavity QED or trapped ions has not been thor-
oughly investigated. �iii� As is well known, multiqubit con-
trolled quantum gates are of great importance to constructing
quantum-computational networks, realizing quantum-error-
correction protocols, and implementing quantum algorithms.

This paper is organized as follows. In Sec. II, we review
the basic theory of a SQUID coupled to a single-mode reso-
nator or driven by a classical microwave pulse. In Sec. III,
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we show how to realize a three-qubit controlled phase gate
with three SQUIDs in a resonator. We then discuss how the
method can be generalized to implement an n-qubit con-
trolled phase gate with n SQUIDs in a resonator. In Sec. IV,
we give a discussion of the experimental issues. A conclud-
ing summary is given in Sec. V.

II. BASIC THEORY

The SQUIDs considered throughout this paper are rf
SQUIDs each consisting of a Josephson tunnel junction en-
closed by a superconducting loop �the size of a rf SQUID is
on the order of 10–100 �m�. The Hamiltonian for a rf
SQUID �with junction capacitance C and loop inductance L�
has the usual form �25�

Hs =
Q2

2C
+

�� − �x�2

2L
− EJ cos�2�

�

�0
� , �1�

where �, the magnetic flux threading the ring, and Q, the
total charge on the capacitor, are the conjugate variables of
the system �with the commutation relation �� ,Q�= i��, �x is
the static �or quasistatic� external magnetic flux applied to
the ring, and EJ	 Ic�0 /2� is the Josephson coupling energy
�Ic is the critical current of the junction and �0=h /2e is the
flux quantum�.

A. SQUID coupled to a single-mode resonator

Consider a SQUID coupled to a single-mode resonator.
The SQUID is biased properly to have �-type three lowest
levels, which are denoted by �0�, �1�, and �2�, respectively
�Fig. 1�. Suppose that the coupling of �0�, �1�, and �2� with
other levels of the SQUID via the resonator is negligible,
which can be readily achieved by adjusting the level spac-
ings of the SQUID. It can be shown that when the resonator
is resonant with the �0�↔ �2� transition while far off resonant
with the �1�↔ �2� transition and the �0�↔ �1� transition of the
SQUID, the interaction Hamiltonian in the interaction pic-
ture, after making the rotating-wave approximation, can be
written as �32�

HI = ��ga†�0�
2� + H.c.� . �2�

Here, a† and a are the creation and annihilation operators of
the resonator mode with frequency �r, and g is the coupling

constant between the resonator mode and the �0�↔ �2� tran-
sition of the SQUID. For a superconducting one-dimensional
standing-wave resonator, the expression of g is given by

�g�x� =
Msr

L
�h�r

L0l

0���2�sin�2�

�
x� , �3�

where Msr is the mutual inductance between the SQUID and
the resonator, L0 is the inductance per unit length of the
resonator, l is the length of the resonator, �r is the frequency
of the resonator mode with wavelength �, and x is the center
of the SQUID in the resonator.

The Hamiltonian �2� actually has the same form as the
Jaynes-Cummings Hamiltonian of a two-level system reso-
nant with a single-mode cavity field �a Hamiltonian well
known in quantum optics�. In the case when the resonator is
initially in the photon-number state �n�, the time evolution of
the states of the system, governed by the Hamiltonian �2�, is
described by

�0��n� → cos �ngt�0��n� − i sin �ngt�2��n − 1� ,

�2��n� → − i sin �n + 1gt�0��n + 1� + cos �n + 1gt�2��n� .

�4�

Note that the coupling strength g may vary with different
SQUIDs due to nonuniform device parameters and/or nonex-
act placement of SQUIDs in the cavity. Therefore, hereafter
we replace g by g1 ,g2 , . . ., and gn for SQUIDs 1, 2, …, and
n, respectively.

B. SQUID driven by a classical microwave pulse

Now let us consider a SQUID driven by a classical mi-
crowave pulse with the magnetic component B�w�r , t�
=B�w�r�cos�2���wt+��. Here, B�w�r�, ��w, and � are the
magnetic field amplitude, frequency, and phase of the micro-
wave pulse. It can be shown that if the microwave pulse is
resonant with the �1�↔ �2� transition but far off resonant with
the �0�↔ �2� transition and the �0�↔ �1� transition of the
SQUID, then the interaction Hamiltonian in the interaction
picture is given by

HI =
�

2
�	12e

i��1�
2� + H.c.� , �5�

where 	12 is the Rabi frequency of the pulse, which takes the
following form �32�:

	12�t� =
1

L�

1���2��

S

B�w�r� · dS . �6�

From the Hamiltonian �5�, it is straightforward to see that a
pulse of duration t results in the following rotation:

�1� → cos
	12

2
t�1� − ie−i� sin

	12

2
t�2� ,

�2� → − iei� sin
	12

2
t�1� + cos

	12

2
t�2� . �7�

FIG. 1. Level diagram of a SQUID with the three lowest levels
�0�, �1�, and �2� forming a �-type structure.
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III. MULTIQUBIT CONTROLLED PHASE GATE WITH
SQUIDS

In this section, for clarity, we will first give an explicit
description of how to realize a three-qubit controlled phase
gate with three SQUIDs coupled to a microwave resonator.
We will then discuss how to extend the method to obtain an
n-qubit controlled phase gate with a larger number n.

