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We present a model, motivated by the criterion of reality put forward by Einstein, Podolsky, and Rosen and
supplemented by classical communication, which correctly reproduces the quantum-mechanical predictions for
measurements of all products of Pauli operators on an n-qubit GHZ state �or “cat state”�. The n−2 bits
employed by our model are shown to be optimal for the allowed set of measurements, demonstrating that the
required communication overhead scales linearly with n. We formulate a connection between the generation of
the local values utilized by our model and the stabilizer formalism, which leads us to conjecture that a
generalization of this method will shed light on the content of the Gottesman-Knill theorem.
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I. INTRODUCTION

Bell’s theorem �1� codifies the observation that entangled
quantum-mechanical systems exhibit stronger correlations
than are achievable within any local hidden-variable �LHV�
model. Beyond philosophical implications, the ability to op-
erate outside the constraints imposed by local realism serves
as a resource for information processing tasks such as com-
munication �2�, computation �3�, and cryptography �4�.

The violation of Bell-type inequalities demonstrates the
in-principle failure of LHV models to account for all of the
predictions of quantum mchanics. One approach to quantify-
ing the observed difference between classically correlated
systems and entangled states is to translate a quantum proto-
col involving entanglement into an equivalent protocol that
utilizes only classical resources, e.g., the shared randomness
of LHV’s and ordinary classical communication. Toner and
Bacon �5� showed that the quantum correlations arising from
local projective measurements on a maximally entangled
state of two qubits can be simulated exactly using a LHV
model augmented by just a single bit of classical communi-
cation. Pironio �6� took this analysis a step further, showing
that the amount of violation of a Bell inequality imposes a
lower bound on the average communication needed to repro-
duce the quantum-mechanical correlations.

The original Bell-type inequalities �1,7� were formulated
for pairs of qubits. Greenberger, Horne, and Zeilinger �8�
introduced a qualitatively stronger test of local realism,
based on a three-qubit state, ��3�= ��000�+ �111�� /�2, which
is now called the GHZ �or “cat”� state. Here �0���1�� repre-
sents the eigenvector of the Pauli Z operator with eigenvalue
+1�−1�. GHZ correlations have been experimentally demon-
strated in entangled three-photon systems �9� and shown to
be useful for performing information-theoretic tasks such as
entanglement broadcasting �10� and quantum secret sharing
�11�.

Mermin �12� introduced a simple argument that shows
how correlations between Pauli operators measured on a
GHZ state violate local realism. We briefly review Mermin’s
argument in Sec. II. Mermin’s formulation is based on the
Einstein-Podolsky-Rosen �EPR� �13� reality criterion: “If,
without in any way disturbing a system, we can predict with
certainty … the value of a physical quantity, then there exists
an element of physical reality corresponding to this physical
quantity.” This criterion is meant to capture what it means
for a physical system to possess a certain property.

Taking the EPR concept of an element of reality as our
starting point, we formulate a LHV model for the n-qubit
GHZ state. By itself, the model is inadequate. It cannot give
the correct quantum-mechanical predictions for measure-
ments of arbitrary products of Pauli operators and correla-
tions among such measurements, as is clear from Mermin’s
argument and its generalization to n qubits. Nonetheless, as
we show in Sec. III, when the model is augmented by n
−2 bits of classical communication, it does reproduce all the
quantum-mechanical predictions for measurements of Pauli
products and their correlations. We go on to prove in Sec. IV
that this amount of classical communication is optimal for
the allowed set of measurements, i.e., for measurements of
Pauli products.

In Sec. V we demonstrate that our model arises naturally
from a LHV simulation of a quantum circuit that creates the
n-qubit GHZ state. The quantum circuit consists of an initial
Hadamard gate H followed by a sequence of controlled-NOT
�C-NOT� gates. It is a special case of a general class of quan-
tum circuits identified by the Gottesman-Knill �GK� theorem
�3�. The GK circuits are those composed of qubits �i� initially
prepared in the state �00…0�, �ii� acted upon by gates in the
Clifford group, which is generated by H, 90° rotation about
Z, and C-NOT �14�, and �iii� subjected to measurements of
products of Pauli operators. These circuits are capable of
generating globally entangled states, such as the GHZ state,
but their evolution can nevertheless be simulated in
O�n2 / log n� operations on a classical computer �3,14,15�. We*Electronic address: tessiert@info.phys.unm.edu
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return to the question of GK simulations in Sec. VI compar-
ing and contrasting them with our simulation of the creation
of a GHZ state and speculating on how our results might
impact understanding of the GK theorem.

