
Hydrodynamic quantization of mechanical systems

Rafael J. Wysocki
Institute of Theoretical Physics, Warsaw University, ul. Hoża 69, 00-681 Warsaw, Poland

�Received 5 July 2005; published 30 September 2005�

In the present paper we propose a method of quantization of mechanical systems that is applicable, inter alia,
to systems acted on by nonconservative forces, such as dissipative systems. First, the correspondence between
classical and quantum mechanics is considered and we make some important observations that can be used in
defining the rules of quantization. Next, the quantization rules are presented and we give a few examples of the
application of these rules to mechanical systems that are difficult to quantize within any other systemetic
approach. Finally, it is shown that for any quantum-mechanical system there are stationary solutions of the
evolution equations, and that the existence of these solutions is directly related to the proposed quantization
rules.
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I. INTRODUCTION

It is well known that quantum mechanics corresponds
with classical mechanics. Namely, it can be shown that the
laws of classical mechanics result from the laws of quantum
mechanics for the Planck’s constant h tending to zero �1,2�.
Thus in many cases it is also possible to obtain the quantum-
mechanical evolution equations for a given physical system
on the basis of the corresponding equations for its classical
counterpart using, for example, one of the systematic ap-
proaches, known as methods of quantization, proposed by
Dirac �3�, Schrödinger �4�, and, later, Feynman and Hibbs
�5�. All of them are generally accepted, although according
to some authors there are crucial objections to the suitability
of the Dirac quantizations method, often referred to as the
standard quantization, to connect the classical and quantum
theories �6�. Unfortunately, however, none of them is directly
applicable to systems that are acted on by nonconservative
forces �6�, and the quantization of such systems seems to be
important for at least three basic reasons.

First, a typically quantum-mechanical type of behavior
has been observed in some nonmicroscopic and therefore
dissipative systems �6,7�, so we should be able to use some
quantum-mechanical evolution equations to make predic-
tions regarding systems of this kind.

Second, it sometimes is convenient to use phenomeno-
logical friction forces in describing the evolution of micro-
scopic systems. For instance, an electron in a plasma is sub-
ject to interactions that are similar to the interactions of a star
in a star cluster �8�. Accordingly, it is possible to determine
the effective force of dynamical friction acting on the elec-
tron by averaging all the effects of its interactions with the
surrounding electrons and ions. Next, the trajectory of the
particle can be determined from the Newton equation in
which the effective force is used instead of all forces of
interactions between the particle and the other bodies �8�. Of
course this approach is applicable in the classical approxima-
tion, which is not always suitable for describing the evolu-
tion of electrons �1�. Thus we need some quantum-
mechanical evolution equations that could be used in such
cases.

Finally, if all of the laws of classical mechanics should
result from the laws of quantum mechanics for h tending to

zero, then for each classical-mechanical system of evolution
equations there should be a quantum-mechanical one it fol-
lows from. In other words, there may be quantum-
mechanical evolution equations that do not have their classi-
cal counterparts, but all of the classical-mechanical evolution
equations, including the equations that correspond to the sys-
tems acted on by nonconservative forces, ought to have their
quantum-mechanical analogs. Otherwise, the correspondence
between classical and quantum mechanics would be incom-
plete.

Although the last point has not been expressely recog-
nized by the majority of authors, the other two have been
taken into consideration and many attempts have been made
to determine quantum-mechanical evolution equations for
dissipative systems.

First of all, it has been observed that one can actually use
the standard equations of quantum mechanics for describing
a dissipative system if this system is considered as a part of
a larger system, referred to as the universe, which addition-
ally contains its environment �7,9�. Namely, in that case the
universe can be regarded as a Hamiltonian system and the
Heisenberg equations can be used for determining its evolu-
tion. Next, by averaging these equations with respect to the
degrees of freedom corresponding to the dissipative system’s
environment, one can obtain the Heisenberg-Langevin equa-
tions for it �9,10�. Then, the Heisenberg-Langevin equations
can be used, for example, to determine the evolution of mean
values of the system’s position and velocity, but it generally
is difficult to reduce these equations to a single evolution
equation for the system’s wave function due to the lack of a
linear evolution operator �9�. Nonetheless, Kostin has man-
aged to derive the nonlinear Schrödinger-Langevin equation
from the Heisenberg-Langevin equations for a Brownian par-
ticle interacting with a thermal environment �10�.

Unfortunately, the approach described above has some
important disadvantages. For instance, in order to average
the evolution equations for the universe over the environ-
mental degrees of freedom one has to use a certain represen-
tation of the universe and a certain model of the interactions
between the system in question and the environment, and the
final evolution equations usually depend on the models used.
Admittedly, it can be shown that virtually any realistic envi-
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ronment of the system can be represented by an infinite bath
of harmonic oscillators �7�, but it turns out that the resulting
evolution equations for the dissipative system generally de-
pend on the initial state of its environment �9�. Moreover,
only the simplest models of interactions between the consid-
ered system and its environment lead to the Heisenberg-
Langevin equations that can be solved, even if some approxi-
mations are made �7,9�, so if the considered system is
macroscopic, it is highly uncertain whether the model of the
interactions that can be used in computations is realistic.
Thus, as far as macroscopic dissipative systems are con-
cerned, this approach is in fact phenomenological and very
complicated, so the question arises if any simpler and there-
fore more practical method of quantization of dissipative
systems can be proposed.

To give an answer to this question some authors have
attempted to extrapolate the Dirac quantization method to the
quantum-mechanical study of dissipative systems �11–14�.
Yet, it turned out that the quantum-mechanical description of
such systems could not not be obtained from either the La-
grangian or the Hamiltonian formalism due to the general
difficulties and limitations in the use of the Dirac quantiza-
tion rules for them �6,15–17�. Thus, in order to overcome the
problems arising from the Dirac quantization, other quanti-
zation methods for dissipative systems have been proposed
�6�. In particular, the Schrödinger-Langevin equation has
been obtained by applying the Schrödinger method of quan-
tization to the generalized Hamilton-Jacobi equation �16�, by
using the Nelson stochastic quantization procedure �18,19�,
and by applying the classical Wigner transformations to a
Fokker-Planck equation �6�. Schrödinger-type equations for
dissipative systems have also been derived by an extension
of the Madelung model �20–22�. Although some of these
approaches have been quite successful, they are rather lim-
ited in scope and have not been developed as general meth-
ods of quantization.

We propose a different quantization procedure applicable
to all systems, dissipative as well as nondissipative. Our ap-
proach is based on the previous work in which we have
derived the Schrödinger-Langevin equation from the hydro-
dynamiclike quantum-mechanical evolution equations for a
dissipative system, obtained on the basis of some observa-
tions regarding the correspondence between classical and
quantum mechanics that follow from the Madelung model
�23�. In the present paper we clarify the argumentation and
make additional important observations supporting it. More-
over, the approach is extended to multidimensional systems
and we introduce well-defined quantization rules that can be
applied to arbitrary Netwon equations in an automatic man-
ner.

First, we observe that if the behavior of a mechanical
system cannot be predicted exactly, the physical quantities
corresponding to it should be represetned by random vari-
ables and we can only obtain the evolution equations for
their probability densities and other corresponding probabil-
ity functions. We find that in classical mechanics, under spe-
cific assumption regarding the initial state of the system,
these probability functions satisfy evolution equations that
correspond strictly to the quantum-mechanical equations re-
sulting from the Madelung model.

Next, we consider the average energy of the system and
notice that in quantum mechanics there is an additional con-
tribution to it which is not taken into consideration in clas-
sical mechanics, and which is strictly related to the terms
appearing in the quantum-mechanical evolution equations
that are not present in the corresponding classical-
mechanical equations. We use this observation to obtain hy-
drodynamiclike quantum-mechanical evolution equations for
a one-dimensional dissipative system and we extend the ap-
proach to multidimensional systems. As a result of this, we
are able to formulate general rules of quantization.

Finally, we give some examples of the application of the
proposed quantization rules to dissipative systems. We also
discuss the stationary states of a quantum system, since the
appearance of these states turns out to be a direct conse-
quence of the existence of the additional quantum-
mechanical contribution to the system’s average energy on
which the proposed method of quantization is based.

II. CLASSICAL MECHANICS VS QUANTUM MECHANICS

A. Probability liquid

The correspondence between the laws of classical and
quantum mechanics is usually not clearly visible because of
the different language used in each of these theories.
Namely, in classical mechanics the states of a physical sys-
tem are represented by points in its phase space and its evo-
lution is represented by a trajectory in that space, whereas in
quantum mechanics the states of the system are represented
by wave functions or density matrices, and its evolution is
represented by a curve in the Hilbert space containing these
objects. Still, it is possible to transform the laws of classical
and quantum mechanics so that they refer to the same quan-
tities, and then it is much easier to look for the correspon-
dence between them.

The main difficulty in comparing the laws of classical and
quantum mechanics stems from the assumption made in the
latter that the behavior of a physical system cannot be pre-
dicted exactly even if its initial state is known as precisely as
physically possible. In other words, if we have two systems
that are as similar as physically possible, so they can be
considered as physically equivalent, each of them will be-
have in a slightly different way and for each of them the
results of measurements of various physical quantities will
generally be different. Thus the results of these measure-
ments in a set of physically equivalent systems may be con-
sidered as random. Nonetheless, if the same measurement is
repeated in a great number of physically equivalent systems,
a definite average pattern of results should appear. Therefore,
although the behavior of physical systems is not exactly pre-
dictable, they are subject to statistical regularity �24�. Con-
sequently, physical quantities that in classical mechanics are
represented by real-valued functions of time ought to be
treated as time-dependent random variables.

Note, however, that the existence of the basic indetermi-
nacy in the physical world assumed in quantum mechanics is
not the only possible reason for which we may be unable to
predict the results of various experiments with certainty. For
instance, it is also possible that we do not have enough data
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about the conditions of the experiment, or we do not know
all the casual forces at work �24�. In either case we can treat
the outcomes of the experiments as random and we can as-
sume that they are statistically regular. Accordingly, in either
case we ought to treat physical quantities as random vari-
ables.

Consider, for example, the position of a system in its con-
figurational space. If we believe that the position of the sys-
tem at any instant of time t can be predicted exactly, we can
introduce the function x�t�, the values of which represent the
positions of the system at different instants of time, and we
can try to find evolution equations allowing us to determine
this function. On the other hand, if we expect that, whatever
the reason, the positions of the system at different instants of
time cannot be predicted exactly, but the system is subject to
statistical regularity, we should introduce a family of random
variables x̃�t� such that for given t the probability distribu-
tion function of the random variable x̃�t�, P�x , t�, will allow
us to compute the probability of finding the system in any
given area of its configurational space at time t. In such a
case, if P�x , t0� for certain t0 is known, we may be able to
determine the probability distribution function P�x , t� for
t� t0 with the help of some evolution equations.

Usually, we can assume that P�x , t� is a smooth function
of x. Then, by differentiating it we can obtain the configura-
tional probability density ��x , t�, which for an n-dimensional
system is given by

��x,t� = �1�2 ¯ �nP�x,t� , �1�

where � j denotes the differentiation with respect to the jth
Cartesian configurational coordinate of the system. Formally,
the symbol ��x , t� denotes a family of probability densities
indexed by t. Still, since the set of all values of t is continu-
ous, we can also assume ��x , t� to be a smooth function of t
which for any given value of this variable is a probability
density with respect to x. Consequently, ��x , t� may formally
be treated as the density of a fictitious n-dimensional liquid
referred to as the probability liquid �1,22,23,27�. Also, it can
be shown that ��x , t� satisfies the continuity equation �28�:

�t��x,t� = − �
�=1

n

�����x,t�v��x,t�� , �2�

where �t denotes the differentiation with respect to time, and
v��x , t� are components of the n-dimensional velocity field
of the probability liquid v�x , t�, which may be referred to as
the probability velocity field of the system.

It turns out that, under specific additional assumptions, we
are able to determine a closed system of evolution equations
for the configurational probability density and the probability
velocity field of the system using the laws of either classical,
or quantum mechanics �23�.

B. Probability liquid in classical mechanics

In classical mechanics it is usually assumed that the posi-
tion of the system at any instant of time can be predicted
exactly, so there is a function of time the values of which
represent the positions of the system at different instants of

time. For a one-dimensional system consisting of one body
of mass m it is a real-valued function and we denote it by
q�t�. Of course, if the body is acted on by a potential force
F�x�, where x denotes the single configurational coordinate
of the system, the function q�t� ought to satisfy the following
Newton equation of motion:

d2q

dt2 =
F�q�

m
, �3�

which allows us to determine q�t� provided that its value and
the value of its first derivative at certain time t0 are known.

Suppose, however, that for some reason we do not know
these values. Assume instead that we are given the system’s
configurational probability density ��x , t0� and probability
velocity field v�x , t0�. Obviously in that case we are unable to
determine q�t�. Nevertheless, we can say something about
��x , t� and v�x , t� for t� t0.

To show this we observe that the probability distribution
function P�x , t0�, the derivative of which is ��x , t0�, can be
approximated by the following staircase function:

P��xk�N,x,t0� = �
k=1

N+1

Pk��x − xk� , �4�

where the symbols xk denote N fixed points in the system’s
configurational space,

Pk = �P�x1,t0� , k = 1

P�xk,t0� − P�xk−1,t0� , 1 � k � N

1 − P�xN,t0� , k = N + 1
	 , �5�

and the function ��x� is equal to zero for x�0 and equal to
1 for x�0. By differentiating P��xk�N ,x , t0� with respect to x
we obtain the associated probability density

���xk�N,x,t0� = �
k=1

N+1

Pk��x − xk� , �6�

where ��x� denotes the well-known Dirac delta distribution.
This probability density can be treated as a special represen-
tation of ��x , t0� and may be referred to as the reduced con-
figurational probability density of the system. Its definition
obviously depends on the selection of N points xk in the
system’s configurational space which is denoted explicitly by
the symbol �xk�N.