A. Three-qubit controlled phase gate

For three qubits, there are a total number of eight �23�
computational basis states, denoted by �000�, �001�, …, �111�,
respectively. A three-qubit controlled phase gate is described
by

�000� → �000�, �100� → �100� ,

�001� → �001�, �101� → �101� ,

�010� → �010�, �110� → �110� ,

�011� → �011�, �111� → − �111� , �8�

which implies that if and only if the two control qubits �the
first two qubits� are in the state �1�, a phase flip happens to
the state �1� of the target qubit �the last qubit� and nothing
happens otherwise.

To realize this gate, consider SQUIDs �1,2,3� each having
the �-type level configuration as depicted in Fig. 1. The
transition between any two levels for each SQUID is initially
far off resonant with the resonator �e.g., via prior adjustment
of the level spacings� and the cavity mode is initially in the
vacuum state �0�c.

The operations for realizing the three-qubit controlled
phase gate are listed below.

Step (i). Apply a � microwave pulse �	12
�w=�, where

�w is the pulse duration� with �=−� /2 to SQUID 1 �Fig.
2�a��. The pulse is resonant with the �1�↔ �2� transition of
SQUID 1. After the pulse, the transformation �1�→ �2� of
SQUID 1 is obtained.

Step (ii). Bring the �0�↔ �2� transition of SQUID 1 to
resonance with the resonator for an interaction time 
1
=� / �2g1� �Fig. 2�b��, resulting in �2�1�0�c→−i�0�1�1�c.

Step (iii). Bring the �0�↔ �2� transition of SQUID 2 to
resonance with the resonator for an interaction time 
2
=� / �2g2� �Fig. 2�c��. As a result, the states �0�2�0�c, �1�2�0�c,
and �1�2�1�c remain unchanged, while the state �0�2�1�c
changes to −i�2�2�0�c.

Step (iv). Bring the �0�↔ �2� transition of SQUID 3 to
resonance with the resonator for an interaction time 
3
=� /g3 �Fig. 2�d��, resulting in �0�3�1�c→−�0�3�1�c and no
change for the states �0�3�0�c, �1�3�0�c, and �1�3�1�c.

Step (v). Bring the �0�↔ �2� transition of SQUID 2 to
resonance with the resonator for an interaction time 
2
=� / �2g2� �Fig. 2�c��. As a result, the states �0�2�0�c, �1�2�0�c,
and �1�2�1�c remain unchanged, while the state �2�2�0�c be-
comes −i�0�2�1�c.

Step (vi). Bring the �0�↔ �2� transition of SQUID 1 to
resonance with the resonator for an interaction time 
1
=� / �2g1� �Fig. 2�b��, resulting in �0�1�1�c→−i�2�1�0�c.

Step (vii). Apply a � microwave pulse with �=� /2 to
SQUID 1 �Fig. 2�a��. The pulse is resonant with the �1�↔ �2�
transition of SQUID 1. After the pulse, the transformation
�2�→ �1� of SQUID 1 is achieved.

The states of the whole system after each step of the
above operations are summarized below:

�100��0�c

�101��0�c

�110��0�c

�111��0�c

——→
Step�i�

�200��0�c

�201��0�c

�210��0�c

�211��0�c

——→
Step�ii�

− i�000��1�c

− i�001��1�c

− i�010��1�c

− i�011��1�c

——→
Step�iii�

− �020��0�c

− �021��0�c

− i�010��1�c

− i�011��1�c

——→
Step�iv�

− �020��0�c

− �021��0�c

i�010��1�c

− i�011��1�c

——→
Step�v�

i�000��1�c

i�001��1�c

i�010��1�c

− i�011��1�c

——→
Step�vi�

�200��0�c

�201��0�c

�210��0�c

− �211��0�c

——→
Step�vii�

�100��0�c

�101��0�c

�110��0�c

− �111��0�c

, �9�

where �ijk� is the abbreviation of the state �i�1�j�2�k�3 of
SQUIDs �1,2,3� with i , j ,k� 
0,1 ,2�.

