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We investigate the unambiguous comparison of quantum states in a scenario that is more general than the
one that was originally suggested by Barnett et al. First, we find the optimal solution for the comparison of two
states taken from a set of two pure states with arbitrary a priori probabilities. We show that the optimal
coherent measurement is always superior to the optimal incoherent measurement. Second, we develop a
strategy for the comparison of two states from a set of N pure states, and find an optimal solution for some
parameter range when N=3. In both cases we use the reduction method for the corresponding problem of
mixed-state discrimination, as introduced by Raynal et al., which reduces the problem to the discrimination of
two pure states only for N=2. Finally, we provide a necessary and sufficient condition for unambiguous
comparison of mixed states to be possible.
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I. INTRODUCTION

The laws of quantum mechanics do not allow the perfect
discrimination of two nonorthogonal quantum states ��1� and
��2�. Consequently, given a set of nonorthogonal states
���1� , ��2��, it is also impossible to find out with probability
one whether two quantum states, drawn from this set, are
identical �namely, the total state is either ��1�1� or ��2�2�� or
different �i.e., the total state is either ��1�2� or ��2�1��. What
is the optimal probability of success, when no errors are
allowed? This problem has been introduced by Barnett,
Chefles, and Jex �1� and is called unambiguous quantum
state comparison. It has been solved for the case that the a
priori probabilities for the two ensemble states are equal �1�.
The task of determining whether C given states taken from a
set of N pure states with equal a priori probabilities are
identical or not has been investigated in Refs. �2,3�.

In this paper, we consider the most general case of unam-
biguous state comparison, also admitting mixed states. We
provide sufficient and necessary conditions for which this
task can succeed. Furthermore, the comparison of two states
drawn from a set of N pure states with arbitrary a priori
probabilities is investigated, and an optimal solution is found
for the case N=2, as well as for a range of parameters in the
case N=3, using the reduction techniques for mixed-state
discrimination developed in Ref. �4�. This method is also
applied for general N. We address the question of how much
can be gained in the optimal coherent strategy �i.e., with
global measurements on the two given states�, as compared
to the best incoherent strategy �i.e., consecutive measure-
ments�.

Our paper is organized as follows: in Sec. II, we define
the most general state comparison problem, and explain the
connection to mixed-state discrimination. In Sec. III, we find
the optimal solution for comparing two states, drawn from a
set of two states. In Sec. IV, we develop the formalism for
the comparison of two out of N states, and apply it to N=3.

In Sec. V we derive sufficient and necessary conditions for
the general task of mixed-state comparison to be successful,
before concluding in Sec. VI.

II. GENERAL STATE COMPARISON

Let us define the task of state comparison in the most
general way: Given C quantum states of arbitrary dimension,
each of them taken from a set of N possible �in general
mixed� quantum states ��1 , . . . ,�N� that occur with corre-
sponding a priori probabilities �q1 , . . . ,qN�. Unambiguous
state comparison “C out of N” is performed by doing a mea-
surement, which allows with probability P to decide without
doubt whether all C states are equal, or whether at least one
of them is different. The best possible probability of success
Popt is reached in optimal state comparison.

A measurement is most generally described as a positive
operator-valued measurement �POVM�, i.e., a decomposition
of the identity operator into a set of n positive operators �5�,

F1, . . . ,Fn � 0, satisfying 	
i

Fi = 1 . �1�

The probability for a system in a state �k to yield the out-
come corresponding to Fi is given by pk tr�Fi�k�, where pk is
the a priori probability for the system being in state �k. For
the task of unambiguous state comparison, we need at least
two measurements Fa and Fb, having vanishing probabilities
in the case where the total state is composed of different or
equal states, respectively. This means that for all �pk ,�k�
� ��qi1

¯qiC
,�i1

� ¯ � �iC
� � i1 , . . . , iC� �1, . . . ,N�� we de-

mand

pk tr�Fa�k� � 0 ⇔ ∃ m: �k = �m
�C, �2a�

pk tr�Fb�k� � 0 ⇔ ∃”m: �k = �m
�C. �2b�

However, measurements which satisfy this defining property
will in general not sum up to the identity, thus admitting the
inconclusive measurement F?=1−Fa−Fb, which has to be a
positive operator. In order to find an optimal solution to the*Electronic address: kleinmann@thphy.uni-duesseldorf.de
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problem, one has to minimize the probability for the incon-
clusive answer 	kpk tr�F?�k�, or equivalently maximize the
rate of success given by