Now, we notice that in principle each of the xk used in
defining P��xk�N ,x , t0� can also be used as q�t0� in determin-
ing the function q�t� from Eq. �3�. Yet, for this purpose we
also need to know the velocity vk that should be used along
with xk as the initial value of the derivative of q�t�. If we
know it, we can use Eq. �3� to determine the function of time
qk�t� such that

qk�t0� = xk, 
dqk

dt



t0

= vk, �7�

and we have
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���xk�N,x,t� = �
k=1

N+1

Pk�„x − qk�t�… �8�

for t� t0.
To determine the velocities vk we differentiate

���xk�N ,x , t� with respect to time and get

�t���xk�N,x,t� = − �xj�1���xk�N,x,t� , �9�

where the current j�1���xk�N ,x , t� is given by

j�1���xk�N,x,t� = �
k=1

N+1

Pk
dqk

dt
�„x − qk�t�… . �10�

Next, we use the observation that ��x , t� ought to satisfy the
continuity equation:

�t��x,t� = − �x���x,t�v�x,t�� , �11�

and require that

j�1���xk�N,x,t0� = ���xk�N,x,t0�v�x,t0� , �12�

which means that vk=v�xk , t0�, because of Eqs. �6� and �7�.
Thus, formally, given ��x , t0� and v�x , t0�, we can obtain
���xk�N ,x , t� and j�1���xk�N ,x , t� for any N and for any selec-
tion of the points xk in the system’s configurational space.
Still, it is quite difficult to do this by determining individual
functions qk�t�, so we need to use some evolution equations
for this purpose.

To find the evolution equations for ���xk�N ,x , t� and
j�1���xk�N ,x , t� we differentiate the current with respect to
time and get

�t j
�1���xk�N,x,t� =

F�x�
m

���xk�N,x,t� − �xj�2���xk�N,x,t� ,

�13�

where the quantity j�2���xk�N ,x , t� is given by

j�2���xk�N,x,t� = �
k=1

N+1

Pk�dqk

dt
�2

�„x − qk�t�… , �14�

which follows from Eq. �3�. By differentiating
j�2���xk�N ,x , t� with respect to time we obtain an equation
similar to Eq. �14�, in which there is the quantity
j�3���xk�N ,x , t� defined in analogy with j�2���xk�N ,x , t� and so
on. Generally, for n	1, we have

�t j
�n���xk�N,x,t� =

F�x�
m

j�n−1���xk�N,x,t� − �xj�n+1���xk�N,x,t� ,

�15�

where

j�n���xk�N,x,t� = �
k=1

N+1

Pk�dqk

dt
�n

�„x − qk�t�… . �16�

Thus we obtain an infinite system of evolution equations for
the system’s reduced configurational probability density
���xk�N ,x , t� and the family of functions j�n���xk�N ,x , t�,
n=1, 2, …, so generally in order to determine, for example,

���xk�N ,x , t� we need to know ���xk�N ,x , t0�, as well as
j�1���xk�N ,x , t0�, j�2���xk�N ,x , t0�, etc.

Having obtained Eqs. �9�, �13�, and �15� we can use the
remark that they are satisfied for any N and for any selection
of the points xk in the system’s configurational space, which
implies that they should also be satisfied by ��x , t� and a
family of smooth functions j�n��x , t� corresponding to
j�n���xk�N ,x , t�, respectively. Consequently, since Eq. �9� is
the counterpart of the continuity equation, Eq. �11�, we can
identify the current j�1��x , t� as the product of ��x , t� and
v�x , t�. Thus we have

�tv�x,t� + v�x,t��xv�x,t� =
F�x�

m
−

1

��x,t�
�x�j�2��x,t�

− ��x,t�v2�x,t�� , �17�

which follows from Eq. �13� and from the continuity equa-
tion, Eq. �11�.

Of course, to obtain a closed system of evolution equa-
tions for ��x , t� and v�x , t� we need to eliminate the function
j�2��x , t� from Eq. �17� and it turns out that it can only be
done if

j�n��x,t� = ��x,t�vn�x,t� , �18�

for any natural n �23�. Then, we get

�tv�x,t� + v�x,t��xv�x,t� =
F�x�

m
, �19�

and all of the evolution equations for j�n��x , t� are automati-
cally satisfied. Accordingly, given ��x , t0� and v�x , t0�, we
can determine ��x , t� and v�x , t� for t� t0 with the help of
Eqs. �11� and �19�.

C. Representation of states

In classical mechanics we can only obtain a closed system
of evolution equations for the configurational probability
density and probability velocity field of a one-dimensional
physical system if Eq. �18� is satisfied for any natural n.
Otherwise, we have to take the whole infinite system of evo-
lution equations for the functions j�n��x , t� into consideration,
which in many cases is simply impractical. Therefore the
assumed satisfaction of Eq. �18� for any n seems to be quite
important, so we ought to explain the actual meaning of this
assumption. However, for this purpose we first need to ex-
tend the notion of states to the systems the behavior of which
cannot be predicted exactly, although they are subject to sta-
tistical regularity.

If the position, let alone the velocity, of the system cannot
be predicted exactly, there is no use in representing the sys-
tem’s states by phase-space points. Still, it is convenient to
think that the system can assume various states and it is
helpful to use specific mathematical objects for representing
them.

In principle to differentiate the system’s states from each
other we can use the measurements of various physical quan-
tities. Yet, for a system that behaves in a more or less random
way the physical quantities should be represented by random
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variables, as we have already stated in Sec. II A, and single
measurement of the value of a random variable does not
really mean anything. To the random variable important are
the moments of its probability distribution �24�, and they can
be used in defining the states of the system. Namely, we can
say that the state of the system has changed over time if any
moment of the probability distribution of any random vari-
able representing a physical quantity has changed. For ex-
ample, if the average square of the system’s position at the
time t0 is different to the average square of the system’s
position at the time t, we can say that the states of the system
at the instants of time t0 and t are different. Accordingly, the
states of the system should be represented by mathematical
objects allowing us to compute the moments of probability
distributions of random variables that represent physical
quantities.

For the system discussed in Sec. II B these objects are
joint probability densities of the random variables x̃�t� and
ũ�t� representing the system’s position and velocity, respec-
tively. Namely, in classical mechanics for each instant of
time t there is a joint probability of x̃�t� and ũ�t� that we
denote by s�x ,u , t�. Of course, for any t the probability den-
sity s�x ,u , t� belongs to the set 
 of all non-negative real-
valued functions p�x ,u�, defined for x from the system’s con-
figurational space and real u, and satisfying the
normalization condition 
p�x ,u�dxdu=1, where the integra-
tions with respect to x and u are carried out over the whole
system’s configurational space and the whole real axis, re-
spectively. Therefore the system may be thought of as being
in different states, represented by different elements of 
, at
different instants of time, represented by different values of
the parameter t. Accordingly, the evolution of s�x ,u , t�,
which in fact is equivalent to the evolution of the system,
may be seen as a curve, or a trajectory, in 
, and the evolu-
tion equations allow us to determine this trajectory for given
initial probability density s�x ,u , t0�= p0�x ,u�. For this reason
s�x ,u , t� can be referred to as the state probability density of
the system.

It turns out that the state probability density of the system
considered in Sec. II B can be determined relatively easily.
Namely, there is an easy-to-establish relationship between
the functions j�n��x , t� introduced in Sec. II B and moments
of the joint probability distribution of x̃�t� and ũ�t�, i.e.,

�xkun��t� =� dxxkj�n��x,t� , �20�

which follows from Eqs. �10� and �16�. Thus we can define
the following characteristic function:

Mu�iq,x,t� = �
n=0

�
�iq�n

n!
j�n��x,t� , �21�

and, subsequently, we can obtain s�x ,u , t� using the standard
formula �24�:

s�x,u,t� =
1

2�
�

−�

�

dq exp�− qu�Mu�iq,x,t� . �22�

It is straightforward to verify that s�x ,u , t� given by the right-
hand side of Eq. �22� has all of the required properties and
allows us to compute any moment of the probability distri-
bution of any physical quantity being a function of the sys-
tem’s position and velocity.

Now, let us recall that the configurational probability den-
sity and probability velocity field of the system, ��x , t� and
v�x , t�, satisfy Eqs. �11� and �19� if the condition given by
Eq. �18� holds for any n. Then, we can express the charac-
teristic function Mu�iq ,x , t� in terms of ��x , t� and v�x , t�,
i.e.,

Mu�iq,x,t� = exp�iqv�x,t����x,t� , �23�

so the system’s state probability density is given by

s�x,u,t� = ��x,t��„u − v�x,t�… . �24�

Thus we see that if Eq. �18� is satisfied for any n, the state
represented by s�x ,u , t� is special. Namely, in this state the
system’s velocity is not known exactly only because it de-
pends on the system’s position that is really random. Then,
according to the discussion in Appendix A, the system’s state
probability density s�x ,u , t� is a semipure joint probability
density of x̃�t� and ũ�t�. Nevertheless, in that case s�x ,u , t�
satisfies the Liouville equation, which is also shown in Ap-
pendix A.

It follows from the previous paragraph that the satisfac-
tion of Eq. �18� for any n is equivalent to the requirement
that the system’s state probability density s�x ,u , t� be semi-
pure for any t. However, the evolution equations for ��x , t�
and j�n��x , t� derived in Sec. II B imply that if the initial-state
probability density of the system s�x ,u , t0� is semipure,
s�x ,u , t� will be semipure for any t	 t0. Namely, if Eq. �18�
is assumed to be satisfied for any n at the time t0, we have

�t
k�j�n��x,t� − vn�x,t���x,t��t=t0

= 0 �25�

for any k and n, which means that Eq. �18� will also be
satisfied for any n at any time t	 t0 �23�. Thus by assuming
the satisfaction of Eq. �18� for any n we actually require the
system’s initial state to have specific properties that are pre-
served during the evolution of the system. Such an assump-
tion can be made for any system and it is absolutely justified
as long as we are not interested in the cases in which the
system’s initial state does not have the properties implied by
the assumption.

D. Probability liquid in quantum mechanics

In quantum mechanics, the evolution equations for the
probability liquid can be derived directly from the
Schrödinger equation �1,22,23�.

To illustrate this we consider the quantum counterpart of
the system discussed in Sec. II B and observe that, as long as
the laws of quantum mechanics are assumed to hold, its
wave function 
�x , t� must satisfy the following Schrödinger
equation:
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i��t
�x,t� = −
�2

2m
�x

2
�x,t� + V�x�
�x,t� , �26�

where V�x� is the potential of the force F�x�.
Now, the configurational probability density and the prob-

ability velocity field of the system can be defined in terms of

�x , t�, viz. �1,23�

��x,t� = 
*�x,t�
�x,t� , �27�

��x,t�v�x,t� =
i�

2m
�
�x,t��x


*�x,t� − 
*�x,t��x
�x,t�� .

�28�

Conversely, the wave function 
�x , t� can be expressed in
terms of ��x , t� and v�x , t� in the following way:


�x,t� = ���x,t�exp�i
m

�
�

x0

x

dqv�q,t�� , �29�

and the right-hand side of this equation can be substituted for

�x , t� in Eq. �26�. Then, the resulting equation can be di-
vided by the exponential factor that appears on the right-
hand side of Eq. �29� and we get a system of two equations
for the amplitude and phase of the wave function being real-
valued functions of x and t. Next, we use the observation that
the amplitude of the wave function can be expressed in terms
of ��x , t� and that the derivative with respect to x of its phase
is proportional to the velocity field v�x , t� �1�, which allows
us to state that ��x , t� satisfies the continuity equation, Eq.
�11�, and to obtain the evolution equation for v�x , t�:

�tv�x,t� + v�x,t��xv�x,t� =
F�x�

m
+

�2

2m2�xTx���x,t�� ,

�30�

where Tx�f� is defined by

Tx�f� =
�x

2�f

�f
, �31�

for any non-negative function f depending on the system’s
configurational coordinate x.

Obviously the only difference between Eq. �30� and its
classical-mechanical counterpart, Eq. �19�, is the presence of
the term proportional to �� /m�2 on the right-hand side of the
former. If �� /m� is very small this term can be neglected and
the quantum-mechanical evolution equations become their
classical-mechanical counterparts. Then, the quantum-
mechanical description of the system can be replaced with
the classical one without the risk of the appearance of any
substantial inaccuracy. This is the so-called classical limit of
quantum mechanics, and we can say, for example, that Eq.
�19� follows from Eq. �30� in the classical limit. Still, this
does not mean that for �� /m� being negligibly small the
behavior of the system must be predictable exactly. On the
contrary, it generally is necessary to represent physical quan-
tities by random variables in the classical limit too �25�.

It may seem to be a problem that in classical mechanics
Eqs. �11� and �19� are only satisfied for systems in special

initial states, but in fact the same observation applies to the
Schrödinger equation in quantum mechanics. Namely, in
quantum mechanics the solutions of the Schrödinger equa-
tion correspond only to the so-called pure states of the sys-
tem that are special. In quantum mechanics states of the sys-
tem are generally represented by density matrices that satisfy
the von Neumann–Liouville equation �1,2,26�. Some density
matrices correspond to individual wave functions satisfying
the Schrödinger equation and they are regarded as the repre-
sentations of the pure states of the system, but there are also
density matrices that do not correspond to any individual
wave functions and the states represented by them are re-
ferred to as mixed states of the system �1�. In general, the
quantum-mechanical pure states of the system correspond to
the states of its classical counterpart that are represented by
semipure state probability densities s�x ,u , t� introduced in
Sec. II C �23�.

