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Within the frame of lowest-order perturbation theory, the van der Waals potential of a ground-state atom
placed within an arbitrary dispersing and absorbing magnetodielectric multilayer system is given. Examples of
an atom situated in front of a magnetodielectric plate or between two such plates are studied in detail. Special
emphasis is placed on the competing attractive and repulsive force components associated with the electric and
magnetic matter properties, respectively, and conditions for the formation of repulsive potential walls are
given. Both numerical and analytical results are presented.
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I. INTRODUCTION

It is well known that an atom near a neutral macroscopic
body is subject to a force, even if the atom and the body are
in the �unpolarized� ground states. The existence of the force
commonly called van der Waals �vdW� force has been ex-
perimentally well established. In particular, vdW forces on
atoms in multilayer systems have been observed via me-
chanical means in atomic beam transmission �1� and quan-
tum reflection experiments �2�, and via spectroscopic means
�3�, inter alia frequency modulated selective reflection spec-
troscopy �4�.

As long as the atom-body separation is sufficiently large
compared with the atomic radius on the one hand, and the
typical distance between the atomic constituents of the body
on the other hand, the vdW force can be calculated within the
frame of macroscopic electrodynamics. A unified theory that
covers both the nonretarded distance regime—already stud-
ied by Lennard-Jones in 1932 �5�—and the retarded distance
regime was given in 1948 by Casimir and Polder �6�. With
this in mind, the force has also been called Casimir-Polder
force. Casimir’s and Polder’s theory is based on exact quan-
tum electrodynamics �QED�, the electromagnetic field being
quantized in terms of normal modes. The coupling energy of
a ground-state atom with the body-assisted electromagnetic
vacuum field is calculated in lowest order of perturbation
theory, and the vdW force emerges as the gradient of this
coupling energy—the vdW potential. This formalism first ap-
plied to the case of an atom placed in front of a perfectly
conducting plate was later extended to excited atomic energy
eigenstates �7� as well as to an atom between two perfectly
conducting plates �8�. Moreover, the concept has been used
to calculate the vdW force acting on an atom placed in front
of a semi-infinite dielectric half space �9� or between two
dielectric plates of finite thickness �10�. Recently, the ideas
of Casimir and Polder have been generalized to allow for
dispersing and absorbing bodies �11,12�, which inhibit
electromagnetic-field quantization via a standard normal-
mode expansion in general.

In parallel with the sophistication of Casimir’s and
Polder’s concept based on exact quantum electrodynamics, a

semiphenomenological approach to the problem of the vdW
force has been established and widely used. According to
this approach, the coupling energy is expressed in terms of
correlation functions for the atom and/or the electromagnetic
field, which in turn are related to susceptibilities via the
dissipation-fluctuation theorem. The result—which in prin-
ciple applies to arbitrary geometries—was applied to a
ground-state atom placed in front of a perfectly conducting
half space �13�, a dielectric half space �14�, and a dielectric
two-layer system �15�. Later, atoms in excited energy eigen-
states were included in the concept �16�. Effects of surface
roughness �17�, finite temperature �18�, and—in the case of
the semi-infinite half space—different materials such as bi-
refringent dielectric �19� and even magnetodielectric matter
�20� have been considered.

Apart from the two main routes outlined above, a number
of other methods have been suggested and applied to various
systems. The vdW potential of a two-level atom in front of a
perfectly conducting half space has been derived upon using
nonperturbative spectrum-summation techniques �21� and
classical electrodynamics with random fluctuations �22�. The
problem of the vdW force acting on a ground-state atom in
front of a dielectric half space has been treated via micro-
scopic models �23�, S-matrix formalism �24�, and source
theory �25�. Electrostatic methods applicable to the nonre-
tarded distance regime have been used to determine the vdW
force acting on an excited-state atom in front of a semi-
infinite half space filled by a birefringent dielectric �26�, and
the problem of the vdW force acting on an atom in front of a
nondispersive dielectric three-layer system has been studied
�27�. Within the frame of macroscopic quantum electrody-
namics, a dynamical approach to the vdW force has recently
been developed in order to study time-dependent forces in
the case of atoms initially prepared in an arbitrary excited
quantum state �12�.

In the large body of work on vdW forces and related
electromagnetic forces �such as the vdW force between two
atoms or the Casimir force between two macroscopic bodies�
the electric properties of the involved material objects have
typically been the focus of interest. Nevertheless, the inter-
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action of objects also possessing noticeable magnetic
properties—a problem which has regained topicality due to
the recent fabrication of metamaterials with controllable
electromagnetic properties in the microwave regime
�28,29�—has been of interest. The fact that Maxwell’s equa-
tions in the absence of �free� charges and currents are invari-
ant under a duality transformation between electric and mag-
netic fields can be exploited to extend the notion of forces
acting on electrically polarizable objects to objects with
magnetic properties. Thus, by knowing the attractive vdW
force between two electrically polarizable particles �e.g., at-
oms�, one can infer the existence of an analogous attractive
force between two magnetically polarizable particles, which
may be obtained from the former by replacing the electric
polarizabilities by the corresponding magnetic ones. In con-
trast, the force between two polarizable particles of opposite
type is repulsive �30�. While the repulsive vdW potential in
the retarded limit obeys the same 1/r7 power law �r, distance
between the particles� as the attractive vdW potential �in the
case of two particles of the same type�, but is smaller in
magnitude than the latter by a factor of 7 /23 �31,32�, the
leading contribution to the repulsive vdW potential in the
nonretarded limit is proportional to 1/r4, which contrasts
with the 1/r6 dependence of the attractive vdW potential.
This difference can be understood by regarding the first par-
ticle as an oscillating electric dipole creating an electromag-
netic field which acts on the second, electrically or magneti-
cally polarizable particle. Due to the fact that in the
nonretarded limit the electromagnetic field is dominated by
the electrostatic field, the force on an electrically polarizable
particle is stronger than the force on a magnetically polariz-
able one �33�.

Similar considerations can also be made for other sys-
tems. So, the attractive Casimir force between two infinitely
permeable plates corresponds to the force between two per-
fectly conducting plates by virtue of duality, whereas the
force between two plates of different type is repulsive and
smaller than the equal-type force by a factor of 7 /8 �34�. For
realistic plates the situation becomes more involved. In par-
ticular, the repulsive Casimir force between a purely dielec-
tric and a purely magnetic plate observed in the retarded
limit shows the same 1/z4 power law �z, separation of the
plates� as the attractive force between two dielectric plates,
whereas in the nonretarded limit the repulsive force behaves
like 1/z and the attractive force like 1/z3 �35�. If one of the
plates is dielectric while the other one is magnetodielectric,
then the electric and magnetic properties of the second plate
compete in determining the sign of the Casimir force �36,37�.

It is known that the force acting on a magnetically polar-
izable particle in front of a perfectly conducting plate is re-
pulsive in the retarded limit �32�. By virtue of duality a cor-
responding repulsive force is expected to act on an
electrically polarizable particle such as a ground-state atom
which is located in front of an infinitely permeable plate.
Thus the question arises as to what kind of force could be
observed in the case of a genuinely magnetodielectric plate.
Maybe the effect of a repulsive force component in such a
system has easier access to experimental verification than
that of a repulsive component of the Casimir force between
two macroscopic bodies, where force measurements are cur-

rently restricted to distance regimes of purely attractive
forces �38�. Moreover, the recently reported production of
metamaterials with controllable magnetodielectric properties
in the microwave regime �28,29� opens the perspective of
engineering vdW potentials with desired properties.

In this paper we consider the vdW interaction of a
ground-state atom with planar, dispersing, and absorbing
magnetodielectric bodies. Starting from the general expres-
sion for the vdW potential in the case of an arbitrary planar
multilayer system, as can be derived in lowest order of per-
turbation theory within the frame of QED in linear, causal
media, we give a detailed analysis of the vdW potential of
the atom being located: �i� in front of a magnetodielectric
plate and �ii� beween two magnetodielectric plates. In par-
ticular, we address the question if and how the competition
of electric and magnetic properties of the material can give
rise to a repulsive force. In this context we study the influ-
ence of effects such as material absorption, finite layer thick-
ness, and multiple reflections.