P = 	
k

pk tr��Fa + Fb��k� . �3�

The problem of finding the optimal measurement for state
comparison can be addressed by considering the optimal so-
lution of a related problem, namely unambiguous state dis-
crimination. Here, two states �a and �b have to be distin-
guished without error, but admitting an inconclusive answer.
In order to see the connection between the two tasks, con-
sider the mixed states

�a =
1

�a
	

i

�qi�i��C, �4a�

�b =
1

�b

	

i

qi�i��C
−

�a

�b
�a, �4b�

with a priori probabilities

�a = 	
i

qi
C and �b = 1 − �a. �4c�

Now, a POVM, which satisfies Eq. �2� also has

Fa�b = 0 and Fb�a = 0, �5�

and furthermore the probability of success �3� which has to
be optimized can be rewritten as

P = �a tr�Fa�a� + �b tr�Fb�b� . �6�

These equations are characteristic for unambiguous state dis-
crimination. Thus an optimal solution to the problem of un-
ambiguous discrimination �UD� of �a and �b, which in addi-
tion satisfies Eq. �2�, is also the optimal solution to the
related problem of unambiguous state comparison. The task
of optimal UD of mixed states has been studied in the litera-
ture �4,6–9�.

III. STATE COMPARISON “TWO OUT OF TWO”

We first consider explicitly the most simple case of state
comparison, namely, “two out of two” with the states subject
to comparison being pure states ��1� and ��2�, both of which
are vectors in a Hilbert space of any dimension. The two
states may appear with arbitrary �but nonvanishing� a priori
probabilities q1 and q2. The trivial cases where both states
are colinear or orthogonal are not considered. Without loss of
generality the phase between the two states can be chosen to
be real, so that their overlap is determined by their relative
angle �,

cos � ª ��1��2� � � 0,1 � . �7�

We consider the related UD problem of the corresponding
mixed states, which are according to Eqs. �4a�–�4c� given by

�a =
1

�a
�q1

2��1�1���1�1� + q2
2��2�2���2�2�� , �8a�

�b =
1

2
���1�2���1�2� + ��2�1���2�1�� , �8b�

appearing with a priori probabilities

�a = q1
2 + q2

2 and �b = 2q1q2. �8c�

Note that �a��b always holds. In what follows, we con-
struct an optimal solution of this related UD problem and
then show that the POVM of this solution satisfies Eq. �2�,
thus providing an optimal solution of the unambiguous state
comparison task.

A. Reduction to the nontrivial subspace

It has been shown by Raynal, Lütkenhaus, and van Enk
�4� that the optimal UD of mixed states can be reduced to a
subspace of the Hilbert space in such a way that the relevant
density matrices, acting on the reduced space, have equal
rank and their kernels form nonorthogonal subspaces, the
intersection of which is zero. This is achieved in two reduc-
tion steps: In the first reduction step, the Hilbert space is
reduced to its nontrivial part, removing that part of the Hil-
bert space, where no UD is possible at all. We will denote
this reduced space as H. It is given by the particular space,
where

S�a
� S�b

= 0 and K�a
� K�b

= 0 �9�

holds. Here K� is the kernel of � and S� is its support, de-
fined as the orthocomplement to the kernel �12�. Thus H
contains only the direct sum of the support of �a and �b, i.e.,
H=S�a

� S�b
.

For our system, we have

S�a
= span���1�1�, ��2�2�� , �10a�

S�b
= span���1�2�, ��2�1�� , �10b�

which already satisfy S�a
�S�b

= �0� due to the linear inde-
pendence of ��1� and ��2�. For the further calculation it is
convenient to rewrite both supports in an appropriate basis of
H. Therefore consider complementary normalized vectors

��̄1� , ��̄2��span���1� , ��2��, which are in the same plane as
��1� and ��2�, but orthogonal to the corresponding vector,

i.e., ��̄1�� ��1� and ��̄2�� ��2�. Then, an orthonormal basis of
H is given by

�e1,2� =
1


2n±

���1�1� ± ��2�2�� , �11a�

�e3,4� =
1


2n±

���̄1�̄2� ± ��̄2�̄1�� , �11b�

with n±=
1±cos2 �. In Eq. �11a�, the 	 ��� sign refers to
the index 1 �2� and in Eq. �11b� to 3 �4�, respectively.