It is instructive to notice that for the considered quantum-
mechanical system there also is a semipure probability den-
sity s�x ,u , t� given by Eq. �24�, where ��x , t� and v�x , t� sat-
isfy Eqs. �11� and �30�. Obviously it is a joint probability
density of two random variables x̃�t� and ũ�t�, the first of
which represents the system’s position at the time t. Unfor-
tunately the random variable ũ�t� cannot be regarded as a
representation of the system’s velocity, because doing so
would contradict the widely accepted interpretation of quan-
tum mechanics in which the momentum of the system is
represented by a differential operator and the moments of the
joint probability distribution of the system’s position and ve-
locity are not well defined �1,2,26�. Still, in the classical limit
ũ�t� becomes the random variable representing the system’s
velocity considered in Sec. II C.

Of course, in general the quantum-mechanical probability
density s�x ,u , t� does not satisfy the Liouville equation. In
the classical limit, however, it becomes the state probability
density of the system discussed in Sec. II C, which satisfies
this equation. Thus the probability density s�x ,u , t� can be
used in studying the correspondence between quantum and
classical mechanics. Furthermore, since the probability den-
sity s�x ,u , t� can be obtained with the help of the system’s
wave function 
�x , t� and vice versa, as they both can be
expressed in terms of the system’s configurational probabil-
ity density and probability velocity field, it may be regarded
as a representation of the system’s state at the time t. Accord-
ingly, it may be referred to as the state probability density of
the system in analogy with its classical-mechanical counter-
part, although in practice in quantum mechanics it usually is
more convenient to represent states by wave functions.

E. Energy of concentration

Having obtained two systems of evolution equations for
the probability liquid, one of which, consisting of Eqs. �11�
and �30�, is quantum mechanical, and the other, consisting of
Eqs. �11� and �19�, is consistent with the laws of classical
mechanics, we are now going to argue that the difference
between them is strictly related to the existence of an addi-
tional contribution to the system’s average energy in quan-
tum mechanics.
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First, we note that in classical mechanics the energy of the
system discussed in Sec. II B is defined by

E =
m

2
�dq

dt
�2

+ V�q� , �32�

where q�t� is a function satisfying Eq. �3� that can be deter-
mined if the system’s velocity and position at the initial in-
stant of time are known exactly. Otherwise we have to treat
the energy as a random variable and we can only compute
the moments of its probability distribution. In particular, we
can compute its mean value that is given by

�E� =
m

2
�v2� + �V� , �33�

where �v2� denotes the average square of the system’s veloc-
ity and �V� is its average potential energy. According to Eq.
�20� the right-hand side of Eq. �33� can be rewritten in the
following form:

�E� =
m

2
� dx j�2��x,t� +� dx V�x���x,t� , �34�

so if the system’s state probability density is semipure, in
which case Eq. �18� is satisfied for any n, we have

�E� =
m

2
� dx v2�x,t���x,t� +� dx V�x���x,t� . �35�

By differentiating Eq. �35� with respect to time and using the
corresponding evolution equations, Eqs. �11� and �19�, to
eliminate the time derivatives of ��x , t� and v�x , t�, respec-
tively, from the resulting equation, we can show that �E� is
independent of time �23�. Therefore it may be treated as a
constant of motion.

In quantum mechanics the average energy of the system
considered in Sec. II D is defined by

�Eq� = −
�2

2m
� dx 
*�x,t�

�2

�x2
�x,t�

+� dx 
*�x,t�V�x�
�x,t� , �36�

where 
�x , t� is the system’s wave function satisfying Eq.
�26�. Hence if the right-hand side of Eq. �29� is substituted
for 
�x , t� in Eq. �36�, we get

�Eq� =
m

2
� dx v2�x,t���x,t� +� dx V�x���x,t�

+
�2

2m
U���x,t�� , �37�

where the functional U�f� is defined by

U�f� =� dx��x
�f�2, �38�

for any non-negative function f depending on the system’s
configurational coordinate x.

We now see that the only difference between the
quantum-mechanical formula for the system’s average en-
ergy, Eq. �37�, and its classical counterpart, Eq. �35�, is the
term proportional to �� /m� appearing on the right-hand side
of the former, which is not present in the latter. It clearly
follows from this observation that in quantum mechanics
there is an additional contribution to the average energy of
the system. Moreover, this contribution is always positive
and independent of the potential V�x� as well as of the flow
of the probability liquid represented by the velocity field. It
depends only on the configurational probability density of
the system and it is greater for more concentrated ��x , t� and
lesser for ��x , t� that are relatively flat, which is shown in
Appendix B. Therefore it may be referred to as the energy of
concentration. Traditionally, however, it is regarded as a
component of the average kinetic energy of the system,
which allows one to prove the satisfaction of the uncertainty
principle, as demonstrated in Appendix C.

Having identified the energy of concentration we are now
going to show that there is a strict relationship between this
energy and the last term on the right-hand side of Eq. �30�.
Namely, if U���x , t�� is differentiated with respect to time,
we get

d

dt
U���x,t�� = −� dxv�x,t���x,t��xTx���x,t�� , �39�

where Tx�f� is defined by Eq. �31�, which follows from Eq.
�38� and from the continuity equation, Eq. �11�. The appear-
ance of Tx���x , t�� in this equation is hardly a coincidence.
Indeed, if Eq. �37� is differentiated with respect to time and
Eqs. �11� and �30� are used to eliminate the time derivatives
of ��x , t� and v�x , t�, respectively, from the resulting equa-
tion, we get

d

dt
�Eq� =

�2

2m
�� dxv�x,t���x,t��xTx���x,t�� +

d

dt
U���x,t��� ,

�40�

where the source of the first term on the right-hand side is the
time derivative of the velocity field. Thus in quantum me-
chanics, if the force F�x� is conservative, the average energy
�Eq� is a constant of motion. However, this is only possible
because the last term on the right-hand side of Eq. �30� has
the correct form �23�. Consequently, we can assume that the
role of this term in Eq. �30� is exactly to cancel the contri-
bution of the energy of concentration to the time derivative
of the average energy �Eq�.

III. HYDRODYNAMIC QUANTIZATION

A. Quantization of one-dimensional dissipative system

In Sec. II we have made some important observations
regarding the correspondence between classical and quantum
mechanics. Now, we are going to use them to obtain
quantum-mechanical evolution equations for a dissipative
system.

For simplicity we consider a system for which the follow-
ing Newton equation is satisfied in classical mechanics:
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d2q

dt2 = −
�

m

dq

dt
+

F�q�
m

, �41�

where � is a non-negative constant and the force F�x� is
potential.

We first use the observation following from Secs. II B and
II D that on the basis of Eq. �41� we can derive the classical-
mechanical equations for the probability liquid which ought
to result from the quantum-mechanical evolution equations
for the system in the classical limit. To obtain these equations
we use the same approach that we have used in Sec. II B for
the analogous nondissipative system. Doing so we find that

�tv�x,t� + v�x,t��xv�x,t�

= −
�

m
v�x,t� +

F�x�
m

−
1

��x,t�
�x�j�2��x,t� − ��x,t�v2�x,t�� ,

�42�

�t j
�n��x,t� = −

�

m
j�n��x,t� +

F�x�
m

j�n−1��x,t� − �xj�n+1��x,t�,

n 	 1, �43�

where the functions j�n��x , t� are defined in exactly the same
way as in Sec. II B, and the continuity equation, Eq. �11�, is
satisfied �23�. Hence if the satisfaction of Eq. �18� for any n
is assumed, which means that the system’s state probability
density is semipure, we get

�tv�x,t� + v�x,t��xv�x,t� = −
�

m
v�x,t� +

F�x�
m

. �44�

Thus we can state that in the classical limit the configura-
tional probability density and probability velocity field of the
system, ��x , t� and v�x , t�, satisfy Eqs. �11� and �44�. More-
over, with the help of these equations we can derive the
counterpart of the Liouville equation for the system’s state
probability density using the approach presented in Appendix
A.

Next, we notice that for �=0 the considered system be-
comes the system discussed in Sec. II D. Consequently, if
�=0, the functions ��x , t� and v�x , t� have to satisfy Eqs. �11�
and �30�. Moreover, the average energy of the system is then
given by Eq. �37� and there is no reason for which it should
be given by a different formula if ��0. Thus we state that
the quantum-mechanical average energy of the considered
dissipative system is given by Eq. �37�.

Now we can assume that the system of quantum-
mechanical evolution equations for ��x , t� and v�x , t� should
be closed, because it is closed in the classical limit as well as
for �=0. Therefore as it is obvious that the continuity equa-
tion, Eq. �11�, must be one of these equations, we only need
to find the second equation allowing us to determine the time
derivative of the probability velocity field v�x , t�. Of course
we know that for �� /m� being negligibly small this equation
should become Eq. �44� and for �=0 it should be Eq. �30�,
so we can assert that in general

�tv�x,t� + v�x,t��xv�x,t�

= −
�

m
v�x,t� +

F�x�
m

+
�2

2m2�xTx���x,t��

−
��

m2 ����x,t�,v�x,t�� , �45�

where Tx�f� is given by Eq. �31�, ����x , t� ,v�x , t�� is un-
known, and the last term on the right-hand side of the equa-
tion vanishes in the classical limit as well as for �=0.

The observation that the role of the next-to-last term on
the right-hand side of Eq. �45� is to cancel the contribution of
the energy of concentration to the time derivative of the total
average energy of the system, consistent with the discussion
in Sec. II E, suggests strongly that ����x , t� ,v�x , t�� should
be equal to zero, as there is no particular reason for its exis-
tence. Furthermore, there are less heuristic arguments indi-
cating that ����x , t� ,v�x , t�� ought to vanish and they are
presented in Appendix D. Accordingly, we postulate that
����x , t� ,v�x , t�� is identically equal to zero and get

�tv�x,t� + v�x,t��xv�x,t�

= −
�

m
v�x,t� +

F�x�
m

+
�2

2m2�xTx���x,t�� , �46�

which is the required second quantum-mechanical evolution
equation for the considered system �23�.

We note that the assumption allowing us to obtain Eq.
�46� may be referred to as the principle of classical dissipa-
tion, because it leads to the conclusion that in quantum me-
chanics the formula for the time derivative of the system’s
average energy is always the same as in the classical limit
�23�. Of course, the discussion in Appendix D nonwithstand-
ing, it is only a postulate and requires empirical verification.

B. Energy of concentration in many dimensions

Having found the quantum-mechanical evolution equa-
tions for a simple one-dimensional dissipative system, Eqs.
�11� and �46�, we notice that the approach used to obtain
them can be extended to multidimensional systems in a
straightforward manner, since every multidimensional sys-
tem may be regarded as an ensemble of one-dimensional
systems, possibly not independent of each other. Namely,
each Cartesian coordinate of the system’s position can be
treated as an individual entity subject to the most of the
observations made in Secs. II and III A.

To illustrate this we consider a two-dimensional system
consisting of two noninteracting bodies of masses m1 and m2
for which the following Newton equations are satisfied in
classical mechanics:

d2q1

dt2 = −
�1

m1
q1 +

F1�q1�
m1

, �47�

d2q2

dt2 = −
�2

m2
q2 +

F2�q2�
m2

, �48�

where F1�x1�, F2�x2� denote potential forces, and the con-
stants �1, �2 are non-negative. Clearly, Eqs. �47� and �48� are
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independent of each other, so we can apply the approach
used in Sec. III A to each of them individually. Hence we
obtain two independent systems of evolution equations for
two pairs of functions �1�x1 , t�, v1�x1 , t� and �2�x2 , t�,
v2�x2 , t� that each consist of configurational probability den-
sities and probability velocity fields. However, it is often
necessary to use the joint probability density ��x1 ,x2 , t� of
the positions of the first and second body.

For the considered system ��x1 ,x2 , t� can be defined as the
product of �1�x1 , t� and �2�x2 , t�, because the random vari-
ables that represent the positions of the two bodies can be
regarded as statistically independent. Using this observation
we are able to express the moments of the probability distri-
butions of many physical quantities by means of ��x1 ,x2 , t�.
For instance, if ��x1 ,x2 , t�=�1�x1 , t��2�x2 , t�, the quantum-
mechanical total average energy of the system, equal to the
sum of the average energies of the two bodies it consists of,
i.e.,

�Eq� = �
�=1,2

�� dx��m�

2
v�

2�x�,t� + V��x������x�,t�

+
�2

2m�

U�����x�,t��� , �49�

where V1�x1� and V2�x2� are the potentials of the forces
F1�x1� and F2�x2�, respectively, and

U��f� =� dx����
�f�2, � = 1,2, �50�

can be represented as

�Eq� = �
�=1,2

�� d2x�m�

2
v�

2�x�,t� + V��x�����x1,x2,t�

+ ��E��� , �51�

where

��E�� =
�2

2m�
� d2x���

���x1,x2,t��2, � = 1,2, �52�

because we have

U�����x�,t�� =� d2x���
���x1,x2,t��2, � = 1,2. �53�

Hence the total energy of concentration of the system is the
sum of ��E�1 and ��E�2.

The evolution equations for the considered system can be
expressed in terms of ��x1 ,x2 , t� too. Namely, it follows from
the considerations in Appendix E that the approach presented
in Sec. II B is applicable to ��x1 ,x2 , t� and the associated
two-dimensional velocity field. In particular, for the consid-
ered system it leads to the evolution equations

�t��x1,x2,t� = − �
�=1,2

���v��x1,x2,t���x1,x2,t�� , �54�

�tv1�x1,x2,t� + �
�=1,2

v��x1,x2,t���v1�x1,x2,t�

= −
�1

m1
v1�x1,x2,t� +

F1�x1�
m1

, �55�

�tv2�x1,x2,t� + �
�=1,2

v��x1,x2,t���v2�x1,x2,t�

= −
�2

m2
v2�x1,x2,t� +

F2�x2�
m2

, �56�

where v1�x1 ,x2 , t� and v2�x1 ,x2 , t� are the components of the
velocity field. Now, on the basis of the discussion in Sec.
III A and Appendix D we can expect that in order to obtain
the quantum-mechanical counterparts of Eqs. �55� and �56� it
is only necessary to complement these equations with the
terms that will cancel the contribution of the energy of con-
centration to the time derivative of the system’s total average
energy.