On the other hand, it is obvious that the following states
of the system:

�000��0�c, �001��0�c, �010��0�c, �011��0�c �10�

remain unchanged during the operation. This is because �a�
the state �0� of SQUID 1 was not affected by the applied

microwave pulse, since the �0�↔ �2� transition and the
�0�↔ �1� transition of SQUID 1 are far off resonant with the
applied microwave pulse; and �b� no photon was emitted to
the resonator during the Step �ii� operation, when SQUID 1
is initially in the state �0�. Hence, it can be concluded from
Eq. �9� that the three-qubit controlled phase gate �8� was
achieved with three SQUIDs �i.e., the control SQUIDs 1 and
2, as well as the target SQUID 3� after the above process.
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B. n-qubit controlled phase gate

A quantum-controlled phase gate of n qubits �1,2 , . . . ,n�
is defined by the following transformation:

�i1i2 ¯ in� → �− 1�i1�i2�¯�in�i1i2 ¯ il ¯ in� , �11�

where the subscript l represents qubit l, il� 
0,1�, and
�i1i2¯ il¯ in� is the n-qubit computational basis state. For n
qubits, there are a total number of 2n computational basis
states, which form a set of complete orthogonal bases in a
2n-dimensional Hilbert space of the n qubits. Equation �11�
shows that only when the n−1 control qubits �the first n−1
qubits� are all in the state �1� does the state �1� of the target
qubit �the last qubit� undergo a phase flip, i.e., �11¯1�→
−�11¯1�, while nothing happens to all the other 2n−1 com-
putational basis states. In the following, we will discuss how
this gate can be achieved with n SQUIDs coupled to a reso-
nator.

The n SQUIDs are labeled by 1,2,…, and n. The first n
−1 SQUIDs �1,2 , . . . ,n−1� act as control qubits while the
SQUID n is the target qubit. Suppose that the n SQUIDs
�1,2 , . . . ,n� are initially decoupled from the resonator �ini-
tially in the vacuum state�. Examining the above operations
for the three-qubit controlled phase gate carefully, we find
that the n-qubit controlled phase gate �11� can be obtained
with the resonator mode returning to the original vacuum
state, by the sequence of operators

U = U1
+

� � �
l=n−1

1

Ulr� � Unr
2

� ��
l=1

n−1

Ulr� � U1, �12�

where �i=1
k Uir	UkrU�k−1�r¯U2rU1r; U1

+ and U1 denote the
operators on SQUID 1 with the following matrices;

U1
+U1 = I, U1 = � 0 1

− 1 0
� �13�

in the basis states �1�1= �0,1�T and �2�1= �1,0�T; Ulr is the
joint operator on the SQUID l and the resonator mode �l
=1,2 , . . . ,n−1�, represented by the matrix

Ulr = � 0 − i

− i 0
� �14�

in the basis states �0�l�1�c= �0,1�T and �2�l�0�c= �1,0�T; and
Unr is the joint operator on the SQUID n and the resonator
mode with the same matrix as the one described by Eq. �14�
�in the basis states �0�n�1�c= �0,1�T and �2�n�0�c= �1,0�T�.

From the description in the previous subsection, we see
the following.

�i� U1 �U1
+� denotes the application of a � microwave

pulse �	12
�w=�, where 
�w is the pulse duration� with �
=−� /2�� /2� and ��w=�12 �the �1�↔ �2� transition frequency
of SQUID 1� to SQUID 1.

�ii� Ulr corresponds to the operation of bringing the
�0�↔ �2� transition of SQUID l �l=1,2 . . . ,n−1� to resonance
with the resonator for an interaction time 
l=� / �2gl� �i.e., a
� /2 Jaynes-Cummings pulse�. and

�iii� Unr
2 indicates two � /2 Jaynes-Cummings pulses reso-

nant with the �0�↔ �2� transition of SQUID n, which are,
when combined together, equivalent to a � Jaynes-
Cummings pulse �i.e., 
n=� /gn�.

We remark that all other basis states of the system in-
volved in each step of the above operations, which form a
complete set of orthonormal states together with the basis
states described above, are not affected by �a� setting the
microwave pulse to be largely detuned from the �0�↔ �2�
transition and the �0�↔ �1� transition of SQUID 1 and �b�
setting the �1�↔ �2� transition and the �0�↔ �1� transition of
each SQUID far off resonant from the resonator mode.