By this choice, one immediately has K�a
=span��e3� , �e4��

and �e2��K�b
. Let us denote by P+= �e1��e1�+ �e3��e3��P−

= �e2��e2�+ �e4��e4�� the projector onto that subspace, which is
symmetric �antisymmetric� under exchanging ��1� and ��2�.
Then, due to ��1�2��S�b

,
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�
� ª

2

n+
P+��1�2� =


2

n+
P+��2�1� � S�b

�12�

must hold, where �
� is normalized and has the components

��e1�
�� =
2 cos �

n+
2 and ��e3�
�� =

sin2 �

n+
2 . �13�

Since P−+ P+=1H, the second spanning vector of S�b
has to

be P−��1�2�=−P−��2�1�. This vector, however, cannot have
any component in direction of �e2��K�b

and therefore has to
be parallel to �e4�. Thus we finally write the nontrivial Hilbert
space H as

H = S�a
� S�b

� span��e1�, �e2�� � span��
�, �e4�� . �14�

Due to the particular choice of basis, we further find K�b
=span��
�� , �e2��, where �
�� is a normalized vector satisfy-
ing �
��� �
� and P−�
��= P−�
��0.

B. Optimal solution

In the second reduction step shown in Ref. �4�, one re-
duces the space by those parts, which allow perfect UD.
These parts are given by

Ka
�
ª K�a

� S�b
and Kb

�
ª K�b

� S�a
. �15�

The Hilbert space H can then be decomposed into

H = H� � Ka
�

� Kb
�, �16�

where H� is conveniently chosen to be the orthocomplement
of Ka

�
� Kb

�. Denoting by PH� the projector onto H�, and
further writing �a, �b for appropriate normalization constants,
the density matrices

�a� =
1

�a
PH��aPH� and �b� =

1

�b
PH��bPH� �17�

are states acting on H� and having a priori probabilities

�a� =
�a�a

�
and �b� = 1 − �a�, �18�

where �ª�a�a+�b�b. Suppose that P� is the optimal rate of
success for this reduced problem. Then the optimal rate of
success of the complete problem was shown �4� to be

Popt = 1 − �1 − P��� . �19�

In our basis, we immediately find

Ka
� = span��e3�, �e4�� � S�b

= span��e4�� , �20a�

Kb
� = span��
��, �e2�� � S�a

= span��e2�� , �20b�

since �
��”�e3� and �
���”�e1� holds.
Now the optimization problem can be reduced to H�

=span��e1� , �e3��. Since the remaining problem is two dimen-
sional, it can be considered as the well-known discrimination
of pure states. Indeed, the problem reduces to the UD of

�a� =
1

�a
P+�aP+ = �e1��e1� , �21a�

�b� =
1

�b
P+�bP+ = �
��
� . �21b�

Calculating the normalization factors �a=tr�P+�a� and �b

=tr�P+�b�, one obtains �a=�b=�= 1
2n+

2 and thus the a priori
probabilities of the reduced problem remain unchanged, �a�
��a and �b���b. Jaeger and Shimony have derived �10� the
optimal UD of two pure states with an unbalanced probabil-
ity distribution. Using their result for the discrimination be-
tween �e1� and �
�, the optimal rate of success for UD of �a
and �b calculates to

Popt = � 1 − 2
�a�bcos � if �C1�

n−
2

n+
2
1 −

�b

2
sin2 �� else, � �22�

where �C1� is the condition

cos � �
�a

�b

1 −
�a − �b

�a
� . �22��

Further, the optimal POVM of the reduced problem is
given by

Fa� = 
�
���
�� and Fb� = ��e3��e3� . �23�

In the region, where �22�� holds,


 =

1 −
�b

�a
��e1�
��

��e3�
��2
, �24a�

� =

1 −
�a

�b
��e1�
��

��e3�
��2
, �24b�

and 
=1, �=0 elsewhere. The optimal measurement of the
full problem is then given by

Fa = Fa� + PKb
� and Fb = Fb� + PKa

�, �25�

where PKb
� ��e2��e2� and PKa

� ��e4��e4�. The fact that the
projectors �e2��e2� and �e4��e4� have to be part of the optimal
POVMs Fa and Fb, respectively, was already obvious from
the structure of the kernels and supports, since �e2� and �e4�
are orthogonal and part of either S�a

or S�b
.