To determine these terms we differentiate the sum of
��E�1 and ��E�2 with respect to time and use the continuity
equation, Eq. �54�, to eliminate the time derivatives of
��x1 ,x2 , t� from the resulting equation. Hence we get

d

dt
���E�1 + ��E�2� = −

�2

2
� d2x��x1,x2,t�

�� �
�=1,2

v��x1,x2,t���S���x1,x2,t��� ,

�57�

where

S�f� =
T1�f�
m1

+
T2�f�
m2

, �58�

and the operators T1�f� and T2�f� are defined in analogy with
Eq. �31�. Thus we see that the quantum-mechanical counter-
parts of Eqs. �55� and �56� should be the following equa-
tions:

�tv1 + �
�=1,2

v���v1 = −
�1

m1
v1 +

F1

m1
+

�2

2m1
�1S��� , �59�

�tv2 + �
�=1,2

v���v2 = −
�2

m2
v2 +

F2

m2
+

�2

2m2
�2S��� , �60�

respectively. It can be verified by direct computation that if
��x1 ,x2 , t� is the product of �1�x1 , t� and �2�x2 , t�, Eqs. �54�,
�59�, and �60� are exactly equivalent to the two systems of
evolution equations for �1�x1 , t�, v1�x1 , t� and �2�x2 , t�,
v2�x2 , t� obtainable by applying the approach used in Sec.
III A to each of Eqs. �47� and �48� individually. However, if
��x1 ,x2 , t� cannot be factorized into �1�x1 , t� and �2�x2 , t�,
this equivalence is no longer retained, since the above con-
siderations are based on Eq. �53� which generally is not valid
if ��x1 ,x2 , t� cannot be factorized. Therefore the question
arises whether the contribution corresponding to the system’s
Cartesian configurational coordinate x� to its total energy of
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concentration is generally given by Eq. �52�, or it should
rather be given by U�����x� , t��.

To answer this question we consider a system consisting
of the same two bodies in which all forces depend on both
their positions and are potential. Of course in classical me-
chanics the following Newton equations are satisfied for it:

d2q1

dt2 =
F1�q1,q2�

m1
, �61�

d2q2

dt2 =
F2�q1,q2�

m2
, �62�

where F1�x1 ,x2�=−�1V�x1 ,x2� and F2�x1 ,x2�=−�2V�x1 ,x2�.
Thus if the approach used in Sec. II B and Appendix E is
applied to this system, we find that Eq. �54�, the continuity
equation, is satisfied along with the following pair of equa-
tions:

�tv1�x1,x2,t� + �
�=1,2

v��x1,x2,t���v1�x1,x2,t� =
F1�x1,x2�

m1
,

�63�

�tv2�x1,x2,t� + �
�=1,2

v��x1,x2,t���v2�x1,x2,t� =
F2�x1,x2�

m2
.

�64�

Next, if the energy of concentration is the sum of ��E�1

and ��E�2, its time derivative is given by Eq. �57�, which
follows directly from the continuity equation. Accordingly,
on the basis of our discussion in Sec. III A and Appendix D,
we expect the quantum-mechanical counterparts of Eqs. �63�
and �64� to be given by

�tv1�x1,x2,t� + �
�=1,2

v��x1,x2,t���v1�x1,x2,t�

=
F1�x1,x2�

m1
+

�2

2m1
�1S��� , �65�

�tv2�x1,x2,t� + �
�=1,2

v��x1,x2,t���v2�x1,x2,t�

=
F2�x1,x2�

m2
+

�2

2m2
�2S��� . �66�

Indeed, it is straightforward to verify that the following
Schrödinger equation:

i�
�x1,x2,t� = �− �
�=1,2

�2

2m�

��
2 + V�x1,x2��
�x1,x2,t� ,

�67�

leads to Eqs. �54�, �65�, and �66�. Moreover, if F1�x1 ,x2� is
actually independent of x2, and F2�x1 ,x2� is independent of
x1, it leads to Eqs. �54�, �59�, and �60� for �1=�2=0, inde-
pendently of whether ��x1 ,x2 , t� can be factorized or not.
Therefore the assumption that the total energy of concentra-
tion of the system is the sum of ��E�1 and ��E�2 leads to the

results that are consistent with the standard equations of
quantum mechanics. Consequently, we can conclude that the
contribution of the system’s degree of freedom represented
by x� to its total energy of concentration should always be
given by the right-hand side of Eq. �52�, which is only equal
to U�����x� , t�� in special cases.

It is not difficult to verify that the above discussion can be
repeated for a system of any number of dimensions, so we
can assume that in general the total energy of concentration
of an n-dimensional system is given by

��E� = �
�=1

n
�2

2m�
� dnx���

���x,t��2, �68�

which is a trivial generalization of the sum of ��E�1 and
��E�2 defined by Eq. �52� for �=1, 2, respectively. Therefore
we have

d

dt
��E� = −

�2

2
� dnx��x,t���

�=1

n

v��x,t���S���x,t��� ,

�69�

where

S�f� = �
�=1

n
1

m�

��
2�f

�f
, �70�

because the continuity equation, Eq. �2�, must be satisfied for
any system, as stated in Sec. II A. Consequently, for each
component of the probability velocity field v��x , t� the evo-
lution equation allowing us to determine its time derivative
ought to contain the term

Q����x,t�� =
�2

2m�

��S���x,t�� , �71�

that cancels one component of the sum on the right-hand side
of Eq. �69� in the time derivative of the total average energy
of the system.

C. Hydrodynamic quantization rules

On the basis of the observations made in Sec. III B we
can establish a simple set of quantization rules applicable to
virtually any mechanical system. Yet, as follows from the
considerations in Secs. III A and III B, in order to use these
observations to obtain quantum-mechanical evolution equa-
tions we first need to derive the corresponding classical-
mechanical equations for the probability liquid. Of course,
they may be derived directly from the Newton equations,
which is shown, for example, in Appendix E, but this ap-
proach is rather tedious. Fortunately, instead of using it we
can make some more observations that allow us to simplify
this step substantially.

First of all we notice that the classical-mechanical evolu-
tion equations for the probability liquid have always the
same structure, independently of the number of dimensions
of the system. Namely, there always is the continuity equa-
tion which is mandatory, as follows from Sec. II A. There
also are the equations for the time derivatives of n compo-
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nents of the velocity field, which are quite similar to each
other. Specifically, for each component of the velocity field
v��x , t�, �=1,2 ,… ,n, the corresponding evolution equation
contains not only the time derivative of v��x , t�, but the
whole total derivative of it, which for an arbitrary function
��x , t� is defined by �28�

d

dt
��x,t� = �t��x,t� + �

�=1

n

v��x,t�����x,t� . �72�

Moreover, if the total derivatives of v��x , t� are placed on the
right-hand sides of the respective evolution equations, on the
left-hand sides of these equations there only are the respec-
tive forces that affect the evolution of v��x , t�, possibly ex-
pressed by v��x , t� themselves and by the other components
of the velocity field, which follows from the discussion in
Appendix E.

On the other hand, in classical mechanics we can always
introduce the function v�t� defined as the time derivative of
the system’s position at the time t which can be referred to as
the velocity function of the system. Then, as demonstrated in
Appendix E, the Newton equations of motion can be repre-
sented as a system of 2n first-order differential equations
with respect to time, where the first n equations define n
components of the velocity function v��t�, �=1,2 ,… ,n, and
the remaining n equations contain each the time derivatives
of v��t� on the left-hand sides and the respective forces that
affect the evolution of v��t�, possibly expressed by v��t�
themselves and by the other components of the velocity
function, on the right-hand sides. Thus if �i� the first n equa-
tions are replaced with the continuity equation, �ii� in the
remaining n equations the time derivative of each v��t� is
replaced with the total derivative of the corresponding veloc-
ity field’s component v��x , t�, �iii� each v��t� is replaced with
the corresponding v��x , t�, and �iv� each component of the
system’s position at the time t is replaced with the corre-
sponding configurational coordinate of the system x�, we get
the required classical-mechanical equations for the probabil-
ity liquid.

Having shown that the necessary classical-mechanical
equations for the probability liquid can be obtained relatively
easily, we are now able to propose the following rules of
quantization of mechanical systems:

�i� Given the Newton equations for the considered
n-dimensional mechanical system one should represent them
as 2n first-order differential equations with respect to time
for the system’s position at the time t, q�t�, and its derivative,
v�t�, i.e.,

d

dt
q� = v�, � = 1,2,…,n , �73�

d

dt
v� =

F��q,v,t�
m�

, � = 1,2,…,n . �74�

�ii� The first n equations defining the components of v�t�,
Eqs. �73�, ought to be replaced with the continuity equation,
Eq. �2�.

�iii� In each of the remaining equations, Eqs. �74�, �i� the

time derivative of v��t� should be replaced with the total
derivative of the corresponding velocity field’s component
v��x , t�, �ii� the system’s position q�t� should be replaced
with x, and �iii� v�t� should be replaced with the probability
velocity field v�x , t�. This leads to the following result:

d

dt
v��x,t� =

F�„x,v�x,t�,t…
m�

, � = 1,2,…,n . �75�

�iv� One ought to modify the equations for the total de-
rivatives of the velocity field’s components v��x , t�, Eqs.
�75�, by adding the respective term Q����x , t�� defined by
Eq. �71� to the right-hand side of each of them.

Simultaneously, the rules leading to the formula for the
average energy of the system are the following:

�i� In the classical-mechanical formula for the energy of
the system one should replace the system’s position at the
time t, q�t�, with x, and its derivative, v�t�, with the prob-
ability velocity field v�x , t�.

�ii� The formula obtained in the previous step ought to be
multiplied by the system’s configurational probability den-
sity ��x , t� and integrated over the entire configurational
space of the system.

�iii� The total energy of concentration of the system given
by Eq. �68� should be added to the formula obtained in the
previous step.

We note that the evolution equations resulting from the
application of the above quantization rules are similar to
well-known equations of hydrodynamics �1,22,23�, so this
approach may be referred to as the hydrodynamic quantiza-
tion of mechanical systems.

IV. EXAMPLES

A. One-dimensional dissipative system

As the first example we consider the application of the
hydrodynamic quantization procedure described in Sec. III C
to a one-dimensional system consisting of one body of mass
m for which the Newton equation of motion is given by

d2q

dt2 = −
�1+�

m

dq

dt

dq

dt

�

+
F�q�

m
, �76�

where � and � are positive constants, and the force F�x� is
potential.

The first two steps of the hydrodynamic quantization lead
to the continuity equation, Eq. �11�, and by completing the
third step of the procedure we get

�tv�x,t� + v�x,t��xv�x,t� = −
�1+�

m
v�x,t��v�x,t��� +

F�x�
m

.

�77�

Next, if Eq. �77� is complemented with the appropriate term
Q����x , t��, which in the present case is equal to
��2 /2m2��xTx���x , t��, where the operator Tx�f� is defined by
Eq. �31�, we obtain
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�tv�x,t� + v�x,t��xv�x,t� = −
�1+�

m
v�x,t��v�x,t��� +

F�x�
m

+
�2

2m2�x� �x
2���x,t�
���x,t�

� . �78�

Of course, according to the quantization procedure, the av-
erage energy of the system is then given by Eq. �37�, which
is consistent with our considerations in Sec. II.

We note that if � vanishes, Eq. �78� becomes Eq. �30� and
we get the system of equations obtained in Sec. II D. More-
over, if � does not vanish, but � is equal to zero, we get the
equations obtained in Sec. III A that allow us to derive the
Schrödinger-Langevin equation for the system’s wave func-
tion defined by Eq. �28� �6,10,23,30�. If both � and � are
different to zero, we are still able to obtain an evolution
equation for the system’s wave function, but it is a compli-
cated differential-integral equation that cannot be easily
solved.

B. Two-dimensional dissipative system

Having presented the application of the hydrodynamic
quantization to a one-dimensional system, we now apply it to
a two-dimensional dissipative system. Namely, we consider a
system for which the following Newton equations are satis-
fied in classical mechanics:

d2q1

dt2 =
1

m1
�− �

dq1

dt
+ B

dq2

dt
+ F1�q1,q2�� , �79�

d2q2

dt2 =
1

m2
�− �

dq2

dt
− B

dq1

dt
+ F2�q1,q2�� , �80�

where � and B are non-negative constants, and F�q1 ,q2� is a
potential force.

If the hydrodynamic quantization procedure is applied to
this system, we find that the two-dimensional continuity
equation, Eq. �54�, is satisfied along with the following pair
of equations:

�tv1 + �
�=1,2

v���v1 =
1

m1
�− �v1 + Bv2 + F1 +

�2

2
�1S���� ,

�81�

�tv2 + �
�=1,2

v���v2 =
1

m2
�− �v2 − Bv1 + F2 +

�2

2
�2S���� ,

�82�

where S�f� is defined by Eq. �58�. At the same time the
average energy of the system is given by

�E� =� d2x� �
�=1,2

m�

2
v�

2�x1,x2,t� + V�x1,x2����x1,x2,t�

+ �
�=1,2

�2

2m�
� d2x���

���x1,x2,t��2, �83�

where V�x1 ,x2� denotes the potential of the force F�x1 ,x2�.

Of course, if V�x1 ,x2�=V1�x1�+V2�x2� this equation is prac-
tically equivalent to Eq. �51�, which is consistent with our
considerations in Sec. III B.