The paper is organized as follows. In Sec. II the vdW
potential of a ground-state atom in an arbitrary planar mag-
netodielectric multilayer system is given. A detailed analysis
of typical examples is given in Sec. III followed by a sum-
mary and concluding remarks in Sec. IV.

II. BASIC EQUATIONS

Consider a neutral, nonpolar, ground-state atomic system
such as an atom or a molecule �briefly referred to as an atom
in the following� at position rA within an arbitrary arrange-
ment of linear magnetodielectric bodies, which is character-
ized by a permittivity ��r ,�� and a permeability ��r ,��,
which are spatially varying, complex-valued functions of fre-
quency, with the corresponding Kramers-Kronig relations
being satisfied. The position-dependent fluctuations of the
body-assisted electromagnetic field give rise to a force on the
atom which, within leading-order perturbation theory, can be
derived from the vdW potential �12�

U�rA� =
��0

2�
�

0

�

du u2��0��iu�Tr G�1��rA,rA,iu� �1�

according to

F�rA� = − �AU�rA� �2�

��A��rA
�. In Eq. �1�,

��0���� = lim
	→0

2

3�
�

k

�k0

�k0
2 − �2 − i�	

�d0k�2 �3�

is the ground-state polarizability of the atom in lowest non-
vanishing order of perturbation theory ��k0��Ek−E0� /�,

�unperturbed� atomic transition frequencies; d0k�	0�d̂�k
,
atomic electric-dipole transition matrix elements�, and
G�1��r ,r� , iu� is the scattering part of the classical Green ten-
sor of the electromagnetic field,

G�r,r�,�� = G�0��r,r�,�� + G�1��r,r�,�� �4�

�G�0��r ,r� ,��, bulk part�, which is the solution to the
equation
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�� 
 ��r,�� � 
 −
�2

c2 ��r,���G�r,r�,�� = ��r − r��

�5�

���r ,��=�−1�r ,��� together with the boundary condition

G�r,r�,�� → 0 for �r − r�� → � . �6�

In what follows we assume that the bodies surrounding
the atom form a planar multilayer system, i.e., a stack of n
+1 layers labeled by l �l=0, . . . ,n� of thicknesses dl with
planar parallel boundary surfaces, where ��r ,��=�l��� and
��r ,��=�l��� in layer l. The coordinate system is chosen
such that the layers are perpendicular to the z axis and extend
from z=0 to z=dl for l�0,n and from z=0 to z=−� ��� for
l=0 �n�, �cf. Fig. 1�. The scattering part of the Green tensor
at imaginary frequencies for r and r� in layer j can be given
by �39�

G�1��r,r�,iu� =� d2q eiq·�r−r��G�1��q,z,z�,iu� �7�

�q�ez�. Here,

G�1��q,z,z�,iu� =
� j�iu�

8�2bj
�

�=s,p

 rj−

� rj+
� e−2bjdj

Dj
�

�e�
+e�

+e−bj�z−z��

+ e�
−e�

−ebj�z−z��� +
1

Dj
�

�e�
+e�

−rj−
� e−bj�z+z��

+ e�
−e�

+rj+
� e−2bjdjebj�z+z���� �8�

for j
0, where

es
± = eq Ã ez, ep

± = −
1

kj
�iqez ± bjeq� �9�

�eq=q /q, q= �q�� with

kj =
u

c
�� j�iu�� j�iu� �10�

are the polarization vectors for s- and p-polarized waves
propagating in the positive/negative z direction, rj−

� and rj+
�

are the generalized coefficients for reflection at the left/right
boundary of layer j, which can be calculated with the aid of
the recursive relations

rl±
s =

��l±1

bl±1
−

�l

bl
� + ��l±1

bl±1
+

�l

bl
�e−2bl±1dl±1rl±1±

s

��l±1

bl±1
+

�l

bl
� + ��l±1

bl±1
−

�l

bl
�e−2bl±1dl±1rl±1±

s

, �11�

rl±
p =

��l±1

bl±1
−

�l

bl
� + ��l±1

bl±1
+

�l

bl
�e−2bl±1dl±1rl±1±

p

��l±1

bl±1
+

�l

bl
� + ��l±1

bl±1
−

�l

bl
�e−2bl±1dl±1rl±1±

p
�12�

�l=1, . . . , j for rl−
� , l= j , . . . ,n−1 for rl+

� ,r0−
� =rn+

� =0�,

bl =�u2

c2 �l�iu��l�iu� + q2 �13�

is the imaginary part of the z component of the wave vector
in layer l, and finally

Dj
� = 1 − rj−

� rj+
� e−2bjdj . �14�

Let the atom be situated in the otherwise empty layer j,
i.e., � j�iu�=� j�iu��1 and

bj =�u2

c2 + q2 � b . �15�

To calculate the vdW potential, we substitute Eq. �7� together
with Eq. �8� into Eq. �1�, thereby omitting the irrelevant
position-independent terms. Evaluating the trace with the aid
of the relations

es
± · es

± = es
± · es

� = 1, �16�

ep
± · ep

± = 1, ep
± · ep

� = − 1 − 2�qc

u
�2

, �17�

which directly follow from Eqs. �9�, �10�, and �13�, we real-
ize that the resulting integrand of the q integral only depends
on q. Thus after introducing polar coordinates in the qxqy
plane, we can easily perform the angular integration, leading
to

U�zA� =
��0

8�2�
0

�

du u2��0��iu��
0

�

dq
q

b



e−2bzA� rj−
s

Dj
s

− �1 + 2
q2c2

u2 � rj−
p

Dj
p
�

+ e−2b�dj−zA�� rj+
s

Dj
s

− �1 + 2
q2c2

u2 � rj+
p

Dj
p
�� . �18�

Note that Eq. �8� and thus Eq. �18� also apply to the case j
=0 if d0 is formally set equal to zero �d0�0�.

FIG. 1. Sketch of the planar multilayer system.
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Equation �18� together with Eq. �3� and Eqs. �11�–�15�
presents the vdW potential of a ground-state atom within a
general planar magnetodielectric multilayer system. Note
that instead of calculating the generalized reflection coeffi-
cients rj±

� from the permittivities and permeabilities of the
individual layers via Eqs. �11�–�13� �as we shall do in this
paper�, it is possible to determine them experimentally by
appropriate reflectivity measurements �cf., e.g., Ref. �40��. In
the case where the atom is placed �in free space� in front of
the multilayer system �j=n�, Eq. �18� reduces to

U�zA� =
��0

8�2�
0

�

du u2��0��iu��
0

�

dq
q

b
e−2bzA


 �rn−
s − �1 + 2

q2c2

u2 �rn−
p � . �19�

III. SPECIFIC EXAMPLES

Typical features of the vdW potential of an atom in the
case of magnetodielectric multilayer systems—in particular
the competing influence of the electric and magnetic proper-
ties of the layers, the effect of material absorption, the influ-
ence of finite layer thickness, or multiple reflections—can
already be illustrated by studying relatively simple systems
consisting of only a few layers.