The method presented here for realizing the n-qubit con-
trolled phase gate �11� is an extension of the three-qubit ver-
sion �8� described in the previous subsection. This can be
seen as follows. From Eq. �9�, one can see that the three-
qubit controlled phase gate �8� was realized essentially
through the operation of step �iv�. This operation led to a
phase shift on the state of SQUID 3 �i.e., �0�→−�0� and
�1�→ �1�� with the aid of the photon, when the two control
SQUIDs 1 and 2 are initially in the basis state �11�. But,
when the two control SQUIDs 1 and 2 are initially in the
other basis states, this operation results in no change to the
state of SQUID 3, due to the fact that no photon was left in
the resonator mode after the step �iii�. Similarly, the realiza-
tion of the n-qubit controlled phase gate �11� described
above is mainly based on the operation described by Unr

2 ,
which causes a phase shift on the state of SQUID n �the
target� with the assistance of the photon when the n−1 con-

FIG. 2. Illustration for the change of the level structure �re-
duced� of three SQUIDs �1, 2, 3� during a three-qubit controlled
phase gate performance. In �a�, �b�, �c�, and �d�, figures from left to
right represent the level structures for SQUIDs 1, 2, and 3, respec-
tively; the nonidentical level spacings of the SQUIDs could be
caused by nonuniform device parameters. g1, g2, and g3 are the
resonant coupling constants between the resonator mode and the
�0�↔ �2� transition of SQUIDs 1, 2, and 3, respectively. The differ-
ence for g1, g2, and g3 is due to device parameter nonuniformity or
nonexact placement of each SQUID. ��w is the frequency of the
applied microwave pulse while �12 is the �1�↔ �2� transition fre-
quency for SQUID 1. In �a�, the level spacings of SQUID 1 is set to
be much different from that of SQUIDs 2 and 3, such that SQUIDs
2 and 3 are decoupled from the applied pulse. The transition be-
tween any two levels linked by a dashed line is far off resonant with
the resonator mode.
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trol SQUIDs �1,2 , . . . ,n−1� are initially in the basis state
�11¯1�. Note that only for this initial basis state would the
photon originally created by the operation U1rU1 remain in
the resonator mode after the operation �l=2

n−1Ulr. In addition,
similar to the operations of steps �v�–�vii� for the three-qubit
controlled phase gate �8�, the operation described by U1

+

� ��l=n−1
1 Ulr� has the photon emitted back into the resonator

mode from the system of SQUIDs �2,3 , . . . ,n−1� and finally
absorbed by SQUID 1. Hence, the resonator mode returns to
the original vacuum state and the n SQUIDs �1,2 , . . . ,n� are
back to the initial states except a phase flip to the n-qubit
basis state �11¯1�.

Before closing this section, some points may need to be
addressed here.

�a� The irrelevant SQUIDs in each step of the operation
need to be decoupled from the resonator or pulse during the
resonator- or pulse-SQUID interaction. The resonator mode
needs to be not excited during the application of the micro-
wave pulse. In addition, the coupling of the levels �0�, �1�,
and �2� with the other levels should be negligible for each
SQUID. In principle, these conditions can be satisfied by
adjusting the level spacings of the SQUIDs. Note that for a
SQUID, the level spacings can be changed readily by vary-
ing the external flux �x or the critical current Ic �e.g., for
variable-barrier rf SQUIDs� �50�.

�b� It is not necessary to have a single-mode resonator
since for a multimode resonator one can choose one mode to
interact with the SQUIDs while have all other modes well
decoupled from the three lowest levels of the SQUIDs �e.g.,
with proper device parameters�.

�c� The method presented here is applicable to a one-
dimensional �1D�, 2D, or 3D microwave resonator or cavity
as long as the conditions described above can be met.

�d� As is well known, an n-qubit controlled-NOT gate
�known as the Toffoli gate for n=3� can be obtained by com-
bining the n-qubit controlled phase gate �11� with two single-
qubit Hadamard gates, which are performed on the target
qubit before and after the n-qubit controlled phase gate �11�
respectively �see Fig. 3�. Each of the single-qubit Hadamard
transformations �0�→ �1/�2���0�+ �1�� and �1�→ �1/�2���0�
− �1�� can be done with a � /2 microwave pulse resonant with
the �0�↔ �1� transition of the target SQUID qubit. When
combining with the above quantum-controlled phase gate op-
erations, one obtains the n-SQUID qubit CNOT gate.