II. GHZ CORRELATIONS

Mermin’s three-qubit GHZ argument can be summarized
as follows. The three-qubit GHZ state ��3� is uniquely speci-
fied as the simultaneous +1 eigenstate of a complete set of
commuting Pauli products, one choice for which is �−XYY ,
−YXY ,−YYX�, where the ordering in the product specifies
which qubit the Pauli operator applies to. In the language of
the stabilizer formalism �3,14�, the three commuting opera-
tors are referred to as stabilizer generators of ��3�. The sta-
bilizer generators give the definite outcome +1 when mea-
sured, implying that a measurement of two of the Pauli
operators in a generator can be used to predict the result of a
measurement of the third with certainty. Thus, according to
the EPR reality criterion, we should associate a local element
of reality, having value +1 or −1, with the X and Y Pauli
operators of each qubit. Letting xj and yj denote the values of
these six elements of reality, where j labels the qubit, the
stabilizer generators require that x1y2y3=y1x2y3=y1y2x3=−1.
Multiplying these three quantities together gives x1x2x3=−1,
showing that the model predicts the result −1 with certainty
for a measurement of XXX. Because of the anticommutativ-
ity of the Pauli operators, however, the product of the stabi-
lizer generators is +XXX, showing that quantum mechanics
predicts the result +1 for this measurement with certainty.
Mermin’s GHZ argument demonstrates the incompatibility
of quantum theory with local realism.

The n-qubit GHZ state, ��n�= ��00¯0�+ �11¯1�� /�2, is
specified by n stabilizer generators
�X�n ,ZZI��n−2� ,ZIZI��n−3� , . . . ,ZI��n−2�Z�, where I is the
identity operator. The full stabilizer group �3�, generated by
these generators, consists of the 2n commuting Pauli prod-
ucts of which ��n� is a +1 eigenstate; it contains Pauli prod-

ucts that have �i� only I’s and an even number of Z’s and �ii�
only X’s and an even number of Y’s, with an overall minus
sign if the number of Y’s is not a multiple of 4. Of the 2
�4n Pauli products �including a � in front of the product�,
2n are members of the stabilizer group, 2n are negatives of
the stabilizer-group elements and thus yield −1 with certainty
when measured, and all the rest return ±1 with equal prob-
ability.

Mermin’s argument generalizes straightforwardly to ��n�
�our proof of optimality in Sec. IV can be viewed as just
such a generalization� and shows that no local realistic model
can correctly predict the outcomes of all measurements of
products of Pauli operators performed on ��n� and correla-
tions among such measurements. We now present a classical-
communication-assisted LHV model that does yield all of the
correct quantum-mechanical predictions.

III. COMMUNICATION-ASSISTED LOCAL MODEL OF
GHZ CORRELATIONS

Our LHV model is specified in Table I, which lists local
realistic values for the X, Y, and Z Pauli operators of each
qubit. The caption describes how to determine the predicted
outcome for a measurement of any Pauli product by multi-
plying the appropriate table entries and discarding any factor
of i in the final product. The use of the imaginary phase i in
the Y column, apparently just a curiosity, actually plays a
crucial role. It reconciles some of the conflicting predictions
of commuting LHV’s and anticommuting Pauli operators,
which form the basis of Mermin’s GHZ argument. More pre-
cisely, the multiplicative algebra of these phases provides a
concise representation of the n−2 bits of classical communi-
cation required to ensure that our LHV model yields all of
the correct quantum-mechanical predictions.

To show that Table I gives correct predictions for mea-
surements of Pauli products, we consider those measure-
ments for which the table predicts a definite outcome. Sup-
pose first that a Pauli product contains no X’s or Y’s, but

TABLE I. LHV’s associated with an n-qubit GHZ state. Each row corresponds to a qubit, and each column to a measurement. The
quantities Rj denote classical random variables that return ±1 with equal probability. The origin and meaning of the subscripts j becomes
clear when we consider the creation of a GHZ state in Sec. V. The outcome predicted for a joint measurement of a Pauli product is obtained
by multiplying the corresponding table entries for each qubit �using 1 for unmeasured qubits, i.e., for an identity operator appearing in the
Pauli product� and discarding any factor of i in the final product. For example, for a joint measurement of XYY on the �n=3�-qubit GHZ
state, our model predicts the outcome �R2R3��iR1R2��iR1R3�=−1, in agreement with quantum mechanics. Here we have used the fact that
Rj

2=1. Similarly, for a measurement of IYZ, the product of table entries is �iR1R2��R1�= iR2; with the i discarded, the predicted outcome is
the random result R2, again in accord with quantum mechanics. The use of i does not mean that the results of Y measurements are imaginary;
rather the i is a “flag” that tells us how to combine Y values for different qubits in a joint measurement. Although the LHV table might seem
not to respect the qubit-exchange symmetry of the GHZ state, one easily sees that it does by defining R2�=R2¯Rn, which exchanges the roles
of the first and second qubits in the table.