A. Perfectly reflecting plate

As a preliminary investigation, let us consider the ideal-
izing case of an atom positioned in the nth �empty� layer in
front of a perfectly reflecting �multilayer� plate, i.e., �rn−

s �
= �rn−

p �=1. We begin with the case

rn−
s = − 1, rn−

p = + 1, �20�

which corresponds to the limit of a perfectly conducting
plate �n−1→�, as can be seen from Eqs. �11� and �12� �to-
gether with Eq. �13��. Changing the integration variables in
Eq. �19� according to �u ,q�� �u ,b�, we obtain the attractive
potential

U�zA� = −
�

4�2�0
�

0

�

du ��0��iu��
u/c

�

db b2e−2bzA

= −
�

16�2�0zA
3 �

0

�

du ��0��iu�e−2uzA/c


 �1 + 2�uzA

c
� + 2�uzA

c
�2� , �21�

which is exactly the result found by Casimir and Polder for
the potential of a ground-state atom in front of a perfectly
conducting plate �6�. In the long-distance �i.e., retarded�
limit, zA�c /�A

− ��A
− =min���k0 �k=1,2 , . . . ���, the atomic

polarizability ��0��iu� may be approximately replaced with
its static value ��0��0� and put in front of the integral, leading
to

U�zA� = −
3�c��0��0�
32�2�0zA

4 . �22�

In the short-distance �i.e., nonretarded� limit, zA
�c /�A

+ ��A
+ =max���k0 �k=1,2 , . . . ���, we may approxi-

mately set e−2uzA/c=1 in Eq. �21� and neglect the second and
third terms in the square brackets to recover, on recalling Eq.
�3�, the result of Lennard-Jones �5�,

U�zA� = −
1

48��0zA
3 �

k

�d0k�2 = −
	0�d̂2�0

48��0zA

3 . �23�

In contrast, if the layer facing the atom is supposed to be
infinitely permeable, i.e., �n−1→�, Eqs. �11� and �12� �to-
gether with Eq. �13�� lead to

rn−
s = 1, rn−

p = − 1, �24�

and Eq. �19� yields the repulsive potential

U�zA� =
�

16�2�0zA
3 �

0

�

du ��0��iu�e−2uzA/c


 �1 + 2�uzA

c
� + 2�uzA

c
�2� . �25�

In particular, in the long-distance limit we have �cf. Eq. �22��

U�zA� =
3�c��0��0�
32�2�0zA

4 , �26�

which by means of a duality transformation
���0��0���e

�0��0���m
�0��0�� can be transformed to the result

obtained in Ref. �32� for a magnetically polarizable particle
�of polarizability �m

�0��0�� in front of a perfectly conducting
plate. Application of the duality transformation to Eq. �25�
generalizes the result in Ref. �32� to arbitrary distances.

B. Infinitely thick plate

To be more realistic, let us first consider an atom in front
of a sufficiently thick magnetodielectric plate which may be
modeled by a semi-infinite half space �n= j=1, �1���
=�1����1, �0��������, �0���������. Substituting the
reflection coefficients as follow from Eqs. �11� and �12� into
Eq. �19�, we find, on recalling Eq. �13�, that �b0�bM�

U�zA� =
��0

8�2�
0

�

du u2��0��iu��
0

�

dq
q

b
e−2bzA


 ���iu�b − bM

��iu�b + bM
− �1 + 2

q2c2

u2 ���iu�b − bM

��iu�b + bM
� .

�27�

Equation �27� is equivalent to the result derived in Ref. �20�
semiphenomenologically within the frame of linear response
theory. Note that the concept of linear response theory may
render erroneous results when trying to go beyond perturba-
tion theory �cf. the remark in Ref. �12��.
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To further evaluate Eq. �27�, let us model the permittivity
and �paramagnetic� permeability, respectively, by

���� = 1 +
�Pe

2

�Te
2 − �2 − i��e

�28�

and

���� = 1 +
�Pm

2

�Tm
2 − �2 − i��m

. �29�

It can then be shown that in the long-distance limit, i.e., zA
�c /�A

− , zA�c /�M
− ��M

− =min��Te,�Tm��, Eq. �27� reduces
to �see Appendix A�

U�zA� =
C4

zA
4 , �30�

where

C4 = −
3�c��0��0�

64�2�0
�

1

�

dv�� 2

v2 −
1

v4�



��0�v − ���0���0� − 1 + v2

��0�v + ���0���0� − 1 + v2

−
1

v4

��0�v − ���0���0� − 1 + v2

��0�v + ���0���0� − 1 + v2� , �31�

while in the short-distance limit, i.e., zA�c / ��A
+ n�0�� and/or

zA�c / ��M
+ n�0�� ��M

+ =max��Te,�Tm�, n�0�=���0���0��,
Eq. �27� leads to �see Appendix A�

U�zA� = −
C3

zA
3 +

C1

zA
, �32�

where

C3 =
�

16�2�0
�

0

�

du ��0��iu�
��iu� − 1

��iu� + 1
� 0 �33�

and

C1 =
�0�

16�2�
0

�

du u2��0��iu�
��iu� − 1

��iu� + 1
+

��iu� − 1

��iu� + 1

+
2��iu����iu���iu� − 1�

���iu� + 1�2 � � 0. �34�

We have numerically checked the asymptotic behavior given
by Eqs. �30�–�34� for the case of a two-level atom. From the
derivation it is clear that Eqs. �30� and �32� also remain valid
when—in generalization of Eqs. �28� and �29�,
respectively—more than one matter resonance is taken into
account. Needless to say that the minimum �M

− and the maxi-
mum �M

+ are then defined with respect to all matter reso-
nances.

Inspection of Eq. �31� reveals that the coefficient C4 in
Eq. �30� for the long-distance behavior of the vdW potential
is negative �positive� for a purely electric �magnetic� plate,
corresponding to an attractive �repulsive� force. For a genu-
inely magnetodielectric plate the situation is more involved.

As the coefficient C4 monotonously decreases with increas-
ing ��0� and monotonously increases with increasing ��0�,

�C4

���0�
� 0,

�C4

���0�

 0, �35�

the border between the attractive and repulsive potential, i.e.,
C4=0, can be marked by a unique curve in the ��0���0�
plane �curves �a� in Fig. 2�. In particular, in the limits of
weak and strong magnetodielectric properties the integral in
Eq. �31� can be evaluated analytically. For weak magnetodi-
electric properties, i.e., �e�0����0�−1�1 and �m�0�
���0�−1�1, the linear expansions

��0�v − ���0���0� − 1 + v2

��0�v + ���0���0� − 1 + v2
� �1

2
−

1

4v2��e�0� −
1

4v2�m�0�

�36�

and

��0�v − ���0���0� − 1 + v2

��0�v + ���0���0� − 1 + v2

� −
1

4v2�e�0� + �1

2
−

1

4v2��m�0� �37�

lead to

C4 = −
�c��0��0�
640�2�0

�23�e�0� − 7�m�0�� . �38�

For strong magnetodielectric properties, i.e., ��0��1 and

FIG. 2. Border between attractive and repulsive long-distance
vdW potentials of an atom in front of: �a� a thick and �b� a thin
magnetodielectric plate according to Eqs. �31� �C4=0� and �60�
�D5=0�. The broken curves show the asymptotic behavior as given
by Eqs. �38� �inset� and �40� in case �a� and by Eqs. �61� �inset� and
�62� in case �b�.
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��0��1, we may approximately set, on noting that large
values of v are effectively suppressed in the integral in Eq.
�31�,

���0���0� − 1 + v2 � ���0���0� , �39�

thus

C4 = −
3�c��0��0�

64�2�0
�−

2

Z3 ln�1 + Z� +
2

Z2 +
4

Z
ln�1 + Z� −

1

Z

−
4

3
− Z + 2Z2 − 2Z3 ln�1 +

1

Z
�� , �40�

where Z����0� /��0� is the static impedance of the mate-
rial. Setting C4=0 in Eqs. �38� and �40�, we obtain the
asymptotic behavior of the border curve in the two limiting
cases. In particular, from Eq. �40� it follows that Z=2.26. In
conclusion, in the long-distance limit a repulsive vdW poten-
tial can be realized if the static magnetic properties are stron-
ger than the static electric properties, �m�0� /�e�0��23/7
=3.29 for weak magnetodielectric properties, and
��0� /��0��5.11 for strong magnetodielectric properties.