Now, it follows from the discussion in Appendix F that if
B=0, the time derivative of the quantity �C defined by

�C = �
C

ds · p�s1,s2,t� , �84�

where C is a closed contour in the system’s configurational
space, and p��x1 ,x2 , t�=m�v��x1 ,x2 , t�, �=1, 2, is propor-
tional to the circulation of the velocity field. Thus if the
initial circulation of the velocity field is equal to zero and �C
vanishes initially for any closed contour C, we can define the
system’s wave function in the following way:


�x1,x2,t� = ���x1,x2,t�exp� i

�
�

x0

x

ds · p�s1,s2,t�� ,

�85�

where x0 is a fixed point in the system’s configurational
space and x= �x1 ,x2�. Then, we can use Eqs. �54�, �81�, and
�82� to derive the evolution equation for 
�x1 ,x2 , t�, which is
the known Schrödinger-Langevin equation �6,10�.

If B�0, but �=0, the quantity �C�B� defined by

�C�B� = �
C

ds · �p�s1,s2,t� + A�s1,s2�� , �86�

where A�x1 ,x2�= �B /2��−x2 ,x1�, is a constant of motion for
any closed contour C in the system’s configurational space,
which is shown in Appendix F. Then, if �C�B� is initially
equal to 2�n�, where n is an integer, for any closed contour
C, we can define 
�x1 ,x2 , t� in analogy with Eq. �85�, i.e.,


�x1,x2,t� = ���x1,x2,t�exp� i

�
�

x0

x

ds · �p�s1,s2,t�

+ A�s1,s2��� . �87�

Next, we can use Eqs. �54�, �81�, and �82� to obtain the
following Schrödinger equation for 
�x1 ,x2 , t�:

i��t
 =
1

2m1
��

i
�1 +

B

2
x2�2


 +
1

2m2
��

i
�2 −

B

2
x1�2


 + V
 ,

�88�

which may be verified by deriving the evolution equations
for the amplitude and phase of the wave function from this
equation and using Eq. �87� to relate these quantities to the
configurational probability density and probability velocity
field of the system �1�.

Of course, Eq. �88� is very similar to the Schrödinger
equation for a particle in magnetic field, since the force rep-
resented by the terms proportional to B in Eqs. �79� and �80�
has been defined in analogy with the Lorentz force. Still, in
principle this force need not be a magnetic one. In fact, it
may be an arbitrary force that is always perpendicular to the
system’s velocity field.
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If both � and B are different than zero, neither �C nor
�C�B� can be independent of time unless the velocity field is
constant and equal to zero, which is demonstrated in Appen-
dix F. For this reason, if both � and B are different to zero, it
is impossible to define the system’s wave function and, con-
sequently, to use the Schrödinger equation or another wave
equation for describing its evolution.

At first sight this may seem to be a serious issue, but
fortunately it can be easily understood. Namely, as far as
dissipative systems are concerned, we can always assume
that they are in contact with another, possibly large, system
called the environment and they lose energy as a result of
some, possibly complicated, interactions with it �6,7�. More-
over, in principle it is possible to treat the system and the
environment together as yet another, larger system called the
universe, which can be regarded as nondissipative �6,7,9�.
Then, it is reasonable to expect that the evolution equations
for the dissipative system under consideration can be ob-
tained by averaging the evolution equations for the universe
over the environmental degrees of freedom. It is even pos-
sible to prove this for some simple models of the interactions
between the system and the environment �6,7,9�. Therefore
in general we should rather not expect any dissipative system
to have a well-defined wave function, as this would mean
that the system’s evolution is in fact independent of the evo-
lution of the environment. Accordingly, it is plausible that no
wave function can be defined for a dissipative system. On the
other hand, if the considered system is not dissipative, it is
possible to obtain the Schrödinger equation for it with the
help of Eqs. �54�, �81�, and �82�, provided that the system’s
probability velocity field satisfies specific condition at the
initial instant of time.

C. Dissipative system in magnetic field

To provide yet another example application of the quan-
tization procedure described in Sec. III we consider a system
consiting of one body of mass m and electric charge e that
moves in a three-dimensional space and is acted on by elec-
tromagnetic forces as well as by a friction force proportional
to its velocity.

In classical mechanics we have the following Newton
equation for the system:

d2q

dt2 =
e

m
�E�q� +

dq

dt
� B�q�� −

�

m

dq

dt
, �89�

where � is a non-negative constant, and E�x�, B�x� denote
the electric and magnetic fields, respectively. Therefore by
applying the hydrodynamic quantization procedure to the
system we get the following equations:

�

�t
��x,t� = − � · ���x,t�v�x,t�� , �90�

�

�t
v�x,t� + �v�x,t� · ��v�x,t�

=
e

m
�E�x� + v�x,t� � B�x�� −

�

m
v�x,t�

+
�2

2m2 � � 1
���x,t�

����x,t�� , �91�

which is a known result �21�. Moreover, we find that the
average energy of the system is given by

�E� =� d3x��m

2
v2�x,t� + e ��x����x,t� +

�2

2m
�����x,t��2� ,

�92�

where ��x� is the potential of the electric field E�x�.
If �=0, Eqs. �90� and �91� become the well-known hy-

drodynamic equations of quantum mechanics for a system in
magnetic field �1,27,29�. Then, it is possible to obtain the
Schrödinger-Langevin equation from these equations pro-
vided that the quantity �C�B�, defined in analogy with Eq.
�86�, is equal to 2�n� for any C at the initial instant of time
�1�.

If the magnetic field B�x� vanishes, it is possible to obtain
the Schrödinger equation with the help of Eqs. �90� and �91�
if the quantity �C, defined in analogy with Eq. �84�, is equal
to zero for any C at the initial instant of time.

If ��0 and B�x� does not vanish, the system’s wave
function is generally not well defined, because neither �C�B�,
nor �C is independent of time, unless the velocity field is
constant and equal to zero. Consequently, in that case it is
generally impossible to use any wave equation for describing
the system �21�. Still, to explain this we can use the same
arguments that have been used in Sec. IV B.

V. STATIONARY STATES

A. Stationary states of dissipative systems

In Sec. IV we have applied the hydrodynamic quantiza-
tion proceure to some dissipative systems and we have ob-
tained evolution equations that become well-known equa-
tions of quantum mechanics when the dissipation of energy
in these systems is negligible. In principle these equations
can be used to analyze the behavior of the corresponding
systems from the quantum-mechanical point of view, but un-
fortunately they are heavily nonlinear and therefore generally
difficult to solve. Yet, their solutions that correspond to sta-
tionary states of the systems can be found relatively easily.

To show this we first observe that for any dissipative sys-
tem there is a state of minimal energy, such that if the system
is in this state, its energy cannot decrease any more. In clas-
sical mechanics this state corresponds to the global minimum
of the system’s potential energy, if one exists �31�. In quan-
tum mechanics it should correspond to the minimum of the
system’s average energy regarded as a functional of its con-
figurational probability density ��x , t� and probability veloc-
ity field v�x , t�.

It follows from the discussion in Sec. III C that in quan-
tum mechanics the average energy of a typical n-dimensional
system is given by

�E� =� dnx���
�=1

n
m�

2
v�

2�x,t� + V�x����x,t�

+ �
�=1

n
�2

2m�

���
���x,t��2� , �93�

where V�x� is the combined potential of all potential forces
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in the system, including the forces of interactions between its
components. Hence the contribution of the velocity field to
system’s average energy is always non-negative, so if we
find the minimum of �E� for v�x , t� equal to zero, it will be
lesser than any value of �E� for a nonzero velocity field. Thus
we only need to find the minimum of the average energy for
v�x , t� equal to zero, in which case it can be treated as a
functional of ��x , t�.

For this purpose it is convenient to denote the square root
of ��x , t� by ��x�, omitting the irrelevant time variable, and
regard �E� as a functional of it. Then, to find the minimum of
the average energy for v�x , t� equal to zero, we need to find
��x� for which the functional

E��� =� dnx�V�x��2�x� + �
�=1

n
�2

2m�

�����x��2� �94�

attains its minimal value under the additional condition that
the integral of �2�x� over the whole available space must be
equal to 1. The necessary condition of the existence of such
a minimum is the vanishing of the functional derivative with
respect to ��x� of the functional

I��� =� dnx��V�x� − E���2�x� + �
�=1

n
�2

2m�

�����x��2� ,

�95�

where E� is an unknown constant that has to be determined
along with ��x�.

The functional derivative of I��� with respect to ��x� is
given by

�I���
���x�

= 2�V�x� − E� − �
�=1

n
�2

2m�

��
2���x� , �96�

so E��� can only attain its minimum for ���x� that satisfies
the following Schrödinger equation without time:

�− �
�=1

n
�2

2m�

��
2 + V�x����x� = E���x� . �97�

For a typical boundary conditions this equation has a count-
able set of real-valued solutions ���x� that generally corre-
spond to different constants E�, and the set of all E� is lower
bounded �2�. Moreover, we have

E���� = E�, �98�

which follows directly from Eqs. �94� and �97�, so we can
state that the minimal average energy of the system is equal
to the least of E�. Thus if the least of E� is denoted by E0, the
configurational probability density for which the system’s
average energy attains its minimal value is equal to �0

2�x�.
Moreover, since the coefficient that multiplies �����x��2 in
Eq. �95� is positive and independent of x, each of ���x�
corresponds to a local minimum of the system’s average en-
ergy.

Now, we assume that the initial velocity field v�x , t0� is
equal to zero and the initial configurational probability den-
sity of the system ��x , t0� is equal to the square of an arbi-

trary real-valued solution of Eq. �97�, ���x�. Then, it follows
from the continuity equation, Eq. �2�, that the time derivative
of ��x , t� at the time t0 vanishes, so the configurational prob-
ability density does not change at this instant of time. More-
over, if zero and ��

2�x� are substituted for v�x , t0� and
��x , t0�, respectively, in the evolution equations for v��x , t�,
we get

�tv��x,t�t=t0
=

F��x,0�
m�

+
�2

2m�

����
�=1

n
1

m�

��
2���x�
���x� �,

� = 1,2,…,n , �99�

where we have assumed that the force does not explicitly
depend on time. Hence, since in a typical situation we can
assume that F��x ,0�=−��V�x�, we have

�tv��x,t�t=t0
= −

1

m�

���V�x� − �
�=1

n
�2

2m�

��
2���x�
���x� �,

� = 1,2,…,n , �100�

and it follows from Eq. �97� that the expression in the square
bracket is a constant. Thus we find that the time derivative of
v�x , t� at the time t0 vanishes, so the velocity field does not
change at this instant of time too. Consequently, since neither
��x , t� nor v�x , t� changes at the time t0, they remain constant
with respect to time and the system does not evolve. It is
therefore in a stationary state represented by the time-
independent state probability density s�x ,u�=��

2�x���u�.
We can conclude that for a quantum-mechanical dissipa-

tive system every real-valued solution of Eq. �97� corre-
sponds to a stationary state of it and, simultaneously, to a
local minimum of its average energy. Moreover, in a typical
situation there are no other stationary states of the system,
because it starts to dissipate energy once its velocity field is
different than zero. Thus contrary to dissipative systems in
classical mechanics quantum-mechanical dissipative systems
have many stationary states in which they can stay forever.
Still, this is consistent with the observation made in the early
days of the quantum theory that there were stable “orbits” in
which the quantum system could stay forever, although in
the same physical situation its classical counterpart would
continuously dissipate energy and would end up in the mini-
mum of its potential energy �1�.

It is important to stress that we do not need to use the
evolution equations to determine the system’s stationary
states, because they correspond to local minima of its aver-
age energy. We have only used the evolution equations to
show that these states are really stationary, but in fact even
this is not necessary. Namely, if the system is initially in a
state that corresponds to a local minimum of its average en-
ergy, its state cannot change until it is provided with some
additional energy, so for a dissipative system this state must
be stationary. Thus the existence of the system’s stationary
states as well as their representation are consequences of the
fact that the system’s average energy depends on the con-
figurational probability density in a specific way. Therefore
the existence of these states is strictly related to the existence
of the energy of concentration.
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B. Dissipative vs nondissipative systems

As far as stationary states are concerned, quantum-
mechanical nondissipative systems can be divided into two
distinct categories comprising, respectively, the systems in
which there are forces that are always perpendicular to the
system’s probability velocity field, and the systems in which
there are no such forces.

It turns out that the stationary states of the systems be-
longing the second category can generally be determined
with the help of Eq. �97�, although for a nondissipative sys-
tem they correspond to complex-valued as well as to real-
valued solutions of this equation �1�.

The real valued solutions of Eq. �97� that we denote by
���x� correspond to the stationary states of the system in
which the probability velocity field is equal to zero, repre-
sented by the state probability densities s�x ,u�=��

2�x���u�.
Thus they also correspond to the stationary states of many
different quantum-mechanical dissipative systems that are
acted on by the same set of potential forces. Hence a
quantum-mechanical nondissipative system being in one of
these states is practically indistinguishable from a dissipative
system subject to the same set of potential forces. Generally,
as long as the probability velocity field is identically equal to
zero, all quantum-mechanical systems acted on by the same
set of potential forces are indistinguishable.

The complex-valued solutions of Eq. �97� that we denote
by ���x� correspond to the stationary states of the system in
which the probability velocity field is nonzero. Of course in
those states the divergence of the product of the configura-
tional probability density ��x� and velocity field v�x� has to
vanish so that ��x� can be independent of time, which is only
possible in two or more dimensions. Moreover, as we show
in Appendix G, ���x� correspond to the local minima of the
system’s average energy determined under the additional
condition that for any closed contour C in the system’s con-
figurational space

�
C

ds · p�s� = 2�k�, k = ± 1, ± 2,… , �101�

where p��x�=m�v��x�, and the scalar product is defined in a
standard way. Accordingly, the relationship between ���x�
and the pair of quantities ��x� and v�x� is such that the com-
ponents of the velocity field can be obtained with the help of
the formula

��x�v��x� =
i�

2m�

����x�����
*�x� − ��

*�x������x�� ,

�102�

which is analogous to Eq. �28�. Therefore the states that cor-
respond to ���x� cannot be stationary for a dissipative sys-
tem, because the energy of it is decreasing whenever its
probability velocity field is different than zero. As a result of
this, any quantum-mechanical nondissipative multidimen-
sional system that is only subject to potential forces has sub-
stantially more stationary states than dissipative systems
acted on by the same set of potential forces, but one group of
its stationary states overlaps with the stationary states of the

dissipative systems. Consequently, if a once nondissipative
quantum-mechanical system of this kind starts to be dissipa-
tive, it loses the majority of its stationary states, but some of
them remain stationary in the new physical situation.