�e� The present method provides a simple way to imple-
ment a multiqubit CNOT gate with SQUIDs coupled to a reso-
nator. To see this, let us consider the simple case of n=3. It
is known that construction of a Toffoli gate requires at least
six two-qubit CNOT gates and ten single-qubit gates �i.e., two
Hadamard, one phase, and seven � /8 gates� �51�. Note that a
two-qubit CNOT gate consists of a two-qubit controlled phase
gate and two single-qubit Hadamard gates as described
above. Therefore, using the conventional gate-constructing
technique, at least 28 steps of operations will be necessary to
realize a Toffoli gate, assuming that the realization of a
single-qubit gate or a two-qubit controlled phase gate re-
quires one-step operation only. However, as discussed above,
the present method only needs nine steps of operations. That
is, seven steps of operations for the three-qubit controlled

phase gate �8� plus two steps of operations for the two Had-
amard gates. Finally, it is obvious that the simplicity of the
present method in constructing an n-qubit CNOT gate may
become more apparent with the increment of n, when com-
pared with the use of the conventional gate-decomposition
protocol.

IV. DISCUSSION

In this section we discuss issues that are important to
experimental implementation. Without loss of generality, let
us consider performing an n-qubit controlled phase gate with
n identical SQUIDs �1,2 , . . . ,n� at locations where the Br

fields are the same �e.g., antinodes of the cavity field�. In this
case, we have gl=g�l=1,2 , . . . ,n�. For the method to work,
the total operation time 
=2n�
r+
a�+2
�w �
r=� / �2g��
should be much shorter than the energy relaxation time �2

−1

of the level �2�, and the lifetime of the resonator mode 
−1

=Q /2��r, where Q is the �loaded� quality factor of the reso-
nator. Here, 
a is the typical time required for adjusting the
level spacings of a single SQUID. In addition, direct cou-
pling between SQUIDs needs to be negligible since this in-
teraction is not intended.

In principle, these requirements can be realized, since �i�

r can be reduced by increasing the coupling constant g, �ii�

a can be shortened by rapid adjustment of the level spacings
of the SQUIDs, �iii� 
−1 can be increased by employing a
high-Q resonator so that the resonator dissipation is negli-
gible during the operation, �iv� the SQUIDs can be designed
so that the energy relaxation time �2

−1 of the level �2� is
sufficiently long, and �v� direct interaction between SQUIDs
is negligible as long as the following condition can be met:

Hs-s � Hs-r, Hs-�w, �15�

where Hs-s is the interaction energy between the two nearest
SQUIDs, Hs-r is the SQUID-resonator interaction energy,

FIG. 3. Relationship between an n-qubit controlled-NOT gate
and an n-qubit controlled phase gate. For the circuit on the left side,
the element denoted by � corresponds to a controlled-NOT gate
�with n−1 controls on the filled circles�; if the n−1 controls are all
in the state �1�, then the state at � is bit flipped. On the other hand,
for the circuit on the right side, the element Z represents a Pauli
rotation �z, i.e., a phase flip operation �with n−1 controls on the
filled circles�; namely, if the n−1 control qubits are all in the state
�1�, then the state �1� at Z is phase flipped as �1�→−�1� while noth-
ing happens to the state �0� at Z. In addition, the element containing
H corresponds to a Hadamard transformation described by �0�
→ �1/�2���0�+ �1�� while �1�→ �1/�2���0�− �1��.
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and Hs-�w is the SQUID-microwave interaction energy.
It is straightforward to see that the condition �15� can be

realized if

� =
MLl

−1Ll+1
−1 max
�ij

�l��ij
�l+1���0

2

min
�gl,�	12�
� 1. �16�

Here, M is the mutual inductance between the two nearest
SQUIDs l and l+1�l=1,2 , . . . ,n−1�, �ij

�l���ij
�l+1��

	
i���j� /�0 is the magnetic dipole coupling matrix element
between levels �i� and �j� of SQUID l�l+1�, and ij=01, 02,
or 12.

For the sake of definitiveness, let us consider the experi-
mental feasibility of realizing a three-qubit controlled phase
gate using SQUIDs with the parameters listed in Table I.
Note that SQUIDs with these parameters are readily avail-
able at the present time �22,23,52�. With the choice of these
parameters, the SQUIDs have the desired three-level struc-
ture as depicted in Fig. 1. For a superconducting one dimen-
sional standing-wave coplanar waveguide �CPW� resonator
with the parameters listed in Table I and SQUIDs placed
along the cavity axis �Fig. 4�, one has Msr�100 pH. When
each SQUID is located at one of the antinodes of the reso-
nator mode �Fig. 4�, a simple calculation shows g�7.5
�109 s−1, resulting in 
r�0.2 ns. With the choice of 
�w
�
a�
r, one has 
�2.8 ns, which is much smaller than

�2
−1�3.2 �s and 
−1�41.7 ns for a resonator with Qr=3

�103. Note that superconducting CPW resonators with
higher quality factors have been demonstrated by recent cav-
ity QED experiments with superconducting charge qubits
�8�.