Apart from the different distance laws, the short-distance
vdW potential, Eq. �32�, differs from the long-distance po-
tential, Eq. �30�, in two respects. First, the relevant coeffi-
cients C3 and C1 are not only determined by the static values
of the permittivity and the permeability, as is seen from Eqs.
�33� and �34�, and second, Eqs. �32�–�34� reveal that electric
and magnetic properties give rise to potentials with different
distance laws and signs �C3
0 dominant �and C1
0� if �
�1 and �=1, while C3=0 and C1
0 if �=1 and ��1�.
However, although for the case of a purely magnetic plate a
repulsive vdW potential proportional to 1/zA is predicted, in
practice the attractive 1/zA

3 term will always dominate for
sufficiently small values of zA, because of the always exist-
ing electric properties of the plate. Hence when in the long-
distance limit the potential becomes repulsive due to suffi-
ciently strong magnetic properties, then the formation of a
potential wall at intermediate distances becomes possible. It
is evident that with decreasing strength of the electric prop-
erties the maximum of the wall is shifted to smaller distances
while increasing in height.

In the limiting case of weak electric properties, i.e.,
�Pe/�Te�1 and �Pe/�Pm�1 �recall Eqs. �28� and �29�� one
can thus expect that the wall is situated within the short-
distance range, so that Eqs. �32�–�34� can be used to deter-
mine both its position and height. From Eq. �32� we find that
the wall maximum is at

zA
max =�3C3

C1
�41�

and has a height of

U�zA
max� =

2

3
� C1

3

3C3
. �42�

In order to estimate the integrals in Eqs. �33� and �34� for the
coefficients C3 and C1, respectively, let us restrict our atten-
tion to the case of a two-level atom and disregard absorption

��e�0,�m�0�. Straightforward calculation then yields
��Pe/�Te�1,�Pe/�Pm�1�

C3 �
�d01�2

96��0

�Pe
2

�Te
2

�Te

�10 + �Te
�43�

and

C1 �
�0�

16�2�
0

�

du u2��0��iu����iu� − 1

��iu� + 1
+

��iu� − 1

2
�

=
�0�d01�2�Pm

2

96�

�10�2�10 + �Sm + �Tm�
��10 + �Sm���10 + �Tm�

�44�

��Sm���Tm
2 + 1

2�Pm
2 �1/2�. Substitution of Eqs. �43� and �44�

into Eqs. �41� and �42�, respectively, eventually leads to

zA
max =

c

�Pm

�Pe

�Te
��Te��10 + �Tm�

�10��10 + �Te�
� 3��10 + �Sm�

�2�10 + �Sm + �Tm�
�45�

and

U�zA
max� =

�d01�2�Pm
3

48��0c3

�Te

�Pe
��10 + �Te

�Te


 � �10�2�10 + �Sm + �Tm�
3��10 + �Sm���10 + �Tm��3/2

. �46�

Note that consistency with the assumption of the wall being
observed at short distances requires that zA

max�c /�M
+ —a con-

dition which can be easily fulfilled for sufficiently small val-
ues of �Pe/�Pm. Inspection of Eq. �46� shows that the height
of the wall increases with increasing �Pm, decreasing �Tm,
and decreasing �Pe/�Te=���0�−1. Since the dependence of
U�zA

max� on �Pm is much stronger than its dependence on

FIG. 3. The vdW potential of a ground-state two-level atom
situated in front of an infinitely thick magnetodielectric plate is
shown as a function of the distance between the atom and the plate
for different values of ��0� ��Pe/�10=0.75,�Te/�10=1.03,
�Tm/�10=1, �e /�10=�m/�10=0.001�.
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�Tm, the wall height increases with �Tm for given
�Pm/�Tm=���0�−1.

The distance dependence of the vdW potential, as calcu-
lated from Eq. �27� for a two-level atom in front of a thick
magnetodielectric plate whose permittivity and permeability
are modeled by Eqs. �28� and �29�, respectively, is illustrated
in Figs. 3 and 4. The figures reveal that the results derived
above for the case where the potential wall is observed in the
short-distance range also remain qualitatively valid for larger
distances. So, from Fig. 3 it is seen that, for chosen values of
�Tm and �m, the potential wall begins to form and grows in
height as ��0� increases, while Fig. 4 confirms that, for cho-
sen values of ��0� and �m, the height of the wall increases
with �Tm. In conclusion one can note that the formation of a
noticeable potential wall requires materials whose static per-
meability substantially exceeds the static permittivity,
thereby featuring magnetic resonance frequencies as high as
possible.

To study the dependence of the vdW potential on material
absorption as characterized by the parameters �e and �m in
Eqs. �28� and �29�, we first consider the limiting behavior of
the potential for long and short distances. As the potential in
the long-distance limit can be given in terms of the static
permittivity and permeability, which do not depend on the
absorption parameters, material absorption has no influence
on the vdW force for asymptotically large distances. In con-
trast, absorption can affect the potential in the short-distance
limit. From Eqs. �28� and �29� the inequalities

���iu�
��e

� 0,
���iu�
��m

� 0 �47�

are seen to be valid. Combining them with Eqs. �33� and �34�
reveals that

�C3

��e
� 0,

�C3

��m
= 0, �48�

�C1

��e
� 0,

�C1

��m
� 0. �49�

Provided that the magnetic properties of the medium are suf-
ficiently strong to support the formation of a potential wall,
these inequalities imply �cf. Eq. �32�� that increasing �e ��m�
leads to a shift of the wall towards smaller �larger� distances,
while increasing �decreasing� its height. Thus an increase of
�e yields a stronger repulsive potential, whereas a simulta-
neous increase of both absorption parameters is expected to
lead to a reduction of the wall height in general. This behav-
ior is confirmed by the examples shown in Fig. 5, where the
vdW potential of a two-level atom as given by Eq. �27� is
displayed as a function of the distance between the atom and
the plate for different values of the two absorption param-
eters. Note the reduced influence of absorption at large
distances—in agreement with the arguments given above.

In view of left-handed materials �see, e.g., Refs.
�28,29,41��, which simultaneously exhibit negative real parts
of ���� and ���� within some �real� frequency interval such
that the real part of the refractive index becomes negative
therein, the question may arise as to whether these materials
would have an exceptional effect on the ground-state vdW
force. The answer is obviously no, because the ground-state
vdW potential as given by Eq. �27� is expressed in terms of
the always positive values of the permittivity and the perme-
ability at imaginary frequencies. Clearly, the situation may
change for an atom prepared in an excited state. In such a
case, the vdW potential is essentially determined by the real
part of the Green tensor taken at frequencies close to the
transition frequencies of the atom �12�. When there are tran-
sition frequencies that lie in frequency intervals where the
material behaves left handed, then particularities may occur.

C. Plate of finite thickness

Let us now consider an atom in front of a magnetodielec-
tric plate of finite thickness d1�d �n= j=2,�1���

FIG. 4. The vdW potential of a ground-state two-level atom
situated in front of an infinitely thick magnetodielectric plate is
shown as a function of the distance between the atom and the plate
for different values of �Tm ���0�=5,�Pe/�10=0.75,�Te/�10=1.03,
�e /�10=�m/�10=0.001�.

FIG. 5. The vdW potential of a ground-state two-level atom
situated in front of an infinitely thick magnetodielectric plate is
shown as a function of the distance between the atom and the plate
for different values of the absorption parameters: �a� �e /�10

=0.001,�m/�10=0.001;�b� �e /�10=0.001,�m/�10=0.05;�c� �e /�10

=0.05,�m/�10=0.001;�d� �e /�10=0.05,�m/�10=0.05 ��Pe/�10

=0.75,�Te/�10=1.03,�Pm/�10=2,�Tm/�10=1�.
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����� ,�1�������� ,�0���=�2����1,�0���=�2����1�.
Substituting the reflection coefficients calculated from Eqs.
�11� and �12� into Eq. �19�, we derive �b1�bM�

U�zA� =
��0

8�2�
0

�

du u2��0��iu�


�
0

�

dq
q

b
e−2bzA
− �1 + 2

q2c2

u2 �



��2�iu�b2 − bM
2 �tanh�bMd�

2��iu�bbM + ��2�iu�b2 + bM
2 �tanh�bMd�

+
��2�iu�b2 − bM

2 �tanh�bMd�
2��iu�bbM + ��2�iu�b2 + bM

2 �tanh�bMd�� .