A quantum-mechanical nondissipative system acted on by
forces that are always perpendicular to its probability veloc-
ity field has a completely different pattern of stationary
states, which is a direct consequence of a specific assumption
regarding the circulation of the velocity field of the system.
Namely, for an n-dimensional system the component F�

��x , t�
of the sum of forces that are always perpendicular to the
system’s probability velocity field can be represented by

F�
��x,t� = �

�=1

n

v��x,t����A��x� − ��A��x�� , �103�

where the quantity A�x� plays the role of a vector potential,
and it is required that for any closed contour C in the sys-
tem’s configurational space

�
C

ds · �p�s,t� + A�s�� = 2�k� , �104�

where k is an integer, so that the system’s wave function is
well defined and the Schrödinger equation can be used to
describe its evolution �1�.

Now, it is shown in Appendix G that under the above
condition the stationary states of the system correspond to
the solutions of the equation

��
�=1

n
1

2m�
��

i
�� − A��x��2

+ V�x�����x� = E����x� ,

�105�

where V�x� is the combined potential of all potential forces
in the system, and they also correspond to local minima of
the system’s average energy. Thus all of the stationary states
of the system correspond to nonzero velocity fields and none
of them can be stationary if the system is dissipative. Con-
sequently, if a once nondissipative quantum-mechanical sys-
tem of this kind starts to be dissipative, it loses all of its
“original” stationary states, but it acquires “new” stationary
states that correspond to the vanishing velocity field.

VI. CONCLUSIONS

The proposed hydrodynamic method of the quantization
of mechanical systems is based on two main assumptions.
The first of them is related to the existence of the energy of
concentration, which is a special type of energy that is not
taken into consideration in classical mechanics. The second
one, the principle of classical dissipation, means that the only
new forces appearing in quantum mechanics are those nec-
essary to make the principle of the conservation of energy
hold in spite of the existence of the energy of concentration.
Consequently, all of the quantum-mechanical corrections to
the system’s average energy as well as to the evolution equa-
tions are of the orders of �2, since all of the contributions to
the energy of concentration are proportional to the square of
�.
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The structure of the energy of concentration is analogous
to the structure of the classical-mechanical kinetic energy,
since for any system it is symmetrically distributed among its
Cartesian configurational coordinates. Namely, for each Car-
tesian configurational coordinate of the system there is a
separate contribution to the energy of concentration, the con-
tributions corresponding to different coordinates are mutu-
ally symmetrical and additive, and none of the coordinates is
favored in any way. Therefore the energy of concentration
can be and usually is regarded as a part of the system’s
kinetic energy. Still, the energy of concentration depends
only on the system’s configurational probability density and
is always exactly positive, even for the system being in a
stationary state.

In classical mechanics the system can only be in a station-
ary state if its velocity field is equal to zero. Moreover, if
there are any minima of the system’s potential energy, its
configurational probability density corresponding to a sta-
tionary state must be singular and equal to ��x0�, where x0 is
a point at which the system’s potential energy attains its lo-
cally minimal value. In quantum mechanics, thanks to the
energy of concentration, typically there are infinitely many
stationary states of the system that are not necessarily di-
rectly related to local minima of the system’s potential en-
ergy, since they all correspond to local minima of the sys-
tem’s total quantum-mechanical average energy including
the energy of concentration. Therefore they exist even if the
system is in principle dissipative, in which case they repre-
sent the stable “orbits” that can be occupied by the quantum-
mechanical system, even if its classical counterpart in the
analogous physical situation would continuously dissipate
energy.

For nondissipative systems the proposed method of quan-
tization reproduces the equations that are well known and
can be obtained with the help of some other quantization
procedures. For dissipative systems it also allows us to re-
produce some known results, such as the Schrödinger-
Langevin equation, or the hydrodynamiclike equations for a
three-dimensional dissipative system in magnetic field. How-
ever, it can also be applied to dissipative systems where the
Hamiltonian and the Lagrangian do not exist, and for some
dissipative systems it leads to completely different evolution
equations that cannot be obtained using any other systematic
approach like, for example, Eq. �78�.

Importantly enough, the presented approach allows us to
treat noninteracting parts of a quantum-mechanical dissipa-
tive system as separate systems satisfying independent evo-
lution equations. Namely, if the system consists of two or
more noninteracting parts, its configurational probability
density factorizes and this leads to the separation of its non-
interacting subsystems, although the nonconservative forces
responsible for the dissipation of energy acting on each of
these subsystems individually can be arbitrary. Moreover,
there is no reason for which this approach should not be
applicable to systems acted on by forces that cause their
energy to increase. It is generally applicable to virtually any
system acted on by forces that in classical mechanics can be
expressed in terms of the system’s position and velocity.
Therefore it is particularly well suited for the treatment of
systems in which the forces are only known up to some

phenomenological coefficients determined by fitting theoret-
ical results to experimental data.

As far as dissipative systems are concerned, it is reason-
able to assume that their energy decreases because of some
interactions between them and other larger systems of many
more degrees of freedom in which the energy can be distrib-
uted in many more different ways. Thus if the interactions
between the system in question and the other systems are
known exactly, it is formally more appropriate to consider all
of the interacting systems together as one huge nondissipa-
tive system and derive the necessary evolution equations for
one of its parts from its own evolution equations. Yet, in
many situations this is impractical or even impossible due to
overwhelming complications. In that cases it sometimes is
possible to guess the forces acting on the system by compar-
ing experimental data with a simple theoretical model, and
the proposed quantization method can be used in developing
such models. Namely, it allows us to devise some formulae
for the nonconservative forces acting on the system, put
them into the system’s evolution equations and look if they
lead to results consistent with the available empirical data. If
they do, we can use the model to make some predictions
without even knowing what the interactions between the sys-
tem and its neighborhood may be, and we do not need to take
the structure of the system’s neighborhood into consider-
ation. This may be a great advantage in the situations in
which the system’s neighborhood is highly complicated and
its interactions with the system are convoluted.

Arguably, quantum mechanics is only necessary to make
predictions regarding systems of the subatomic or atomic
scale which interact via well-known forces, so the need for
the phenomenological approach described above seems to be
very limited. Still, some effects of apparently quantum-
mechanical origin have been observed in the systems that are
in fact macroscopic and interact with their neighborhood in a
complicated way. Besides, the scale on which the existence
of the energy of concentration starts to affect the system’s
behavior is actually defined by the ratios of the Planck’s
constant to the masses of the system’s components, so it is
different for systems in which these masses are different.
Accordingly, even in a macroscopic system there can be a
parameter playing the role of effective mass, so small that in
predicting the system’s evolution we ought to take the energy
of concentration into account. In such a case the presented
hydrodynamic quantization may be quite useful.

It is also important to remember that evolution equations
are used not only in physics. In the other sciences, like eco-
nomics or biology, there are dynamical systems that can be
modeled with the help of various evolution equations. The
structure of some of these equations is similar to the struc-
ture of the equations of classical mechanics, although usually
they are nonlinear and correspond to the classical-
mechanical equations for systems acted on by nonconserva-
tive forces. It is therefore interesting whether these nonme-
chanical systems may behave like quantum systems in
physics and, if so, in what conditions. However, we can only
verify this by using evolution equations that correspond to
the quantum-mechanical equations of motion for analogous
physical systems, and the proposed hydrodynamic quantiza-
tion method seems to be suitable for this purpose.

RAFAEL J. WYSOCKI PHYSICAL REVIEW A 72, 032113 �2005�

032113-16



APPENDIX A: SEMIPURE JOINT P
ROBABILITY DENSITIES

Let us assume we have two random variables x̃ and ũ that
represent the position of certain physical system and another
quantity which may be related to the system’s velocity, re-
spectively.

For these random variables there is the set 
 of all func-
tions that can be their joint probability densities, some ele-
ments of which are special. Consider, for instance, the func-
tion

d�x,u� = ��x − x0���u − u0� , �A1�

where x0 is a fixed point in the system’s configurational
space, and u0 is a fixed real number. If d�x ,u� is the joint
probability density of x̃ and ũ, they are not really random
variables, since their only possible values are x0 and u0, re-
spectively. In that case, if x̃ represents the system’s position
and ũ represents its velocity at certain time t, the system’s
position and velocity at the time t are known exactly. Thus
since the states in which the system’s position and velocity
are known exactly can be referred to as pure states of the
system �1�, d�x ,u� may be referred to as a pure joint prob-
ability density of x̃ and ũ.

Further, it is instructive to observe that in classical me-
chanics the state probability density of the system may be
pure at any instant of time. Namely, if the function q�t� sat-
isfies the system’s Newton equation of motion, its state prob-
ability density can be defined by

sq�x,u,t� = �„x − q�t�…�„u − q̇�t�… , �A2�

where q̇�t� denotes the time derivative of q�t�. Of course q�t�
can only be determined if the initial position and velocity of
the system are known exactly. However, if the system’s po-
sition at certain instant of time t is not known exactly, we
need to use a random variable x̃ with the probability density
��x� to represent its position at that time. In that case, if the
system’s velocity at the time t is known independently of its
position and equal to u0, the system’s state at the time t can
be represented by the probability density

ps�x,u� = ��x���u − u0� , �A3�

which is pure only with respect to the system’s velocity.
Accordingly, ps�x ,u� may be called a strictly semipure joint
probability density of x̃ and ũ.

In classical mechanics the strictly semipure probability
density ps�x ,u� represents the state in which the system’s
velocity is exactly equal to u0 independently of the actual
value of its position. There are some cases in which such an
assumption can be made. For example, if the force F�x� in
Eq. �19� is in fact independent of x, there are solutions of
Eqs. �11� and �19� that correspond to strictly semipure state
probability densities. Usually, however, it is unrealistic, so
the usefulness of strictly semipure probability densities is
quite limited. Yet, often the system’s velocity is not really
random, but it depends on the system’s position, which is
random. In other words, we can often say exactly what the
system’s velocity is, provided that someone tells us the ac-
tual value of its position, but as long as the system’s position

is not known, its velocity is not known either. Then, the
information on the system’s velocity that we have can be
represented as a function vp�x�, and we can generalize Eq.
�A3� by using vp�x� instead of u0. Hence we get

p�x,u� = ��x��„u − vp�x�… , �A4�

and p�x ,u� may be referred to as a semipure joint probability
density of x̃ and ũ, since it represents the state in which the
system’s velocity is only random because it depends on the
system’s position that is really random �23�. Moreover, since
Eq. �A4� is analogous to Eq. �24�, vp�x� may be referred to as
the velocity field of p�x ,u�.

The applications of semipure joint probability densities
are not as limited as the applications of strictly semipure
probability densities. For example, we have shown in Sec.
II C that Eqs. �11� and �19� can only be satisfied if the sys-
tem’s initial state is represented by a semipure probability
density, in which case its state probability density is semi-
pure at any instant of time. Furthermore, it turns out that this
probability density satisfies the Liouville equation.

To show this we differentiate the probability density
s�x ,u , t� given by Eq. �24�, where ��x , t� and v�x , t� satisfy
Eqs. �11� and �19�, with respect to time. Hence we get

�ts�x,u,t� = − �x���x,t�v�x,t���„u − v�x,t�…

+ �v�x,t��xv�x,t� −
F�x�

m
���x,t��u�„u − v�x,t�… ,

�A5�

which can be rewritten in the following way:

�ts�x,u,t� = −
F�x�

m
�us�x,u,t� − u�„u − v�x,t�…�x��x,t�

+ ��x,t�v�x,t���xv�x,t���u�„u − v�x,t�…

− ��x,t��„u − v�x,t�…�xv�x,t� . �A6�

Next, we notice that

u��x,t���xv�x,t���u�„u − v�x,t�…

= ��x,t�v�x,t���xv�x,t���u�„u − v�x,t�…

− ��x,t��„u − v�x,t�…�xv�x,t� , �A7�

and

�xs�x,u,t� = �„u − v�x,t�…�x��x,t�

− ��x,t���xv�x,t���u�„u − v�x,t�… . �A8�

This allows us to transform Eq. �A6� so that

�ts�x,u,t� = −
F�x�

m
�us�x,u,t� − u�xs�x,u,t� , �A9�

which is the Liouville equation for s�x ,u , t�.
Interestingly enough, semipure joint probability densities

can also be used for representing states of quantum-
mechanical systems, which is discussed in Sec. II D, al-
though in these cases the interpretation of the second random
variable ũ is not clear.
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APPENDIX B: PROPERTIES OF THE ENERGY OF
CONCENTRATION

To understand the influence of the term proportional to
�� /m� in Eq. �37�, it is advisable to examine the behavior of
the functional U�f� given by Eq. �38�. For this purpose we
note that the square root is monotonic, so the sign of the
derivative of the square root of a function always reflects the
sign of the derivative of the function itself. Therefore the
values of U�f� are greater for wildly varying functions and
smaller for functions that do not vary a lot. In particular, for
constant functions U�f� is equal to zero.