X Y Z

qubit 1 R2R3¯Rn iR1R2¯Rn R1

qubit 2 R2 iR1R2 R1

qubit 3 R3 iR1R3 R1

¯ ¯ ¯ ¯

qubit n Rn iR1Rn R1
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consists solely of I’s and Z’s. Then it is clear that the table
predicts certainty, with the outcome being +1, if and only if
the number of Z’s in the product is even. Suppose now that
the product has an X or a Y in the first position. Then it is
apparent that to avoid a random variable in the overall prod-
uct, all of the other elements in the product must be X’s or
Y’s and the number of Y’s must be even; the outcome is +1
if the number of Y’s is a multiple of 4 and −1 otherwise.
Finally, suppose the Pauli product has an X or a Y in a posi-
tion other than the first. Then the only way to avoid a random
variable in the overall product is to have an X or a Y in the
first position, and we proceed as before. These considerations
show that our model predicts a definite outcome, with the
correct sign, for precisely those Pauli products that are in the
stabilizer group �or their negatives�, including as a special
case the observables forming the basis of Mermin’s GHZ
argument. Likewise, the model correctly predicts a random
result for all other Pauli products.

Our model correctly predicts the outcomes for all mea-
surements of Pauli products, including single-qubit measure-
ments. It fails, however, in some of its predictions for corre-
lations between single-qubit measurements. To be correct,
the model would have to reproduce all these correlations for
all sets of single-qubit measurements. The model fails be-
cause products of single-qubit measurement results predicted
by the model are not always equal to the corresponding joint
measurement results. This inconsistency is a direct conse-
quence of the rule that discards i from a calculated measure-
ment outcome. As an example, consider the single-qubit
measurements XII, IYI, and IIY on a three-qubit GHZ state.
The product of the single-qubit measurement results, R2R3
for XII, R1R2 for IYI, and R1R3 for IIY is +1, which is in-
consistent with the prediction of the model and of quantum
mechanics for a joint measurement of the observable XYY.
From the perspective of the model, classical communication
between qubits, an obviously nonlocal element, is necessary
precisely to ensure the consistency of joint measurement pre-
dictions with products of single-qubit predictions.

The inconsistency between joint and correlated local pre-
dictions is a general feature of our LHV model for n-qubit
GHZ states. It occurs only for joint measurements that in-
volve Y measurements on some qubits and that have a defi-
nite outcome, i.e., joint measurements of stabilizer elements
that contain Y’s. Joint measurements that yield a random
result do not suffer from this problem because the random-
ness of a product is unaffected by discarding i’s. More pre-
cisely then, the inconsistency occurs only for joint measure-
ments that are products of X’s and Y’s on all the qubits, with
the number of Y’s being an even number that is not a mul-
tiple of 4.

The protocol for ensuring consistency between joint and
composite local predictions proceeds as follows. An observer
called Alice, stationed at, say, the first qubit, is put in charge
of ensuring consistency with single-qubit measurements. She
does so by changing or not changing the sign of the outcome
on her qubit, based on what is measured on her qubit and
information she receives about what is measured on the other
qubits. Because of the qubit-exchange symmetry of the GHZ
state �and of the LHV table�, an observer stationed at any
qubit could play the role of Alice. Alice ensures consistency

by changing the sign of her local outcome if and only if �i� a
measurement of X or Y is made on her qubit and �ii� the total
number of Y measurements on all qubits is an even number
that is not a multiple of 4. The protocol requires n−1 bits of
communication as each of the other qubits reports to Alice
whether Y was measured on that qubit. The protocol clearly
fixes all those cases that need correction; just as important, in
all situations where Alice flips her qubit, all subsets of qubits
that include Alice’s qubit, except for the case of a needed
correction, have a random measurement product, which is
therefore unaffected by Alice’s flip. The success of this pro-
tocol clearly relies on very special properties of the stabilizer
group for the n-qubit GHZ state.