�50�

It is obvious that the integration in Eq. �50� is effectively
limited by the exponential factor e−2bzA to a circular region
where b�1/ �2zA�. In particular, in the limit of a sufficiently
thick plate, d�zA, the estimate

bMd � bd �
d

2zA
� 1 �51�

�recall Eqs. �13� and �15�� is approximately valid within �the
major part of� the effective region of integration, and one
may hence make the approximation tanh�bMd��1 in Eq.
�50�, which obviously leads back to Eq. �27� valid for an
infinitely thick plate. On the contrary, in the limit of an as-
ymptotically thin plate, n�0�d�zA, we find that the inequali-
ties

bMd � ���iu���iu�bd � ���0���0�bd �
n�0�d
2zA

� 1

�52�

hold in the effective region of integration, and one may
hence perform a linear expansion of the integrand in Eq. �50�
in terms of bMd, resulting in

U�zA� =
��0d

8�2 �
0

�

du u2��0��iu��
0

�

dq
q

b
e−2bzA


 �− �1 + 2
q2c2

u2 ��2�iu�b2 − bM
2

2��iu�b

+
�2�iu�b2 − bM

2

2��iu�b � . �53�

Provided that the magnetic properties are sufficiently
strong, the formation of a repulsive potential wall can also be
observed in the case of a genuinely magnetodielectric plate
of finite thickness. Typical examples of the vdW potential
obtained by numerical evaluation of Eq. �50� for a two-level
atom are shown in Fig. 6. In the figure, the medium param-
eters correspond to those which have been found in Sec.
III B to support the formation of a potential wall in the case
of an infinitely thick plate. We see that the qualitative behav-
ior of the vdW potential is independent of the plate thick-
ness. In particular, all curves in Fig. 6 feature a repulsive

long-range potential that leads to a potential wall of finite
height, the potential becoming attractive at very short dis-
tances. However, the position and height of the wall are seen
to vary with the thickness of the plate. While the position of
the wall shifts only slightly as the plate thickness is changed
from very small to very large values, the height of the wall
reacts very sensitively as the plate thickness is varied. For
small values of the thickness the potential height is very
small, it increases towards a maximum, and then decreases
asymptotically towards the value found for the infinitely
thick plate as the thickness is increased further towards very
large values. It is worth noting that there is an optimal plate
thickness for creating a maximum potential wall. In this case
the magnitude of the plate thickness is comparable to the
position of the potential maximum—a case which is realized
between the two extremes of infinitely thick and infinitely
thin plates.

In order to gain further insight into the competing electric
and magnetic effects on the formation of a potential wall, let
us study the case of an asymptotically thin plate as described
by Eq. �53� in more detail and compare it with the case of an
infinitely thick plate studied in Sec. III B. In the long-
distance limit, zA�c /�A

− ,c /�M
− , Eq. �53� reduces to

�see Appendix A�

U�zA� =
D5

zA
5 , �54�

where

D5 = −
�c��0��0�d
160�2�0

�14�2�0� − 9

��0�
−

6�2�0� − 1

��0� � , �55�

while in the short-distance limit, zA�c / ��A
+ n�0�� and/or zA

�c / ��M
+ n�0��, Eq. �53� can be approximated by �see Appen-

dix A�

FIG. 6. The vdW energy of a ground-state two-level atom situ-
ated in front of a magnetodielectric plate is shown as a function of
the distance between the body and the interface for different values
of the plate thickness d ��Pe/�10=0.75,�Te/�10=1.03,�Pm/�10=2,
�Tm/�10=1,�e /�10=�m/�10=0.001�.
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U�zA� = −
D4

zA
4 +

D2

zA
2 , �56�

where

D4 =
3�d

64�2�0
�

0

�

du ��0��iu�
�2�iu� − 1

��iu�
� 0 �57�

and

D2 =
�0�d

64�2�
0

�

du u2��0��iu�
�2�iu� − 1

��iu�
+

�2�iu� − 1

��iu�

+
2���iu���iu� − 1�

��iu� � � 0. �58�

In the case of an asymptotically thin plate the border be-
tween attractive and repulsive potentials is determined by the
equation D5=0, because Eq. �55� reveals that

�D5

���0�
� 0,

�D5

���0�

 0 �59�

�cf. Eq. �35� valid for an infinitely thick plate�. Since for an
asymptotically thin plate—in contrast to the infinitely thick
plate—the influence of electric and magnetic properties can
be completely separated into a sum of two terms, the equa-
tion D5=0 can be solved analytically, leading to

��0� =
14�2�0� − 9 + �196�4�0� − 228�2�0� + 81

12��0�
�60�

�curves �b� in Fig. 2�. For sufficiently weak magnetodielec-
tric properties, i.e., �e�0����0�−1�1, �m�0����0�−1�1,
a linear expansion of the right-hand side of Eq. �60� reveals
that a repulsive vdW potential can be realized if the static
magnetic properties are stronger than the static electric prop-
erties by a factor �m�0� /�e�0��23/7=3.29, corresponding
to

D5 = −
�c��0��0�d
160�2�0

�23�e�0� − 7�m�0�� , �61�

as can be seen by linearly expanding the right-hand side of
Eq. �55�. By comparing Eqs. �38� and �61� we realize that in
the limit of weak magnetodielectric properties the border be-
tween the attractive and repulsive vdW potentials is the same
for the infinitely thick plate and the asymptotically thin plate
�cf. the inset in Fig. 2�. This result is an immediate conse-
quence of the fact that in this case the thick-plate potential is
a linear superposition of thin-plate potentials �see Sec. III D,
Eq. �72��. For strong magnetodielectric properties, ��0��1,
��0��1, the asymptotic behavior of the right-hand side of
Eq. �60� shows that the vdW potential becomes repulsive if
��0� /��0��7/3=2.33, corresponding to

D5 = −
�c��0��0�d

80�2�0
�7��0� − 3��0�� , �62�

which follows from the corresponding asymptotic expansion
of the right-hand side of Eq. �55�. Hence the region in the
��0���0� plane that corresponds to a repulsive vdW force is

slightly increased in comparison to the infinitely thick plate.
As in the case of an infinitely thick plate, the electric and

magnetic properties of the medium give rise to competing
attractive and repulsive potential components, where again
the attractive potential component resulting from the electric
properties dominates in the limit zA→0 �see Eqs. �56�–�58��.
This implies that for weak electric properties ��Pe/�Te�1,
�Pe/�Pm�1� a potential wall is formed in the short-distance
range. From Eq. �56� it then follows that the wall is situated
at

zA
max =�2D4

D2
�63�

and has a height of

U�zA
max� =

D2
2

4D4
. �64�

For a two-level atom interacting with an almost nonabsorb-
ing ��e�0,�m�0� single-resonance medium exhibiting
weak electric properties ��Pe/�Te�1, �Pe/�Pm�1�, the co-
efficients D4, Eq. �57�, and D2, Eq. �58�, can be evaluated
according to