For a resonator with �r=11.4 GHz, the wavelength of the
resonator mode is ��10.5 mm. When each SQUID is
placed at an antinode of the Br field �Fig. 4�, one has D
�5.3 mm, where D is the distance between the two nearest
SQUIDs. A simple estimate gives M �0.1 aH, resulting in
��10−8 for the parameters considered above. Thus, the con-
dition of negligible direct coupling between SQUIDs is very
well satisfied.

The above analysis demonstrates that the realization of a
three-qubit controlled phase gate is possible using SQUIDs
and a resonator. We remark that a quantum-controlled phase
gate with a larger number of qubits can in principle be ob-
tained by increasing the length of the resonator though the
conditions of 
��2

−1 ,
−1 becomes increasingly difficult to
satisfy.

We emphasize that the primary purpose of this work is to
provide a different approach to implement a multiqubit
quantum-controlled phase gate with SQUIDs. However, we
note that �a� when coupled to a cavity mode, many physical
qubit systems �such as atoms, quantum dots, and supercon-
ducting charge qubits� have the same type of qubit-cavity
interaction described by the Hamiltonian �2�, and �b� the
condition, i.e., the �0�↔ �2� transition being resonant while
the transition between any other two levels is far off resonant
with the resonator, can always be obtained via the adjustment
of the level spacings �e.g., for quantum dots and atoms, the
level spacings can be changed via adjusting the external elec-
tric field �53��. Therefore, it is straightforward to show that
the method can be generalized to realize the multiqubit con-
trolled phase gate in other types of qubit systems with the
�-type three-level configuration within cavity QED.

V. CONCLUSION

Before concluding, we should point out that the idea of
tuning the individual qubits in and out of resonance with the

TABLE I. Parameters for a SQUID resonator. �L is the SQUID’s potential shape parameter, R is the
SQUID’s effective damping resistance, and S is the surface bounded by the loop of the SQUID with width a
and length b. �2

−1 ��1
−1� is the energy relaxation time of the level �2� ��1��. �02 ��12� is the �0�↔ �2� ��1�↔ �2��

transition frequency. �ij 	
i���j� /�0 is the magnetic dipole coupling matrix element between levels �i� and
�j� �i=0,1 ; j=2�. l is the length of the quasi-one-dimensional CPW resonator, � is the wavelength of the
resonator mode with frequency, �r, d is the gap between the center conductor and the adjacent ground plane,
w is the width of the center conductor, t is the width of each ground plane, L0 is the inductance per unit length
of the waveguide, and �e is the effective relative dielectric constant.

SQUID

C=135 fF
L=240 pH

�L=1.13 �x=0.4991�0 R=20 M	 S=200�100 �m2

�02�11.4 GHz
�12�5.8 GHz

�01=6.0�10−3 �02=3.2�10−2 �12=2.6�10−2 �2
−1�3.2 �s

�1
−1�0.16 ms

Resonator

�r=11.4 GHz ��10.5 mm l=1.5� d�45 �m w�20 �m

t�d �e�6.3 L0�0.65 pH/�m Qr�3�103 
−1�41.7 ns

FIG. 4. Sketch of the setup for three SQUIDs �1, 2, 3� and a
standing-wave quasi-one-dimensional CPW resonator �not drawn to
scale�. Each SQUID is placed in the plane of the resonator between
the two lateral ground planes �i.e., the x−y plane� and at an antin-
ode of the Br field. The two curved lines represent the standing-
wave Br field, which is in the z direction.
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cavity mode was previously proposed for superconducting
charge qubits �54�. Rather, our scheme is for a different sys-
tem and it differs in the details of both the qubits and the
coupling structure. In our case, we consider a system con-
sisting of flux qubits �SQUIDs� coupled to a microwave
resonator and cavity, while the system described in �54� com-
prises charge qubits and an LC oscillator mode in the circuit.
In addition, the idea of performing a phase shift via the as-
sistance of the cavity photon was proposed earlier for realiz-
ing a two-qubit quantum-controlled phase gate with trapped
ions �46�. However, to the best of our knowledge, our
scheme is the first to demonstrate that a quantum-controlled
phase gate with a large number of qubits can in principle be
achieved within cavity QED, which is of great importance.