We can set the protocol in a more mathematical form by
letting r1=1 if an X or Y measurement is made on the first
qubit and r1=0 otherwise and by letting qj = i if Y is mea-
sured on the jth qubit and qj =1 otherwise. Alice ensures
consistency by flipping her local outcome if and only if pn
=r1q1¯qn=−1. This formulation allows us to see easily that
we can do a bit better than the n−1 bits required by the
original protocol. The key is to notice that when pn= ± i, all
subsets of qubits that include Alice’s qubit have a random
measurement product, so a flip by Alice goes unnoticed. As a
result, Alice can get by with the truncated product pn−1
=r1q1¯qn−1, flipping her local outcome if and only if pn−1
= i or −1. This scheme requires the promised n−2 bits of
communication, because Alice does not need to know
whether a Y measurement is made on the nth qubit; it works
because Alice flips whenever pn=−1, as required, with the
additional flips when pn= ± i not doing any harm.

The consistency scheme generalizes trivially to the case
of Pauli-product measurements made on l disjoint sets of
qubits. For each set k chosen from the l sets, the table yields
a measurement product that is the predicted outcome multi-
plied by qk= i or qk=1. Putting Alice in charge of the first set,
all but the last of the other sets communicates qk to Alice,
who computes the product r1q1¯ql−1, where r1=0 if no
measurement or a Z measurement is made on any qubit in
her set and r1=1 otherwise. Alice flips her set’s outcome if
and only if r1q1¯ql−1= i or −1. Consistency is thus ensured
at the price of l−2 bits of communication.

IV. PROOF OF OPTIMALITY

Using an elaboration of Mermin’s GHZ argument �12�,
we now demonstrate that our model is optimal by showing
that any protocol that is allowed at most n−3 bits of classical
communication is incapable of yielding all quantum-
mechanical predictions for measurements of Pauli products
on ��n� and their correlations. For this purpose, imagine the n
qubits as the nodes of a graph; two qubits are connected by a
line if at least one bit is communicated between them. The
graph partitions the qubits into disjoint connected subsets.
There being at most n−3 lines, it follows that there are at
least three disconnected subsets, since at best each line con-
solidates two subsets into one, thereby eliminating one sub-
set. Moreover, it is always possible to arrange the communi-
cation so that there are three subsets. The communication can
do no more than allow us to treat all Pauli products within a
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subset as a single joint observable. We can restrict attention
to the case of three subsets, since amalgamating discon-
nected subsets allows the communication more power than it
actually has.

The situation then is that we have three disconnected sub-
sets, containing k, l, and m qubits, with k+ l+m=n. Since the
GHZ state is invariant under qubit exchange, we can make
the first k qubits those in the first subset and the next l qubits
those in the second subset, leaving the final m qubits to be
those in the third subset. We now define six Pauli products,
A=X��k−1�X and B=X��k−1�Y for the first subset, C
=X��l−1�X and D=X��l−1�Y for the second subset, and E
=X��m−1�X and F=X��m−1�Y for the third subset. The four
operators, ACE, −ADF, −BCF, −BDE, are in the stabilizer
group of ��n� and thus give a definite outcome +1 when
measured, implying that a measurement of any two of the
operators in the product can be used to predict with certainty
the result of a measure of the third. The EPR reality criterion
then says that we should associate elements of reality, having
values ±1, with the six Pauli products A–F. Denoting the
values of these elements of reality in the obvious way, the
definite values of the last three stabilizer elements imply that
adf =bcf =bde=−1. The product of these three quantities is
ace=−1, contradicting the +1 prediction of quantum me-
chanics for a measurement of ACE.

For completeness, we note another form of the argument.
According to the elements of reality, the observable M
=ACE−ADF−BCF−BDE has the value

M = ace − adf − bcf − bde = c�ae − bf� − d�af + be� .

�1�

Since ae= ±bf ⇔af = ±be, it is easy to see that M= ±2.
This implies that the expectation value satisfies ��M���2,
whereas the n-qubit GHZ state has �M�=4. This form of the
argument does not make use of the properties of the GHZ
state, and it makes clear that stochastic models can do no
better than the deterministic models considered here. We also
note that this argument produces a Bell inequality with aux-
iliary communication �16�.

V. QUANTUM CIRCUIT

Table I is the basis of our communication-assisted LHV
model. It arises naturally from a quantum circuit that creates
the n-qubit GHZ state from an initial state �00…0�. One such
circuit consists of a Hadamard gate on the first qubit fol-
lowed by n−1 C-NOT gates, with the leading qubit being the
control and the remaining qubits serving successively as tar-
gets. The three-qubit version of this circuit is shown in Fig.
1. The Hadamard gate H transforms the Pauli operators ac-

cording to

HXH† = Z, HYH† = − Y, HZH† = X . �2�

Similarly, under the action of C-NOT, we have

C�XI�C† = XX, C�YI�C† = YX, C�ZI�C† = ZI ,

C�IX�C† = IX, C�IY�C† = ZY, C�IZ�C† = ZZ , �3�

where the first qubit is the control and the second is the
target. These operator transformations lead to the table up-
date rules given in Fig. 2, which traces the evolution of the
LHV table during the creation of a three-qubit GHZ state
using the circuit of Fig. 1. A simple generalization to n qubits
leads to Table I for the n-qubit GHZ state.