D4 =
d�d01�2

32��0

�Pe
2

�Te
2

�Te

�10 + �Te
�65�

and

D2 �
�0�d

64�2�
0

�

du u2��0��iu���2�iu� − 1

��iu�
+ 2��iu� − 2�

=
d�0�d01�2�Pm

2

96�

�10�4�10 + 3�Lm + �Tm�
2��10 + �Lm���10 + �Tm�

�66�

��Lm���Tm
2 +�Pm

2 �. Substitution of Eqs. �65� and �66� into
Eqs. �63� and �64� leads to

zA
max =

c

�Pm

�Pe

�Te
��Te��10 + �Tm�

�10��10 + �Te�
� 12��10 + �Lm�

4�10 + 3�Lm + �Tm

�67�

�with the consistency requirement zA
max�c /�M

+ being ful-
filled for sufficiently small values of �Pe/�Pm� and

U�zA
max� =

d�d01�2�Pm
4

1152��0c4

�Te
2

�Pe
2

�10 + �Te

�Te


 � �10�4�10 + 3�Lm + �Tm�
2��10 + �Lm���10 + �Tm��2

. �68�

Comparing Eqs. �67� and �68� with Eqs. �45� and �46� valid
for an infinitely thick plate, we find that the dependence of
both the position and the height of the potential wall on the
material parameters is very similar, so that the criteria for
having a noticeable potential wall given below Eq. �46� also
apply to the case of an asymptotically thin plate. From the
result that the position of the wall is almost the same in both
cases it may be expected that the wall position slowly varies
with the plate thickness, which is in full agreement with the
exact results in Fig. 6. Further, the height of the wall is—in
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agreement with Fig. 6—considerably smaller for the asmyp-
totically thin plate. This can be seen by applying d /zA

max

����0���0�d /zA
max�1 together with Eq. �67� in Eq. �68�,

leading to

U�zA
max� �

3�d01�2�Pm
3

768��0c3

�Te

�Pe
��10 + �Te

�Te


 � �10�4�10 + 3�Lm + �Tm�
3��10 + �Lm���10 + �Tm��3/2

, �69�

the right-hand side of which is comparable to the right-hand
side of Eq. �46�. Recall that the wall height does not monoto-
nously increase with the plate thickness in general �see Fig.
6�, as could be expected from comparing the two limiting
cases.

D. Power laws and medium-assisted correlations

Comparing the asymptotic power laws �30� and �32� ob-
tained for an infinitely thick plate with those obtained for an
asymptotically thin plate, Eqs. �54� and �56�, we see that in
the latter case the powers of 1 /zA are universally increased
by one. In both cases the long-distance vdW potential fol-
lows a power law that is independent of the material proper-
ties of the plate, the sign being determined by the relative
strengths of magnetic and electric properties �a purely elec-
tric plate creates an attractive vdW potential, while a purely
magnetic plate gives rise to a repulsive one�. Further, the
short-distance results for plates of different material proper-
ties differ in both sign and leading power law �the repulsive
potential created by a purely magnetic plate being weaker
than the attractive potential created by a purely electric plate
by two powers in the atom-plate separation�. It is worth not-

ing that a similar behavior, i.e., the same hierarchy of power
laws and the same signs have been found for the vdW force
between two atoms �31–33� and for the Casimir force be-
tween two semi-infinite half spaces �35�. This is illustrated in
Table I, where the asymptotic power laws found for an atom
interacting with an infinitely thick plate �Eqs. �30� and �32��
and an asymptotically thin plate �Eqs. �54� and �56�� are
summarized and compared to those obtainable for the inter-
actions between two atoms or two half spaces, respectively.

For weak magnetodielectric properties, i.e., �e�iu�=��iu�
−1�1 and �m�iu�=��iu�−1�1, the similarity of the results
shown in Table I can be regarded as being a consequence of
the additivity of vdW-type interactions. In fact, in this case
�which for a gaseous medium of given atomic species corre-
sponds to a sufficiently dilute gas� all results of the table can
be derived from the vdW interaction of two single atoms via
pairwise summation. The additivity can explicitly be seen
when comparing the result found for the asymptotically thin
plate with that of the infinitely thick plate. Expanding the
vdW potential of an infinitely thick plate �Eq. �27�� in pow-
ers of �e�iu� and �m�iu�, we find that the leading, first-order
contribution is given by

�1U�zA� = −
��0

8�2�
0

�

du u2��0��iu��
0

�

dq
q

b
e−2bzA


 
��bc

u
�2

− 1 +
1

2
� u

bc
�2��e�iu�

− �1 −
1

2
� u

bc
�2��m�iu�� , �70�

while the first-order contribution to the vdW potential of an
asymptotically thin plate, Eq. �53�, reads

�1Ud�zA� = −
��0d

4�2 �
0

�

du u2��0��iu��
0

�

dq qe−2bzA


 
��bc

u
�2

− 1 +
1

2
� u

bc
�2��e�iu�

− �1 −
1

2
� u

bc
�2��m�iu�� . �71�

Comparison of Eqs. �70� and �71� shows that to leading order
in �e�iu� and �m�iu� the vdW potential of an infinitely thick
plate is simply the integral over an infinite number of thin-
plate vdW potentials,

�1U�zA� = �
zA

� dz

d
�1Ud�z� . �72�

For media with stronger magnetodielectric properties,
medium-assisted correlations prevent vdW-type forces from
being additive. This can be demonstrated by expanding the
vdW potentials given by Eqs. �27� and �53� to second order
in �e�iu� and �m�iu�, resulting in

TABLE I. Signs and asymptotic power laws of the forces be-
tween various polarizable objects. In the table heading, e stands for
a purely electric object, m denotes a purely magnetic one. The signs
� and � denote repulsive and attractive forces, respectively.
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�2U�zA� = −
��0

8�2�
0

�

du u2��0��iu��
0

�

dq
q

b
e−2bzA


 
�−
1

2
�bc

u
�2

+
1

4
+

1

4
� u

bc
�2

−
1

4
� u

bc
�4��e

2�iu�

+ �1

4
+

1

4
� u

bc
�2

−
1

4
� u

bc
�4��m

2 �iu�

+ �−
1

2
+ � u

bc
�2

−
1

2
� u

bc
�4��e�iu��m�iu��

�73�

and

�2Ud�zA� = −
��0d

4�2 �
0

�

du u2��0��iu��
0

�

dq qe−2bzA


 
�−
1

2
�bc

u
�2

+
3

4
−

1

4
� u

bc
�2��e

2�iu�

+ �1

4
−

1

4
� u

bc
�2��m

2 �iu�� , �74�

respectively. The leading �second-order� correction due to
medium-assisted correlations can be obtained from the vdW
potential of an atom in front of two asymptotically thin
plates. Physically, it can be ascribed to the process of radia-
tion being reflected at the back �left� plate while aquiring
finite phase shifts upon transmission through the front �right�
plate. The calculation yields �see Appendix B�

�2Udd�zA,s� = −
��0d2

2�2 �
0

�

du u2��0��iu��
0

�

dq qb


 e−2b�zA+s�
�−
1

2
+

1

2
� u

bc
�2

−
1

4
� u

bc
�4��e

2�iu�

+ �1

2
� u

bc
�2

−
1

4
� u

bc
�4��m

2 �iu� + �−
1

2

+ � u

bc
�2

−
1

2
� u

bc
�4��e�iu��m�iu�� . �75�

Note that the leading correction due to multiple reflections
between the plates and fractional transparency of the front
�right� plate are of third order in �e�iu� and �m�iu�, and are
thus not relevant for the second-order correction considered
here. Comparing Eqs. �73�, �74�, and �75�, one can easily
verify that

�2U�zA� = �
zA

� dz

d
�2Ud�z� + �

zA

� dz

d
�

0

� ds

d
�2Udd�zA,s� .

�76�

As a consequence of medium-assisted correlations the coef-
ficients of the asymptotic power laws in Table I cannot be
related via simple additivity arguments in general. However,
we note from Table I that the corrections only change the
coefficients of the asymptotic power laws, not the power
laws themselves.