Of course, the system’s configurational probability den-
sity cannot be a constant function as long as it is assumed to
be smooth. Namely, it must vanish on the boundaries of the
system’s configurational space, as the probability of finding
the system outside of its configurational space is zero, and at
the same time the integral of it over the whole system’s con-
figurational space must be equal to 1. For this reason
U���x , t�� is always positive. Furthermore, the normalization
of ��x , t� implies that in can only be significantly varying
when it has steep and narrow maxima.

To illustrate this we consider the well-known Gaussian
probability density defined by

�G�x� =
1

�2��x
exp�−

�x − x0�2

2��x�2 � , �B1�

where x0 is the average x and �x is the standard deviation of
x from x0. Obviously the maximal value of �G�x� which oc-
curs for x=x0 is inversely proportional to �x. It is also
known that the probability of x being less than �x0−3�x� or
greater than �x0+3�x� is negligible. In other words �G�x� is
concentrated between �x0−3�x� and �x0+3�x�. Accordingly,
it is more concentrated if �x is small and it is less concen-
trated if �x is large. Hence the more concentrated is the
function, the steeper and narrower is its maximum at x0.

Now, it is straightforwad to verify that

U��G�x�� = ��x�−2, �B2�

so U��G�x�� is a measure of the concentration of �G�x�.
Moreover, it is not difficult to convince oneself that for any
probability density ��x� the value U���x�� is a measure of its
concentration. Indeed, if ��x� is highly concentrated, it has at
least one peak that corresponds to a relatively high maximal
value, which follows from the fact that ��x� must be normal-
ized. Then, this peak is steep and narrow, so in the vicinity of
it the derivative of ���x� attains considerably large absolute
values and the contribution of it to the integral on the right-
hand side of Eq. �38� is substantial. On the other hand, if ��x�
is not concentrated, its maxima are broad and smooth and the
derivative of ���x� is close to zero for any x, so U���x�� is
small. Accordingly, the quantum-mechanical contribution to
the average energy of the system proportional to U���x , t��
may be referred to as the energy of concentration, since it is
a measure of the concentration of the system’s configura-
tional probability density. Apparently, it represents the
amount of energy available to the system just because its

configurational probability density is more or less concen-
trated.

To provide a more in-depth interpretation of the energy of
concentration, it is convenient to consider the problem of
forcing a particle to stay in certain area of space. Namely, to
make a particle stay in a specific area we have to use some
forces that will prevent it from leaving that area and the
question arises how much energy we will have to spend to do
this.

For example, if the particle is confined to only one dimen-
sion we can formally use two infinitely high potential barri-
ers which can be moved along the track of the particle to
make it stay in a specific section of its configurational space.
We can also assume for simplicity that the barriers are ini-
tially infinitely far away from each other and that if there is
no particle between them, the energetic cost of moving them
is zero. Now, the question is how much energy it will cost to
set the distance between the barriers to D if we put the par-
ticle between them.

It should be clear that if we move the barriers carelessly,
we will probably waste a considerable amount of energy for
shorting the distance between them, because each time we
move a barrier we can potentially accelerate the particle.
Still, according to the laws of classical mechanics, if we take
maximal care when moving the barriers, we ought to be able
to avoid any transfers of energy from the barriers to the
particle. Thus it follows from classical mechanics that we do
not need to spend any amount of energy to move the barriers
to the distance D from each other, whether there is a particle
between them or not. In quantum mechanics, however, there
is the energy of concentration which represents the amount
of energy available to the particle just because the probabil-
ity of finding it outside of the area between the barriers is
equal to zero. This energy may not come from nowhere, so it
has to be provided by us in the process of moving the barri-
ers. Hence in quantum mechanics the minimal energy re-
quired to move the barriers to the distance D from each other
is equal to the minimal energy of concentration of the par-
ticle trapped between them. We are now going to compute
this energy.

For this purpose we treat the energy of concentration as a
functional of the function ��x� equal to the square root of the
particle’s configurational probability density ��x�, i.e.,

Ec��� =
�2

2m
� dx��x��x��2, �B3�

where m denotes the mass of the particle. To find the mini-
mal particle’s energy of concentration we need to determine
the global minimum of Ec��� with the additional requirement
that the integral of the square of ��x� over the whole con-
figurational space of the particle be equal to 1. The necessary
condition of the existence of such a minimum is the vanish-
ing of the functional derivative with respect to ��x� of the
functional

I��� =
�2

2m
� dx���x��x��2 − E��2�x�� , �B4�

where the unknown constant E� has to be determined along
with ��x�.
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The functional derivative of I��� with respect to ��x� van-
ishes for ���x� that satisfy the following equation:

−
�2

2m
�x

2���x� = E����x� , �B5�

which of course is the well-known Schrödinger equation
without time for a free particle and the solutions of it are also
well known �1,2�. Namely, if the infinite potential barriers
are located in the positions −D /2 and D /2, the solution of
Eq. �B5� should vanish outside of the area between the bar-
riers and it also ought to be continuous. For this boundary
condition the solutions of Eq. �B5� are given by

���x� =�� 2
Dcos� ��

D x� , � = 1,3,5,…

� 2
Dsin� ��

D x� , � = 2,4,6,…� , �B6�

E� =
1

2m
��

��

D
�2

, � = 1,2,… . �B7�

Moreover, it follows from Eqs. �B3� and �B5� that Ec���� is
equal to E�, for each �, so the constants E� represent differ-
ent values of the energy of concentration corresponding to
different local minima of Ec����.

We only want to know the minimal energy required to
place the barriers at the distance D from each other, so we
only consider the solution of Eq. �B5� that corresponds to the
least of E�. In other words we assume that

��x� = �1
2�x� =

2

D
cos2��

D
x� , �B8�

and

Ec = E1 =
1

2m
���

D
�2

. �B9�

Hence we see that to make the particle stay in the area of the
size D between the barriers we need to spend at least the
amount of energy equal to Ec, which is inversely propor-
tional to the mass of the particle and to the square of the
distance D.

We can conclude that the existence of the energy of con-
centration makes it impossible to localize a particle in an
area that is too small, since the amount of energy required to
achieve this goal would be insanely large. Moreover, since
the energy of concentration is inversely proportional to the
mass of the particle, massive particles can generally be lo-
calized in smaller areas than less massive ones.

APPENDIX C: HEISENBERG UNCERTAINTY PRINCIPLE

We have asserted in Sec. II E that the inclusion of the
energy of concentration in the kinetic energy of the system
allows one to prove the Heisenberg uncertainty principle.
Indeed, if the energy of concentration is included in the ki-
netic energy, we have

�v2� =
2

m
��Eq� − �V�� =� dx v2�x,t���x,t� +

�2

m2U���x,t�� ,

�C1�

where the functional U�f� is given by Eq. �38�, which fol-
lows from Eq. �37�. Then, the variance of the system’s ve-
locity is given by

�2�v� = �v2� − �v�2

=� dx v2�x���x� +
�2

m2U���x�� − �� dx v�x���x��2

,

�C2�

where we have omitted the irrelevant time variable t. More-
over, it can be readily verified that

� dx v2�x���x� − �� dx v�x���x��2

=� dx�v�x� −� dq v�x���x��2

��x� , �C3�

the right-hand side of which is non-negative, so we get

�2�v� �
�2

m2U���x,t�� . �C4�

Now, we consider the function Z��� defined by

Z��� =� dx���x − ��x − �x������x,t��2, �C5�

which is real-valued and non-negative �1,23�. Namely, by
transforming the right-hand side of Eq. �C5� we obtain

Z��� = �2�x��2 + � + U���x�� , �C6�

where �2�x� is the variance of the system’s position, which
means that Z��� is quadratic with respect to �. Hence since
Z��� is non-negative, we have

1 − 4�2�x�U���x�� � 0. �C7�

Consequently, we get

�2�x��2�v� �
�2

4m2 , �C8�

which follows from Eqs. �C4� and �C7�. This means, how-
ever, that the Heisenberg principle for the system’s position
and velocity is satisfied.

APPENDIX D: PRINCIPLE OF CLASSICAL DISSIPATION

In the present appendix we argue that the term represented
by the unknown quantity ����x , t� ,v�x , t�� in Eq. �45� ought
to be equal to zero.

To start with, we show that the average energy of the
system, given by Eq. �37�, attains a global minimum that can
be found. Namely, we first observe that the average energy
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can only attain its minimum for the velocity field equal to
zero, since the contribution of the velocity field to the right-
hand side of Eq. �37� is never negative. Now, if the velocity
field is assumed to vanish, the remaining part of the average
energy that we denote by �Es� can be regarded as a functional
of the system’s configurational probability density ��x , t�.
Obviously it is also a functional of the square root of ��x , t�
that we denote by ��x�, omitting the irrelevant time variable
t, i.e.,

�Es� =� dx�V�x��2�x� +
�2

2m
��x��x��2� . �D1�

To find the minimum of the average energy we need to de-
termine the minima of �Es� under the condition that the inte-
gral of �2�x� over the whole system’s configurational space
must be equal to 1.

The necessary condition of the existence of such minima
of �Es� is the vanishing of the functional derivative with
respect to ��x� of the functional

I��� =� dx��V�x� − E���2�x� +
�2

2m
��x��x��2� , �D2�

where the unknown constant E� has to be determined along
with ��x�. This functional derivative vanishes for ���x� sat-
isfying the Schrödinger equation without time,

�−
�2

2m
�x

2 + V�x�����x� = E����x� , �D3�

the solutions of which are well known �1,2,26�. Specifically,
for a typical boundary condition it has a countable set of
solutions ���x� that generally correspond to different con-
stants E�, and the set of all E� is lower-bounded. Moreover,
we have

E� =� dx�V�x���
2�x� +

�2

2m
��x���x��2� , �D4�

so for the system’s configurational probability density equal
to the square of ���x� the energy �Es� is equal to E�. There-
fore the least of E� that we denote by E0 can be regarded as
the minimal energy of the system and the probability density
s0�x ,u�=�0

2�x���u� represents the state in which the system’s
average energy attains its minimum, or the system’s ground
state. Furthermore, each ���x� corresponds to a local mini-
mum of �Es�, because the coefficient multiplying the square
of �x��x� in Eq. �D2� is positive and independent of x. Thus
if the initial state of the system is represented by the prob-
ability density s��x ,u�=��

2�x���u�, its average energy cannot
change and this state must be a stationary state of the system.
In particular, the system’s ground state, represented by
s0�x ,u�, must be stationary.

We now see that Eq. �45� should be satisfied for the van-
ishing velocity field and ��x , t� equal to ��

2�x� which obvi-
ously is time independent. Hence we have

0 = �x� �2

2m

�x
2���x�
���x�

− V�x�� −
��

m
����

2�x�,0� , �D5�

which means that ����
2�x� ,0� is equal to zero for any �.

However, this practically means that ����x , t� ,0� is always
equal to zero, so ����x , t� ,v�x , t�� should depend on v�x , t�
in a significant way.

To investigate this further we compute the time derivative
of the system’s average energy given by

d

dt
�Eq� = − �� dx ��x,t�v�x,t��v�x,t� +

�

m
����x,t�,v�x,t��� ,

�D6�

where we have used some observations made in Sec. II E.
We notice that the right-hand side of this equation should
never be positive, as we do not expect the system to accu-
mulate energy. Moreover, the value of the integral on the
right-hand side of it should not depend on the sign of the
velocity field v�x , t�, because the change of the sign of v�x , t�
is equivalent to the change of the direction of the configura-
tional coordinate axis. Hence we have ����x , t� ,−v�x , t��
=−����x , t� ,v�x , t��. Furthermore, ����x , t� ,v�x , t�� cannot
be proportional to a negative power of v�x , t�, as it has to
vanish for v�x , t� equal to zero.

Of course, we can rewrite Eq. �D6� in the following form:

d

dt
�Eq� = − �� dx ��x,t�v2�x,t��1 +

�

m
����x,t�,v�x,t��� ,

�D7�

where the product of �� /m� and ����x , t� ,v�x , t�� is dimen-
sionless. Then, it follows from the above discussion that
����x , t� ,v�x , t�� is symmetrical with respect to the velocity
field. Moreover, we have

lim
�→0

�� v�x�����x�,� v�x��� = 0, �D8�

�

m
� dx ��x�v2�x�����x�,v�x�� � − 1, �D9�

for any smooth function v�x� and for any probability density
��x� for which the energy of concentration is finite. Also, the
product of �� /m� and ����x� ,v�x�� must vanish in the clas-
sical limit.

If all of the above-mentioned conditions are taken into
consideration, it is really hard to build a function that would
satisfy them all together using the quantities at our disposal,
i.e., ��x , t�, v�x , t�, V�x�, �, m, x, and any combination of
derivatives with respect to it, except for the trivial function
that is constant and equal to zero. Certainly, we could do this
with the help of an additional constant of appropriate dimen-
sion, but then the interpretation of this constant and the
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whole ����x , t� ,v�x , t�� would be very problematic. In par-
ticular, it would be necessary to relate this constant to the
energy of concentration which is strictly related to the
quantum-mechanical term in the evolution equations for
�=0. This would be clearly impossible, so we can safely
assume that there is no ����x , t� ,v�x , t�� in Eq. �45�, and this
assertion is the principle of classical dissipation.

APPENDIX E: MULTIDIMENSIONAL PROBABILITY
LIQUID IN CLASSICAL MECHANICS

In this appendix we derive the evolution equations for the
classical-mechanical probability liquid in many dimensions.