Now one easily verifies that condition �2� holds for this
measurement, by noting that ���1�1 �e2��2= ���2�2 �e2��2�0
and ���1�2 �e4��2= ���2�1 �e4��2�0. Thus we have found the
optimal solution for unambiguous two-dimensional state
comparison. Furthermore, as we discuss in the following,
this solution is always better then a separable measurement
on both states, which becomes manifest by the fact that Fa
and Fb are not separable, i.e., the partial transpose fails to be
positive semidefinite.

C. Discussion

In the literature, an optimal solution for the problem of
state comparison has only been found for the case of equal
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probabilities. Barnett, Chefles, and Jex �1� showed that in
this case the optimal rate of success is given by P=1
−cos �, which is our result for q1=q2= 1

2 . This particular
result was also obtained by Rudolph, Spekkens, and Turner
�7�, by providing a general upper and lower bound for the
rate of success of an UD of mixed states. Their upper bound
matches our result only in situations where �22�� holds. On
the other hand, their lower bound turns out to match our
optimal result for all parameters and thus our calculation has
proven that their lower bound is indeed optimal for the UD
of �a and �b.

Let us compare our result with the naïve incoherent strat-
egy, where both states are measured consecutively. The

straightforward approach of the optimal POVM �F̃1 , F̃2 , F̃?�
for unambiguous discrimination between ��1� and ��2� leads
to

Fa
sep = F̃1 � F̃1 + F̃2 � F̃2, �26a�

Fb
sep = F̃1 � F̃2 + F̃2 � F̃1. �26b�

This naïve method is indeed the optimal separable measure-
ment, as shown in the Appendix. It has a rate of success
given by the square of the success probability for unambigu-
ous discrimination of ��1� and ��2�, i.e., �10�,

Psep = ��1 − 2
q1q2cos ��2 if �C2�

qmax
2 sin4 � else,

� �27�

where qmax is the maximum of q1 and q2, and �C2� is the
condition

cos � �
1 − qmax

qmax
. �27��

In Fig. 1 we show the gain Popt− Psep, which of course is
always positive or zero. This gain has its absolute maximum
of 1

4 at q1= 1
2 and �=� /3. While for fixed angles the maxi-

mum gain is always at q1= 1
2 , one finds for fixed a priori

probabilities that at some regions there are two maxima. The
maximum in low values of cos � appears, where �27�� holds

without having �22�� satisfied. Also note that the gain func-
tion is asymmetric in cos �, while it is symmetric in q1. In
Fig. 2, the gain of the coherent vs the incoherent strategy is
illustrated for the parameters q1= 1

2 and q1→1.

IV. STATE COMPARISON “TWO OUT OF N”

Next, we investigate the problem of unambiguous state
comparison “two out of N” for pure states. As shown by
Chefles et al. �2� for equal probabilities and in Sec. V for
arbitrary probabilities, this can only work if all N states are
linearly independent, thus spanning an N-dimensional Hil-
bert space. Again this unambiguous state comparison is re-
lated to the UD of

�a =
1

�a
	

i

N

qi
2��i�i���i�i� , �28a�

�b =
1

�b
	
i�j

N

qiqj��i� j���i� j� , �28b�

having a priori probabilities

�a = 	 qi
2, �b = 	

i�j

qiqj . �28c�

We immediately obtain

FIG. 1. Contour plot of the gain Popt− Psep, where higher gain
corresponds to brighter shade. White stands for a gain value of 0.25,
black for a value of 0.0125, and each contour line corresponds to a
step of 0.0125. The dashed lines divide the set of parameters into
regions where both �22�� and �27�� hold �lower left�, neither of both
condition holds �top right� and �27�� holds, but �22�� does not �re-
maining small stripe�.

FIG. 2. Rate of success for state comparison “two out of two”
with q1= 1

2 �upper graph� and q1→1 �lower graph�. The solid line is
the optimal result, and the dashed line corresponds to the best sepa-
rable measurement.
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S�a
= �

i
span���i�i�� , �29a�

S�b
= �

i�j
span���i� j�� = �

i�j
span���i� j� ± �� j�i�� .