E. Atom between two infinitely thick plates

In Secs. III B and III C we have seen that for sufficiently
strong magnetic properties a single magnetodielectric plate
can feature a potential wall. This suggests that two such
plates can feature a potential well, where the effect of mul-
tiple reflections between the plates must be taken into ac-
count. Let us consider the simplest case of an atom placed
between two identical infinitely thick magnetodielectric
plates which are separated by a distance d1�s �n=2, j
=1,�1���=�1����1,�0���=�2�������� ,�0���=�2���
������. From Eq. �18� together with Eqs. �11�–�14� it then
follows that �b0=b2�bM�

U�zA� =
��0

8�2�
0

�

du u2��0��iu��
0

�

dq
q

b
�e−2bzA + e−2b�s−zA��


� 1

D1
s

��iu�b − bM

��iu�b + bM
− �1 + 2

q2c2

u2 � 1

D1
p

��iu�b − bM

��iu�b + bM
� ,

�77�

where the coefficients

D1
s = 1 − ���iu�b − bM

��iu�b + bM
�2

e−2bs � 1 �78�

D1
p = 1 − ���iu�b − bM

��iu�b + bM
�2

e−2bs � 1 �79�

describe the effect of multiple reflections of radiation be-
tween the two plates, as can be seen from the expansion

1

D1
� =

1

1 − r1−
� r1+

� e−2bs = �
n=0

�

�r1−
� e−bsr1+

� e−bs�n. �80�

As a consequence of multiple reflections the vdW potential
of an atom between the two plates �Eq. �77�� can be different
from the sum of two single-plate potentials �Eq. �27��.

Examples of the vdW potential for a two-level atom be-
tween two identical infinitely thick magnetodieletric plates as
given by Eq. �77� are plotted in Figs. 7 and 8. In the case of
the parameters chosen in Fig. 7 multiple reflections are neg-
ligible, so that the potentials effectively reduce to sums of
single-plate potentials. This obviously results from the small-
ness of the relevant reflection coefficients together with the
relatively large distance between the plates. From Eqs. �11�
and �12� one can easily verify that
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r1±
s �iu,q� � lim

q→�
r1±

s �0,q� =
��0� − 1

��0� + 1
, �81�

r1±
p �iu,q� � lim

q→�
r1±

p �0,q� =
��0� − 1

��0� + 1
. �82�

Hence in the case of the parameters in Fig. 7�a� we have
r1−

s r1+
s �0.67, r1−

p r1+
p �0.044. In order to demonstrate the ef-

fect of multiple reflections, in Fig. 8 we have �artificially�
increased the reflection coeffiecients, so that almost perfect
reflection is realized �r1−

s r1+
s �1−1
10−10, r1−

p r1+
p �1−7.5


10−10�, and reduced the plate separation. It is seen that
multiple reflections lead to a slight lowering of the vdW
potential in the region near the midpoint between the two
plates.

IV. SUMMARY AND CONCLUSIONS

We have studied the problem of the van der Waals force
acting on a ground-state atom in the presence of planar, dis-
persing, and absorbing magnetodielectric bodies. Consider-
ing an arbitrary planar multilayer system and restricting our
attention to the lowest �nonvanishing� order of perturbation
theory, we have given a general expression for the vdW po-
tential. The effect of the multilayer system is expressed in
terms of generalized reflection coefficients, which on their
part are determined, inter alia, by the �complex� permittivi-
ties and permeabilities of the layers. Applying the formula to
the cases of an atom being in front of a magnetodielectric
plate and between two such plates, we have placed special
emphasis on the competing attractive and repulsive force
components associated with the electric and magnetic matter
properties, respectively. Both numerical and analytical re-
sults are given, the latter referring to some limiting cases
such as the asymptotic behavior of the potential for thick and

thin plates in the long- and short-distance limits.
In contrast to the well-known attractive vdW force gener-

ated by a purely dielectric plate, a purely magnetic plate
leads to a repulsive force. In the case of genuinely magneto-
dielectric material, the influence of the magnetic properties
can thus considerably reduce the strength of the vdW force
and—for sufficiently strong magnetic properties—even cre-
ate a repulsive potential wall of finite height. The numerical
results show that the height of such a potential wall sensi-
tively depends not only on the relative strengths of the elec-
tric and magnetic properties, but also on the thickness of the
plate. In particular, they suggest that the maximum height is
realized in the case when the thickness of the plate is com-
parable to the distance of the potential maximum from the
plate. Comparing the results obtained for an infinitely thick
plate with those found for an asymptotically thin plate, we
have found striking similarities which for weakly magneto-
dielectric media can be explained by the additivity of vdW
potentials. Moreover, we have explicitly demonstrated how
medium-assisted correlations lead to a breakdown of additiv-
ity for media with stronger magnetodielectric properties. For
an atom being situated between two magnetodielectric plates
each of which features a potential barrier, a potential well of
finite depth can be formed. If the plates possess a sufficiently
high reflectivity while being relatively close together, mul-
tiple reflections can prevent the resulting potential from be-
ing simply the additive superposition of the two single-plate
potentials.

The results show that the advent of artificially made ma-
terials with controllable magnetodielectric properties will of-
fer the possibilities of realizing vdW potentials on demand.
The provided analysis of typical effects relevant for control-
ling the vdW force in the case of one and two magnetodi-
electric plates—namely the competition between electric and
magnetic properties of the material in the formation of the
potential, material absorption, plate thickness, and multiple

FIG. 8. The vdW energy of a ground-state two-level atom situ-
ated between two infinitely thick magnetodielectric plates �
�Pe/�10=0.75
105,�Te/�10=1.03,�Pm/�10=2
105,�Tm/�10=1,
�e /�10=�m/�10=0.001�, which are separated by a distance s
=6c /�10, is shown as a function of the position of the atom �Eq.
�77��. For comparison, the sum of two single-plate potentials ac-
cording to Eq. �27� is also displayed �dashed lines�.

FIG. 7. The vdW potential of a ground-state two-level atom
situated between two infinitely thick: �a� magnetodielectric plates
��Pe/�10=0.75,�Te/�10=1.03,�Pm/�10=2,�Tm/�10=1,
�e /�10=�m/�10=0.001�; �b� dielectric plates ������1, other pa-
rameters as in �a��; and �c� magnetic plates ������1, other param-
eters as in �a��, which are separated by a distance s=15c /�10, is
shown as a function of the position of the atom.
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reflections—can of course be extended to more complex
multilayer systems by further evaluating the general formula
for the vdW potential of a ground-state atom in planar
multilayer systems.
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APPENDIX A: LONG- AND SHORT-DISTANCE LIMITS

The long-distance �short-distance� limit corresponds to
separations zA between the atom and the multilayer system
which are much greater �smaller� than the wavelengths cor-
responding to typical frequencies of the atom and the
multilayer system. To obtain approximate results for the two
limiting cases, let us analyze the u integrals in Eqs. �27� and
�53� in a little more detail and begin with the long-distance
limit, i.e.,

zA �
c

�A
− , zA �

c

�M
− , �A1�

where �A
− =min���k0 �k=1,2 . . . �� is the lowest atomic transi-

tion frequency, and �M
− =min��Te,�Tm� is the lowest medium

resonance frequency. For convenience, we introduce the new
integration variable v=cb /u and transform the integral ac-
cording to

�
0

�

du�
0

�

dq
q

b
e−2bzA . . . � �

1

�

dv�
0

�

du
u

c
e−2zAvu/c . . . ,

�A2�

where bM has to be replaced according to

bM �
u

c
���iu���iu� − 1 + v2. �A3�

Inspection of Eqs. �27� and �53� together with Eq. �A2� re-
veals that the frequency interval giving the main contribution
to the respective u integral is determined by a set of effective
cutoff functions, namely

f�u� = e−2zAu/c, �A4�

gk�u� =
1

1 + �u/�k0�2 , �A5�

which enter via the atomic polarizability �cf. Eq. �3�� and

he�u� =
1

1 + �u/�Te�2 , �A6�

hm�u� =
1

1 + �u/�Tm�2 , �A7�

which enter via ��iu� and ��iu� �cf. Eqs. �28� and �29��. The
cutoff functions obviously give their main contributions in
regions, where

u �
c

2zA
for f�u� , �A8�

u � �k0 for gk�u� , �A9�

u � �Te for he�u� , �A10�

u � �Tm for hm�u� . �A11�

Combining Eq. �A8� with Eq. �A1�, we find that the function
f�u� effectively limits the u integration to a region where

u

�k0
�

u

�A
− �

c

2zA�A
− � 1, �A12�

u

�Te
�

u

�M
− �

c

2zA�M
− � 1, �A13�

u

�Tm
�

u

�M
− �

c

2zA�M
− � 1. �A14�

Performing a leading-order expansion of the integrands in
Eqs. �27� and �53� in terms of the small quantities u /�k0,
u /�Te, and u /�Tm, we may set

��0��iu� � ��0��0�, ��iu� � ��0�, ��iu� � ��0� .