For this purpose we consider an n-dimensional system for
which the following Newton equations are satisfied in clas-
sical mechanics:

m�

d2q�

dt2 = F��q�t�,
dq

dt
,t�, � = 1,2,…,n , �E1�

where q�t� is the function the values of which represent the
system’s positions at different instants of time, and the total
force acting on the system may depend on its position as well
as on its velocity, and time. We note that these equations can
be represented as a system of first-order differential equa-
tions with respect to time. Namely, if the system’s velocity
function v�t�= �dq /dt� is introduced, we obtain the equations

d

dt
q = v , �E2�

d

dt
v� =

F��q,v,t�
m�

, � = 1,2,…,n . �E3�

We assume that the system’s initial position and velocity
are not known exactly, so its position at given instant of time
t should be represented by the random variable x̃�t� with the
probability distribution function P�x , t�. We denote the prob-
ability density of x̃�t�, which is the system’s configurational
probability density, by ��x , t� and assume that we know
��x , t0� for certain t0. We also assume that we know the
velocity field v�x , t0� which assigns specific velocity of the
flow of the probability liquid to each possible position of the
system x at the time t0.

In accordance with the discussion in Sec. II B we observe
that the probability distribution function P�x , t0�, the deriva-
tive of which is ��x , t0�, can be approximated by the follow-
ing staircase function:

P��xk�N,x,t0� = �
k=1

N+1

Pk�
�=1

n

��x� − xk�� , �E4�

where the symbols xk� denote the components of N fixed
points xk in the system’s configurational space, and the coef-
ficients Pk are defined in analogy with Eq. �5�. By differen-
tiating P��xk�N ,x , t0� with respect to all of the system’s

Cartesian configurational coordinates we obtain the initial
reduced configurational probability density of the system

���xk�N,x,t0� = �
k=1

N+1

Pk��x − xk� . �E5�

Next, we notice that if the points xk along with the veloci-
ties vk=v�xk , t0� are used as the initial conditions for the
system’s Newton equations, Eqs. �E1�, we obtain N solutions
of these equations, qk�t�, k=1,2 ,… ,N, of the following
properties:

qk�t0� = xk, 
dqk

dt



t0

= v�xk,t0� . �E6�

Hence we have

���xk�N,x,t� = �
k=1

N+1

Pk�„x − qk�t�… , �E7�

for t� t0.
By differentiating ���xk�N ,x , t� with respect to time we get

�t���xk�N,x,t� = − �
�=1

n

��j�
�1���xk�N,x,t� , �E8�

where the current j�1���xk�N ,x , t� is given by

j�1���xk�N,x,t� = �
k=1

N+1

Pk
dqk

dt
�„x − qk�t�… , �E9�

which means that

j�1���xk�N,x,t0� = ���xk�N,x,t0�v�x,t0� . �E10�

By differentiating the �th component of the current
j�1���xk�N ,x , t� with respect to time we obtain

�t j�
�1���xk�N,x,t� = �

k=1

N+1
1

m
F��x,

dqk

dt
,t�Pk�„x − qk�t�…

− �
�=1

n

��j��
�2���xk�N,x,t� , �E11�

where the quantity j��
�2���xk�N ,x , t� is given by

j��
�2���xk�N,x,t� = �

k=1

N+1 �dqk�

dt
��dqk�

dt
�Pk�„x − qk�t�… ,

�E12�

which follows from Eqs. �E1�.
Now, in order to avoid unnecessary complications, we

require a priori that the system’s state probability density be
semipure, i.e.,

s�x,u,t� = ��x,t��„u − v�x,t�… . �E13�
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This means that the velocity of the flow of the probability
liquid is defined unambiguously for any point x in the sys-
tem’s configurational space. In other words, the initial state
of the system is such that for any selection of the points xk
the time derivative of qk�t� taken at any time t can always be
replaced with the value of the system’s velocity field for
x=qk�t�, i.e.,

dqk

dt
= v„qk�t�,t…, k = 1,2,…,N . �E14�

Hence we have

�t�v��x,t����xk�N,x,t�� =
F�„x,v�x,t�,t…

m
���xk�N,x,t�

− �
�=1

n

���v��x,t�v��x,t����xk�N,x,t�� ,

�E15�

which is a consequence of Eqs. �E11� and �E12�.
We notice that Eq. �E15� is linear with respect to

���xk�N ,x , t� and, on the other hand, it should be satisfied for
any N and for any selection of the points xk. Therefore we
can replace ���xk�N ,x , t� in this equation with ��x , t�, which
leads to the following result:

�t�v��x,t���x,t�� =
F�„x,v�x,t�,t…

m
��x,t�

− �
�=1

n

���v��x,t�v��x,t���x,t�� .

�E16�

Similarly, we can obtain the continuity equation, Eq. �2�,
from Eq. �E8�, independently of the fact that it must always
be satisfied for the probability liquid. Moreover, we can use
Eq. �2� to transform Eq. �E16� so that we get

�tv��x,t� + �
�=1

n

v��x,t���v��x,t� =
F�„x,v�x,t�,t…

m
,

�E17�

and this equation has to be satisfied for each �=1,2 ,… ,n.
Thus we have obtained the required system of evolution
equations for the probability liquid consisting of Eqs. �2� and
�75�.

APPENDIX F: CIRCULATION OF THE PROBABILITY
VELOCITY FIELD

In the present appendix we examine the evolution of the
circulation of the probability velocity field v�x , t� of a mul-
tidimensional quantum-mechanical system such that

�tv��x,t� + �
�=1

n

v��x,t���v��x,t�

=
1

m�

�− � v��x,t� + F��x��

+
1

m�
�
�=1

n

v��x,t����A��x� − ��A��x��

+
�2

2m�

����
�=1

n
1

m�

��
2���x,t�
���x,t�

� , �F1�

for �=1,2 ,… ,n, where the force F�x� is potential, and the
constant � is non-negative.

First, we introduce the quantity

�C�t� = �
C

ds · �p�s,t� + A�s�� , �F2�

where p��x , t�=m�v��x , t�, the scalar product is defined in
the standard way, i.e., a ·b=��a�b�, and C is a closed con-
tour in the system’s configurational space. Next, we compute
the difference,

�C�t + �t� − �C�t� = �
C�t+�t�

ds · �p�s,t + �t� + A�s��

− �
C

ds · �p�s,t� + A�s�� , �F3�

where the contour C is transformed into the contour
C�t+�t� during the system’s evolution between the instants
of time t and t+�t �28�.

We notice that if the vectors x and y represent two points
located very close to each other in the contour C and
ds=x−y, then after the time �t the elements of the probabil-
ity liquid located initially at x and y will move to x
+v�x , t��t and y+v�y , t��t, respectively. Thus we have

ds�t + �t� = ds + �v�x + ds,t� − v�x,t���t

� ds + �t��
�=1

n

ds����v�x,t� . �F4�

Moreover, the difference between v�x , t� and v�x , t+�t� is
approximately equal to the total derivative of v�x , t� multi-
plied by �t, and analogously for the quantity A�x�. Therefore
Eq. �F3� can be transformed into the following equation:

�C�t + �t� − �C�t�

� �t�
C
�ds · �dp

dt
+

dA

dt
� + �p + A� · ��

�=1

n

ds����v� ,

�F5�

where we have omitted the terms proportional to ��t�2.
The integral on the right-hand side of Eq. �F5� can be

simplified if Eqs. �F1� and the definition of the total deriva-
tive, Eq. �72�, are taken into consideration. Namely, Eqs.
�F5�, �F1�, and �72� together lead to the following result:

RAFAEL J. WYSOCKI PHYSICAL REVIEW A 72, 032113 �2005�

032113-22



�C�t + �t� − �C�t�

� �t�
C

ds · �F − � v� + �t�
C
��

�=1

n

ds����
���

�=1

n �m�v�
2

2
+

�2

2m�

��
2��

��
��

+ �t�
C
��

�=1

n

ds���
�=1

n

v����A� − ��A����
+ �t�

C

ds · ��
�=1

n

v����A

+ �t�
C
��

�=1

n

ds���
�=1

n

���v��A��� , �F6�

and it is straightforward to verify that the sum of the last
three terms on the right-hand side of this equation is zero.
Moreover, the second term on its right-hand side vanishes,
because it is a closed-path integral of a gradient of a single-
valued function �28�. The term related to F�x� vanishes for
the same reason, and we get

d

dt
�C�t� = − ��

C

ds · v�x,t� . �F7�

The above result leads to some important conclusions.
First, if � is equal to zero, which means that the system is
nondissipative, the quantity �C�t� is a constant of motion, so
in that case, if Eq. �104� is satisfied at the initial instant of
time, it is possible to define the system’s wave function and
use the Schrödinger equation for determining its evolution.
Second, if A�x� vanishes and the circulation of the velocity
field is equal to zero at the initial instant of time, the quantity
�C�t� is a constant of motion and we can define the system’s
wave function in analogy with Eq. �86�. In that case a wave
equation can be used for describing the system too. However,
if both � and A�x� are different to zero, the system’s wave
function cannot be defined and the Schrödinger equation
cannot be used.

APPENDIX G: STATIONARY STATES OF
NONDISSIPATIVE SYSTEMS

In this appendix we consider the stationary states of
quantum-mechanical nondissipative systems.

We have shown in Sec. V A that the stationary states of a
quantum-mechanical dissipative system can be determined
with the help of Eq. �97�. Now, we are going to show that the
very same equation can be used for determining the station-
ary states of a nondissipative system which is not subject to
any forces given by Eq. �103�, provided that its velocity field
satisfies Eq. �101� for certain integer k, including k=0, for
any closed contour C in the system’s configurational space.

For this purpose we first observe that the velocity field of
the system corresponding to any stationary state for which
k=0 must vanish, because the divergence of its product with

the configurational probability density has to be equal to
zero. Thus if k=0, we can repeat the discussion presented in
Sec. V A, which leads to the conclusion that the real-valued
solutions of Eq. �97� correspond to the stationary states of
the considered system for k=0.

Assuming that k�0 and that the configurational probabil-
ity density ��x� and probability velocity field v�x� corre-
spond to a stationary state of the system, we can define a
complex-valued function

��x� = ���x�exp� i

�
�

x0

x

ds · p�s�� , �G1�

where x0 is an arbitrary fixed point in the system’s configu-
rational space. Then, ��x� is the product of ��x� and �*�x�,
and the components of v�x� each satisfy Eq. �102� with ��x�
substituted for ���x�. Thus we can express the average en-
ergy of the system, given by Eq. �93�, in terms of ��x� and
�*�x�, i.e.,

�E� =� dnx��
�=1

n
�2

2m�

��x�
*�x����x��x�� + V�x��*�x���x�� ,

�G2�

and we can regard it as a functional of ��x� and �*�x�.
Accordingly, the necessary condition of the existence of
minima of �E� is the vanishing of the functional derivatives
with respect to ��x� and �*�x� of the functional

I���x�,�*�x�� =� dnx��
�=1

n
�2

2m�

��x�
*�x����x��x��

+ �V�x� − E���*�x���x�� , �G3�

where the constant E� has to be determined along with ��x�
and �*�x�. Hence we find that the local minima of the aver-
age energy correspond to ���x� that satisfy Eq. �97�. We
must remember, however, that these minima have been de-
termined under specific assumption regarding the system’s
velocity field. Thus, formally, there could have been other
minima of the right-hand side of Eq. �93� attained for the
velocity fields that do not satisfy this condition and therefore
are treated as nonphysical �1�.

Now, if the right-hand side of Eq. �G1� is substituted for
���x� in Eq. �97�, we get

�
�=1

n

�����x�v��x�� = 0, �G4�

�
�=1

n

v��x���v��x� =
F��x�

m�

+
�2

2m�

����
�=1

n
1

m�

��
2���x�
���x�

� ,

�G5�

where F��x�=−��V�x�, and �=1,2 ,… ,n, which means that
the time derivatives of ��x� and v�x� are identically equal to
zero. Thus the states of the system that correspond to
complex-valued solutions of Eq. �97� are all stationary.
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If a quantum-mechanical nondissipative system is subject
to the force given by Eq. �103�, its stationary states cannot be
determined with the help of Eq. �97�, since the satisfaction of
Eq. �104� is assumed for it �1�. However, the assumed satis-
faction of Eq. �104� allows us to state that the complex-
valued function ��x� corresponding to a stationary state of
the system should be given by �1�

��x� = ���x�exp� i

�
�

x0

x

ds · �p�s� + A�s��� . �G6�

Thus we have

��x�v��x� =
i�

2m�

���x����*�x� − �*�x�����x��

−
1

m�

A��x��*�x���x� , �G7�

so we can express the average energy of the system, given by
Eq. �93�, in terms of ��x�, �*�x�, and A�x� i.e.,

�E� =� dnx��
�=1

n
�2

2m�

����*�x�������x���
−� dnx��

�=1

n
i�

2m�

���x����*�x�

− �*�x�����x��A��x�� +� dnx��
�=1

n
A�

2�x�
2m�

+ V�x��
��*�x���x� , �G8�

and treat it as a functional of ��x� and �*�x�. Next, we can

observe that the necessary condition of the existence of
minima of �E� is the vanishing of the functional derivatives
with respect to ��x� and �*�x� of the functional

I���x�,�*�x�� = �E� − E�� dnx �*�x���x� , �G9�

where �E� is given by Eq. �G8�, and the unknown constant
E� has to be determined along with ��x� and �*�x�. Hence
we find that the system’s average energy attains minima for
���x� that satisfy Eq. �105�. Yet, again, these minima have
been obtained under specific conditions regarding the sys-
tem’s velocity field, so formally there may be other minima
of the right-hand side of Eq. �93� attained for the velocity
fields that do not satisfy this condition, although they need
not correspond to any physically relevant states of the sys-
tem.

If the right-hand side of Eq. �G6� is substituted for ���x�
in Eq. �105�, we find that Eq. �G4� is satisfied and

�
�=1

n

v��x���v��x�

=
1

m�
�F��x� + �

�=1

n

v��x����A��x� − ��A��x���
+

�2

2m�

����
�=1

n
1

m�

��
2���x�
���x�

�, � = 1,2,…,n ,

�G10�

where F��x�=−��V�x�, which confirms that the system’s
states represented by the functions ���x� corresponding to
the local minima of its average energy are stationary.
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