�29b�

Due to linear independence S�a
�S�b

= �0� holds and thus the
first reduction step yields H=S�a

� S�b
. Note that the dimen-

sion of S�a
is now in general much smaller than the one of

S�b
, because dim S�a

=N while dim S�b
=N2−N. In what fol-

lows we show in a constructive way that the N-dimensional
state comparison in general is related to such an UD of
mixed states, which cannot be reduced to UD of pure states.

The second reduction step can be performed as follows.
The antisymmetric subspace H−= � i�j span���i� j�− �� j�i��
is part of Ka

��K�a
�S�b

, since

S�a
� H− and S�b

� H−. �30�

Further, S�a
is part of the symmetric subspace H+

= � i�j span���i� j�+ �� j�i�� and thus, due to H−�H+, we
have the orthogonal decomposition

Ka
� = Ka

�−
� Kb

�+
, �31�

with Ka
�−

ªH− and Ka
�+

ªH+�K�a
. In order to obtain Ka

�+,
let Cijª ��i �� j� be the Hermitian overlap matrix and Aij be a
lower triangular coefficient matrix. Then Ka

�+ is given by all
vectors 	i�jAij���i� j�+ �� j�i��, which satisfy

∀ k ��k�k�	
i�j

Aij���i� j� + �� j�i�� = 0,

⇔ ∀ k 	
i�j

CkiAijCkj = 0,

⇔ ∀ k �CACT�kk = 0. �32�

This set of linear equations may eliminate up to N out of
N�N−1� /2 coefficients Aij, thus

N�N − 1�
2

� dim�Ka
�+

� � max�N�N − 3�
2

,0� . �33�

The space Kb
��K�b

�S�a
on the other hand is given by all

vectors out of S�a
, which are orthogonal to ��i� j�+ �� j�i� for

all i� j. With a diagonal coefficient matrix B this yields

∀ i � j �CBCT�ij = 0. �34�

Thus, we have

N � dim Kb
� � max�N�3 − N�

2
,0� . �35�

Since the dimension of the reduced Hilbert space is given as
dim H�=dim H− �dim Ka

�−+dim Ka
�+�−dim Kb

�, we finally
arrive at the main result of this section,

0 � dim H� � �2 if N = 2

2N if N � 2.
� �36�

The case N=2, considered in Sec. III, turns out to play a
special role, since here always dim Kb

��0 holds, cf. Eq.
�35�. We point out that these bounds are tight. This can be
directly verified by considering a system of states with equal
overlap, i.e., a system with

cos � ª ��i�� j� � �0,1� ∀ i � j . �37�

Then for the trivial case �i.e., �=� /2� dim H�=0 holds,
while the upper bound is reached whenever ��� /2. Thus
state comparison for two out of three states may already lead
to a nontrivial UD problem, as illustrated in the following.

A. Example: “Two out of three”

As an example of a case, where state comparison does not
reduce to UD of pure states, N=3 is considered. We special-
ize to the case where the states ��1�, ��2�, and ��3� subject to
comparison satisfy Eq. �37� with 0���� /2 and assume all
a priori probabilities to be equal, q1=q2=q3= 1

3 .
The previous discussion of the related UD problem

showed that this related problem can be reduced to a Hilbert
space H� of dimension dim H�=dim S�a

+dim S�b
=3+3.

Since N=3 this has the consequence that Ka
�+=Kb

�= �0�.
Thus H� exactly consists of the symmetric subspace of H
�S�a

� S�b
, i.e., H�=H+. However, for the remaining UD

problem, no general optimal solution is known and we thus
calculate the tightest upper and lower bounds for the rate of
success known so far, i.e., the lower bound provided by Ru-
dolph et al. �7� and the upper bound shown by Raynal and
Lütkenhaus �9�. These bounds together with the rate of suc-
cess for the separable measurement are shown in Fig. 3.
Again, the incoherent measurement is always worse than the
measurement used to construct the lower bound. In addition
one finds that for

cos � �

2 − 

2

2 − 
2
�38�

�i.e., � /��0.375� the lower and upper bound coincide, re-

FIG. 3. Bounds for the probability of success for state compari-
son “two out of three,” with equal a priori probabilities and relative
angles. The solid lines are an upper �9� and a lower bound �7�, while
the dashed line corresponds to the separable measurement.
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vealing the optimal solution of UD of �a and �b in that region
to be

Popt = 1 −

8

9
�4 cos � − cos2 �� . �39�

One can also show that in this region the optimal measure-
ment satisfies the defining property �2� and thus also solves
the problem of optimal state comparison.