In summary, we have presented a method to realize a
multiqubit controlled phase gate with SQUIDs coupled to a
microwave resonator, which operates essentially by exchang-
ing a single photon between the control SQUIDs and the
resonator mode before and after a phase shift is performed on
the target SQUID. The method has the following advantages.
�i� Only one SQUID interacts with the microwave pulse. �ii�
No auxiliary SQUID or measurement is needed during the
entire operation; thus the hardware resources are signifi-
cantly reduced and the operation is greatly simplified. �iii� As

tunneling between the qubit levels �0� and �1� is not required
during the operation, decay from the level �1� can be made
negligibly small during the operation �via prior adjustment of
the potential barrier between the qubit levels �0� and �1� �50��
and therefore the storage time of each qubit can be made
much longer. �iv� The coupling constants of SQUIDs with
the resonator could be different, which makes the present
proposal much easier to implement since neither identical
SQUIDs nor exact placement of SQUIDs is needed. �v� The
method can in principle be applied to obtain an n-qubit con-
trolled phase gate with a large number n. Finally, as dis-
cussed above, the present method is quite general, and can be
applied to implement a multiqubit-controlled phase gate for
other types of physical qubit systems with the �-type three-
level structure within cavity QED.

ACKNOWLEDGMENTS

This work was partially supported by the National Sci-
ence Foundation QuBIC program �Grant No. ECS-0201995�
and ITR program �Grant No. DMR-0325551�, and AFOSR
�Grant No. F49620-01-1-0439�, funded under the Depart-
ment of Defense University Research Initiative on Nanotech-
nology �DURINT� Program and by the ARDA.

�1� D. Deutsch, Proc. R. Soc. London, Ser. A 400, 97 �1985�;
425, 73 �1989�.

�2� P. W. Shor, in Proceedings of the 35th Annual Symposium on
Foundations of Computer Science �IEEE Computer Society
Press, Santa Fe, NM, 1994�.

�3� L. K. Grover, Phys. Rev. Lett. 79, 325 �1997�.
�4� S. M. Girvin, Ren-Shou Huang, Alexandre Blais, Andreas

Wallraff, and R. J. Schoelkopf, e-print cond-mat/0310670.
�5� A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J.

Schoelkopf, Phys. Rev. A 69, 062320 �2004�.
�6� C. P. Yang, Shih-I Chu, and S. Han, Phys. Rev. Lett. 92,

117902 �2004�.
�7� L. I. Childress, A. S. Sorensen, and M. D. Lukin, e-print quant-

ph/0309106.
�8� A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang,

J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Nature
�London� 431, 162 �2004�.

�9� I. Chiorescu, P. Bertet, K. Semba, Y. Nakamura, C. J. P. M.
Harmans, and J. E. Mooij, Nature �London� 431, 159 �2004�.

�10� T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M.
Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe,
Nature �London� 432, 200 �2004�.

�11� J. P. Reithmaier, G. Sk, A. Löffler, C. Hofmann, S. Kuhn, S.
Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke,
and A. Forchel, Nature �London� 432, 197 �2004�.

�12� A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M.
Petroff, and A. Imamoglu, Science 308, 1158 �2005�.

�13� T. Sleator and H. Weinfurter, Phys. Rev. Lett. 74, 4087 �1995�.
�14� Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J.

Kimble, Phys. Rev. Lett. 75, 4710 �1995�; A. Rauschenbeutel,
G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond,

and S. Haroche, ibid. 83, 5166 �1999�.
�15� C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J.

Wineland, Phys. Rev. Lett. 75, 4714 �1995�.
�16� N. A. Gershenfeld, and I. L. Chuang, Science 275, 350 �1997�;

D. G. Cory, A. F. Fahmy, and T. F. Havel, Proc. Natl. Acad.
Sci. U.S.A. 94, 1634 �1997�; J. A. Jones, M. Mosca, and R. H.
Hansen, Nature �London� 393, 344 �1998�.

�17� X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. D.
Katzer, D. Park, C. Piermarocchi, and L. J. Sham, Science
301, 809 �2003�.

�18� T. Yamamoto, Yu. A. Pashkin, O. Astafiev, Y. Nakamura, and
J. S. Tsai, Nature �London� 425, 941 �2003�.

�19� J. K. Pachos and P. L. Knight, Phys. Rev. Lett. 91, 107902
�2003�.

�20� H. Ollivier and P. Milman, e-print quant-ph/0306064.
�21� J. Zhang, W. Liu, Z. Deng, Z. Lu, and G. L. Long, e-print

quant-ph/0406209, J. Opt. B: Quantum Semiclassical Opt. �to
be published�.

�22� Y. Yu, S. Han, X. Chu, S.-I. Chu, and Z. Wang, Science 296,
889 �2002�.

�23� I. Chiorescu, Y. Nakamura, C. J. P. M. Harmans, and J. E.
Mooij, Science 299, 1869 �2003�.

�24� C. H. van der Wal, A. C. J. ter Haar, F. K. Wilhelm, R. N.
Schouten, C. J. P. M. Harmans, T. P. Orlando, Seth Lloyd, and
J. E. Mooij, Science 290, 773 �2000�.