�A15�

Combining Eqs. �A2�, �A3�, and �A15� with Eq. �27� and
�53�, repectively, and evaluating the remaining u integrals we
arrive at Eq. �30� �together with Eq. �31�� and Eq. �54� �to-
gether with Eq. �55��.

The short-distance limit, on the contrary, is defined by

zA �
c

�A
+ n�0�

and/or

zA �
c

�M
+ n�0�

, �A16�

where �A
+ =max���k0 �k=1,2 , . . . �� is the highest inneratomic

transition frequency, �M
+ =max��Te,�Tm� is the highest me-

dium resonance frequency, and n�0�=���0���0� is the static
refractive index of the medium. Again, it is convenient to
change the integration variables in Eqs. �27� and �53�, but
now we transform according to

�
0

�

du�
0

�

dq
q

b
e−2bzA . . . � �

0

�

du�
u/c

�

db e−2bzA . . . ,

�A17�

where bM has to be replaced according to
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bM ��u2

c2 ���iu���iu� − 1� + b2. �A18�

Combining Eqs. �A9�–�A11� with Eq. �A16� reveals that the
functions gk�u�, he�u�, and hm�u� limit the u integration to a
region where

zAu���iu���iu� − 1

c
�

zA�A
+ n�0�
c

� 1 �A19�

and/or

zAu���iu���iu� − 1

c
�

zA�M
+ n�0�
c

� 1. �A20�

A valid approximation to the u integrals in Eqs. �27� and �53�
can hence be obtained by performing a Taylor expansion in
zAu���iu���iu�−1/c. To that end, we apply the transforma-
tion �A17� to Eqs. �27� and �53�, respectively, retain only the
leading-order terms in u���iu���iu�−1/ �cb� �which after
carrying out the b integral will yield the leading-order terms
in zAu���iu���iu�−1/c�, and obtain

U�zA� = −
��0

8�2�
0

�

du u2��0��iu��
u/c

�

db e−2bzA


 �2
c2b2

u2

��iu� − 1

��iu� + 1
− 
��iu� − 1

��iu� + 1
+

��iu� − 1

��iu� + 1

+
2��iu����iu���iu� − 1�

���iu� + 1�2 �� �A21�

and

U�zA� = −
��0d

8�2 �
0

�

du u2��0��iu��
u/c

�

db be−2bzA


 
2
c2b2

u2

�2�iu� − 1

2��iu�
− ��2�iu� − 1

2��iu�
+

�2�iu� − 1

2��iu�

+
��iu���iu� − 1

��iu� �� . �A22�

After evaluating the b integrals and keeping only the leading-
order terms in uzA/c �note that Eqs. �A9�–�A11� together
with Eq. �A16� imply uzA/c�1�, Eqs. �A21� and �A22�, re-
spectively, result in Eq. �32� �together with Eqs. �33� and
�34�� and Eq. �56� �together with Eqs. �57� and �58��.

APPENDIX B: DERIVATION OF EQ. (75)

In order to derive Eq. �75�, we consider the vdW potential
of two plates of thickness d1�d, d3�d� which are separated
by a distance d2�s �n= j=4, �1��������, �3���������,
�1��������, �3���������, �0���=�2���=�4����1,
�0���=�2���=�4����1�. We assume both plates to be as-
ymptotically thin, ���0���0�d�zA, ����0����0�d��zA, so
that the inequalities bMd�1, bM� d��1 �b1�bM, b3�bM� � are
valid �cf. Eq. �52��. Use of Eqs. �11� and �12� for l=n=4 and
l=3, followed by a linear expansion in terms of bM� d�, yields

rn−
s �

��2�iu�b2 − bM�
2

2���iu�b
d� + e−2bsr2−

s d�
1 −
��2�iu�b2 + bM�

2

���iu�b

+
��2�iu�b2 − bM�

2

2���iu�b
e−2bsr2−

s � , �B1�

rn−
p �

��2�iu�b2 − bM�
2

2���iu�b
d� + e−2bsr2−

p d�
1 −
��2�iu�b2 + bM�

2

���iu�b

+
��2�iu�b2 − bM�

2

2���iu�b
e−2bsr2−

p � , �B2�

while use of the same equations for l=2 and l=1 together
with r0−

s =r0−
p =0 leads to, upon linearly expanding in terms of

bMd,

r2−
s �

�2�iu�b2 − bM
2

2��iu�b
d , �B3�

r2−
p �

�2�iu�b2 − bM
2

2��iu�b
d . �B4�

Substituting Eqs. �B3� and �B4� into Eqs. �B1� and �B2�,
respectively, and neglecting terms which are quadratic in
bMd, we arrive at

rn−
s �

��2�iu�b2 − bM�
2

2���iu�b
d� +

�2�iu�b2 − bM
2

2��iu�b
e−2bsd


 �1 − ��2�iu�b2 + bM�
2

���iu�b
d�� , �B5�

rn−
p �

��2�iu�b2 − bM�
2

2���iu�b
d� +

�2�iu�b2 − bM
2

2��iu�b
e−2bsd


 �1 −
��2�iu�b2 + bM�

2

���iu�b
d�� . �B6�

The leading correction due to medium correlations can be
extracted from Eqs. �B5� and �B6� by retaining only the two-
plate contribution, i.e., the term which is linear in both bMd
and bM� d�. We expand the result up to linear order in �e�iu�,
�m�iu�, �e��iu�����iu�−1, and �m� �iu�����iu�−1, thereby
discarding terms which are independent of �e��iu� and �m� �iu�,
leading to

rn−
s � b2d2e−2bs
1

2
� u

bc
�4

�e
2�iu� − �� u

bc
�2

−
1

2
� u

bc
�4�


 �m
2 �iu� − �� u

bc
�2

− � u

bc
�4��e�iu��m�iu�� , �B7�

rn−
p � b2d2e−2bs
− �� u

bc
�2

−
1

2
� u

bc
�4��e

2�iu�

+
1

2
� u

bc
�4

�m
2 �iu� − �� u

bc
�2

− � u

bc
�4��e�iu��m�iu�� ,

�B8�

where we have set d�=d, �e��iu�=�e�iu�, and �m� �iu�
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=�m�iu�. Substitution of Eqs. �B7� and �B8� into Eq. �19�
leads to Eq. �75�. In order to see that this leading correction
corresponds to the process of radiation being reflected at the
back �left� plate while acquiring finite phase shifts upon
transmission through the front �right� plate, we note that up
to linear order in �e��iu�, �m� �iu�, and d�, the terms in square
brackets in Eqs. �B5� and �B6� are equal to the phase factor

e−2bM� d�, as can be easily verified by recalling Eq. �13�:

1 −
��2�iu�b2 + bM�

2

���iu�b
d�

� 1 − 2b
1 +
1

2
� u

bc
�2

��e�iu� + �m�iu���d�

� 1 − 2bM� d� � e−2bM� d�, �B9�

similar for Eq. �B6�.
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