V. MIXED-STATE COMPARISON

In this section we investigate in what situations a mea-
surement can exist, which satisfies the defining property �2�.
We have the following:

Proposition 1. Unambiguous state comparison “C out of
N” for a set of mixed states ��1 , . . . ,�N� with arbitrary but
nonvanishing a priori probabilities can be realized if and
only if ∀ i,

S�i
� 	

k�i

S�k
. �40�

Proof. For the if part it is enough to show that there is a

POVM, given by �F̃1 , . . . , F̃N , F̃?�, such that

tr�F̃i� j� � 0 ⇔ i = j . �41�

In order to construct such a POVM, denote by Pi the projec-
tor onto the orthocomplement of 	k�iS�k

. Then from Eq.
�40� it follows that there is at least one vector ����S�i

, such
that ��i�ªPi��� satisfies ��i ��i�=1. These vectors ��i� by
construction satisfy ��i��i��i��0 for each i, while

��i�� j��i�=0 for all j� i. The choice F̃i= �1/N���i���i� satis-

fies �41� and further has F̃?=1−	iF̃i�0. Indeed, for any ���
out of the complete Hilbert space,

���F̃?��� = ����� −
1

N
	

i

���i����2 � 0 �42�

holds by virtue of the Cauchy-Schwarz inequality.
For the only if part we use that any unambiguous state

comparison measurement solves �not necessarily in an opti-
mal way� the related unambiguous state discrimination prob-
lem. However, assuming that for some i

S�i
� 	

k�i

S�k
, �43�

we show, that no UD measurement can satisfy tr�Fa�i
�C�

�0, thus being a contradiction to Eq. �2a�.
In order to show this contradiction, note that for positive

operators A and B,

SA+B = SA + SB, �44a�

SA�B = SA � SB. �44b�

Further we use a lemma, shown by Raynal, Lütkenhaus, and
van Enk in Ref. �4�, which states that tr�AB�=0, if and only
if SA�SB. Now, assuming Eq. �43�, it follows that

S�i
�C = S�i

�C � 	
k�i

S�k
� S�i

��C−1� � S�b
. �45�

However, by the Lemma of Ref. �4�, the requirement
tr�Fa�b�=0 �cf. Eq. �5�� is equivalent to SFa

�S�b
. This

implies SFa
�S�i

�C or equivalently tr�Fa�i
�C�=0 and com-

pletes the proof. �
For the comparison of qubits this proposition implies that

unambiguous comparison “C out of N” can only be realized
for N=2 and pure states. For unambiguous state comparison
“C out of N” of pure states in any dimension, Proposition 1
reduces to the result of Chefles et al. �2�. They found that
state comparison can only be realized for linearly indepen-
dent states. Another direct consequence from Proposition 1 is
the fact that density matrices which contain a proportion of
the identity �e.g., by being sent through a depolarizing chan-
nel, or by adding white noise in an experiment� can never be
compared unambiguously.

VI. CONCLUSIONS

We have addressed the question of unambiguous state
comparison with general a priori probabilities. Our method
consists of reducing the corresponding problem of unam-
biguous mixed-state discrimination to a nontrivial subspace
�4�. We analytically solve the case for comparing two states
drawn from a set of two states, finding the optimal POVMs
and the optimal rate of success. There is a considerable gain
of the optimal coherent strategy over the best incoherent
strategy. While this case reduces to the discrimination be-
tween two pure states, the comparison of two states drawn
from a set of three states is shown to lead to a nontrivial
mixed-state discrimination task. So far, the optimal solution
is only found for certain parameter ranges.

The more general task of comparing two states from a set
of N states is exceedingly difficult. No general solution to
this problem exists. Here, we have presented an upper bound
for the dimension of the reduced Hilbert space. This bound is
shown to be reached for states with equal overlap. We have
also provided a necessary and sufficient condition for unam-
biguous comparison of mixed states to be possible.