The C-NOT update rules given in Fig. 2 must be consistent
with the 15 nontrivial transformations of Pauli products gen-
erated by C. Six of these transformations, listed in Eq. �3�,
serve as the basis for the update rules. Because C=C†, the
rules are automatically consistent with four other transforma-
tions. In addition, the rules are clearly consistent with the
transformation C�ZX�C†=ZX. Consistency with the remain-
ing four transformations, C�XY�C†=YZ, C�XZ�C†=−YY, and
their inverses, requires that

Xc
IYt

I = Yc
FZt

F = Yc
IZc

IZt
IXt

I ,

Xc
IZt

I = − Yc
FYt

F = − Yc
IZc

IXt
IYt

I . �4�

These relations do not hold generally, but are satisfied if the
initial entries for both the control and target are correlated
according to XYZ= i �or XYZ=−i�, with X and Z real and Y
imaginary. These conditions hold in all our applications of
C-NOT. It is for this reason that the initial sign of the Y entry

FIG. 1. Quantum circuit that generates the three-qubit GHZ
state.

FIG. 2. Evolution of the LHV table during the creation of a
three-qubit GHZ state using the circuit of Fig. 1. The initial table
yields the correct quantum predictions for the state �000�. The rules
for updating the table through Hadamard and C-NOT gates come
from the operator transformations �2� and �3�. The Hadamard up-
date rules are XF=ZI, YF=−YI, ZF=XI, where I and F denote the
initial and final values of a table entry, before and after the appli-
cation of the gate. The rules for updating through a C-NOT, with
control c and target t, are Xc

F=Xc
IXt

I, Yc
F=Yc

IXt
I, Zc

F=Zc
I , Xt

F=Xt
I, Yt

F

=Zc
IYt

I, Zt
F=Zc

IZt
I. The update rules are local in that they only require

changes to table entries corresponding to the qubits involved in a
gate. The subscripts on the random variables in Table I are now
seen to represent the qubits to which these variables were initially
associated. Correlations arising from the application of C-NOT gates
then correspond to pairs of identical subscripts.

TESSIER et al. PHYSICAL REVIEW A 72, 032305 �2005�

032305-4



for the first qubit �see the first table in Fig. 2� is opposite that
of the remaining qubits.

VI. CONCLUSION

We have shown that it is possible to reproduce correctly
the quantum-mechanical measurement predictions for the set
of all n-fold products of Pauli operators on an n-qubit GHZ
state using only Mermin-type LHV’s and n−2 bits of classi-
cal communication. The n−2 bits of communication, shown
here to be optimal, are required to ensure that the products of
local measurement predictions are consistent with the corre-
sponding joint predictions. We also show how our model
arises naturally from a simulation of a quantum circuit that
creates the n-qubit GHZ state.

The circuit that creates the GHZ state is an example of the
Gottesman-Knill circuits mentioned in the Introduction. Al-
though GK circuits can produce global entanglement, as in
the n-qubit GHZ state, they can be efficiently simulated in
O�n2 / log n� steps on a classical computer �3,14,15�. The im-
portant difference between the GK simulation of the circuit
that creates the n-qubit GHZ state and our communication-
assisted LHV simulation is that the GK algorithm tracks the
evolution of nonlocal hidden variables, represented by the n
generators of the stabilizer group, and therefore requires no
communication overhead to give correct predictions.

A generalization of our results might yield insight into the
GK theorem since our results imply that, at least in this lim-

ited case, we can replace the nonlocal hidden variables rep-
resented by the stabilizer generators with LHV’s and a linear
amount of classical communication. We conjecture that this
is a generic feature of quantum circuits obeying the con-
straints of the GK theorem; that is, we expect that any quan-
tum state produced by a GK circuit can be modelled with
EPR elements of reality plus an amount of classical commu-
nication that scales linearly in the number of qubits.

There are two main obstacles to a straightforward exten-
sion of our LHV model to general GK circuits. The first is
the difficulty, expressed in Eq. �4�, in maintaining the con-
sistency conditions for the C-NOT update rules. The second is
the reliance of our communication protocol on very special
properties of the GHZ state; for general GK states, the com-
munication protocol will have to be more complicated, with
a proof of optimality correspondingly more complicated as
well. Nonetheless, the existence of a communication-assisted
LHV model for arbitrary GK circuits and the entangled states
they produce is currently under investigation.
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