�25� S. Han, R. Rouse, and J. E. Lukens, Phys. Rev. Lett. 76, 3404
�1996�.

�26� J. R. Friedman, V. Patel, W. Chen, S. K. Tolpygo, and J. E.
Lukens, Nature �London� 406, 43 �2000�.

�27� J. B. Majer, F. G. Paauw, A. C. J. ter Haar, C. J. P. M. Har-
mans, and J. E. Mooij, Phys. Rev. Lett. 94, 090501 �2005�.

n-QUBIT-CONTROLLED PHASE GATE WITH… PHYSICAL REVIEW A 72, 032311 �2005�

032311-7



�28� M. F. Bocko, A. M. Herr, and M. J. Feldman, IEEE Trans.
Appl. Supercond. 7, 3638 �1997�.

�29� T. P. Orlando, J. E. Mooij, L. Tian, C. H. van der Wal, L.
Levitov, S. Lloyd, and J. J. Mazo, Phys. Rev. B 60, 15398
�1999�.

�30� M. H. S. Amin, A. Y. Smirnov, and Alec Maassen van den
Brink, Phys. Rev. B 67, 100508�R� �2003�.

�31� C. P. Yang and S. Han, Phys. Lett. A 321, 273 �2004�.
�32� C. P. Yang, Shih-I Chu, and S. Han, Phys. Rev. A 67, 042311

�2003�.
�33� C. P. Yang, Shih-I Chu, and S. Han, Phys. Rev. A 70, 044303

�2004�.
�34� P. Zhang, Z. D. Wang, J. D. Sun, and C. P. Sun, Phys. Rev. A

71, 042301 �2005�.
�35� Z. Kis and E. Paspalakis, Phys. Rev. B 69, 024510 �2004�.
�36� M. J. Everitt, T. D. Clark, P. Stiffell, H. Prance, R. J. Prance,

A. Vourdas, and J. F. Ralph, Phys. Rev. B 64, 184517 �2001�.
�37� M. J. Everitt, T. D. Clark, P. B. Stiffell, A. Vourdas, J. F. Ralph,

R. J. Prance, and H. Prance, Phys. Rev. A 69, 043804 �2004�.
�38� S. B. Zheng and G. C. Guo, Phys. Rev. Lett. 85, 2392 �2000�.
�39� A. Beige, D. Braun, B. Tregenna, and P. L. Knight, Phys. Rev.

Lett. 85, 1762 �2000�.
�40� E. Jane, M. B. Plenio, and D. Jonathan, Phys. Rev. A 65,

050302�R� �2002�.
�41� X. X. Yi, X. H. Su, and L. You, Phys. Rev. Lett. 90, 097902

�2003�.
�42� Asoka Biswas and G. S. Agarwal, Phys. Rev. A 69, 062306

�2004�.
�43� M. S. Sherwin, A. Imamoglu, and T. Montroy, Phys. Rev. A

60, 3508 �1999�.
�44� A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVin-

cenzo, D. Loss, M. Sherwin, and A. Small, Phys. Rev. Lett.
83, 4204 �1999�.

�45� S. L. Zhu, Z. D. Wang, and K. Yang, Phys. Rev. A 68, 034303
�2003�.

�46� J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 �1995�.
�47� C. Monroe, D. Leibfried, B. E. King, D. M. Meekhof, W. M.

Itano, and D. J. Wineland, Phys. Rev. A 55, R2489 �1997�.
�48� A. M. Childs and I. L. Chuang, Phys. Rev. A 63, 012306

�2000�.
�49� A. Sørensen and K. Mølmer, Phys. Rev. Lett. 82, 1971 �1999�.
�50� S. Han, J. Lapointe, and J. E. Lukens, Single-Electron Tunnel-

ing and Mesoscopic Devices �Springer-Verlag, Berlin, 1991�,
Vol. 31, pp. 219–222.

�51� M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information �Cambridge University Press, Cam-
bridge, England, 2001�, p. 182.

�52� Y. Yu, D. Nakada, J. C. Lee, B. Singh, D. S. Crankshaw, T. P.
Orlando, W. D. Oliver, and K. K. Berggren, Phys. Rev. Lett.
92, 117904 �2004�.

�53� P. Pradhan, M. P. Anantram, and Kang L. Wang, e-print quant-
ph/0002006.

�54� Y. Makhlin, G. Schoen, and A. Shnirman, Nature �London�
398, 305 �1999�.

C.-P. YANG AND S. HAN PHYSICAL REVIEW A 72, 032311 �2005�

032311-8