Note added: Recently, we learned about related work by
Herzog and Bergou �11�, who found the same expression as
Eq. �22� for optimal unambiguous state comparison of two
states drawn from a set of two states.
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APPENDIX: OPTIMAL SEPARABLE MEASUREMENT
“TWO OUT OF TWO”

This appendix is dedicated to show that with the naïve
measurement given in Eq. �26�, indeed the optimal separable
solution was found. That is, the optimal separable unam-
biguous state comparison measurement for two states drawn
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from a set of two pure states ���1� , ��2�� is solved in an
optimal way by performing optimal unambiguous state dis-
crimination in each subsystem.

A general element of a separable POVM �Fx� is of the
form

Fx = 	
i,j

cx,ijFx,i
�1�

� Fx,j
�2�, �A1�

where the non-negative coefficients cx,ij account for the rela-
tive contribution of each of the terms containing the positive
local POVM elements Fx,i

�k�.
First we show that in our case no measurement outcome

of either subsystem can be used to adapt the measurement of
the other. Consider without loss of generality that a measure-
ment first takes place in subsystem 1 and yields with prob-
ability px,i

�1� the outcome �x , i�. This measurement is applied to
the global state �ª�a�a+�b�b= �q1��1���1�+q2��2���2���2

and yields in subsystem 2

tr1��Fx,i
�1�

� 1��� = px,i
�1��q1��1���1� + q2��2���2�� , �A2�

which is, up to the factor px,i
�1�, independent of the outcome

�x , i�. Thus the local measurements can be optimized in each
subsystem separately, and one is free to choose the same
�optimal� measurement in both systems due to the symmetry
of �a and �b. Therefore we can drop the upper label �k� on
the local measurement elements in the following.

Furthermore, one is forced to choose these measurements
to be UD measurements. Indeed, tr�Fa�b�=tr�Fb�a�=0, only
if for each x� �a ,b� and for all l, either tr�Fx,l��1���1��=0 or
tr�Fx,l��2���2��=0. We prove this statement by contradiction:
Suppose that at least one term �ca,ijFa,i � Fa,j� of Fa contains
at least one local POVM element Fa,m �where m� �i , j��,
having a nonvanishing expectation value for both states, i.e.,

��1�Fa,m��1� � 0 and ��2�Fa,m��2� � 0. �A3�

It follows that

tr��cx,ijFa,i � Fa,j��a� � 0 �A4�

and

tr��cx,ijFa,i � Fa,j��b� � 0, �A5�

which is in which is in contradiction to tr�Fa�b�=0. An
analogous argument holds for Fb.

Without losing any information, an UD measurement can
always be reduced to have the measurement elements
�F1 ,F2 ,F?�, with ��2�F1��2�= ��1�F2��1�=0. In order to
make this a valid choice for the local measurements of un-
ambiguous state comparison, in addition the conditions �2�
have to be satisfied, i.e.,


 ª ��1�F1��1� � 0 and � ª ��2�F2��2� � 0. �A6�

From the consideration above, we find that Fa and Fb are
of the form

Fa = F1 � F1 + F2 � F2, �A7�

Fb = F1 � F2 + F2 � F1. �A8�

The optimal separable state comparison corresponds to F1

= F̃1 and F2= F̃2 as defined in Eq. �26�. Thus we have shown
that in this case the optimal separable unambiguous state
comparison strategy is indeed given by consecutive optimal
UD measurements.

Let us mention that for the optimal UD measurement the
conditions 
�0 and ��0 do not always hold: in those situ-
ations, where condition �27�� is not satisfied, 
=0 or �=0.
But changing 
 and � �under the constraint 1−F1−F2�0�
infinitesimally, affects the probability of success only infini-
tesimally. In this limit, we consider the optimal unambiguous
state discrimination measurement as a valid choice for F1
and F2.

We conjecture that also in the more general scenario of
unambiguous state comparison of “C out of N” states, the
best separable measurement is given by performing unam-
biguous state discrimination in each subsystem. However,
the proof by contradiction given above for “two out of two”
cannot be generalized in a straightforward way for the op-
erator Fb. We leave the generalization as an open question
for future work.
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