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Möbius-shell structures and their physical properties have recently received considerable attention experi-
mentally and theoretically. In this work, eigenstates and associated eigenenergies are determined for a
quantum-mechanical particle bounded to a Möbius shell including curvature contributions to the kinetic-energy
operator. This is done using a parametrization of the Möbius shell–found by minimizing the elastic energy of
the full structure–and employing differential-geometry methods. It is shown that inclusion of curvature con-
tributions to the kinetic energy leads to splitting of the otherwise doubly degenerate groundstate and signifi-
cantly alters the form of the groundstate and excited-state wavefunctions. Hence, we anticipate qualitative
changes in the physical properties of Möbius-shell structures due to surface confinement and curvature effects.
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I. INTRODUCTION

The present state of nanotechnology �4� allows in prin-
ciple any structure to be grown experimentally and provides
insight into understanding the relation between the global
geometry of a structure and associated physical properties
�5–10�. Moreover, studies of geometry effects and quantum-
mechanical wave functions may lead to identification of new
types of states and novel applications �2�. Recently, NbSe3
Möbius-shell structures have been fabricated �1�. In this
work, the problem of a quantum-mechanical particle con-
fined to a Möbius-shell structure is considered. Special em-
phasis is given to the understanding of elastic energy and
surface-curvature effects on eigenstates and eigenvalues em-
ploying differential-geometry methods. In particular, com-
parison with the flat-cylinder and flat-Möbius structure prob-
lems �3� �where elastic energy and curvature contributions to
the kinetic energy are neglected� shows that surface-
curvature effects lead to splitting of the otherwise degenerate
ground-state energy and significant alterations of the ground-
and excited-state wave functions. Hence, qualitative changes
to the physical properties of Möbius quantum nanostructures
are expected due to surface-curvature effects. We assume in
this work that the quantum-confined particle obeys fermion
or boson statistics such that wave functions are single val-
ued, hence disregarding fractional spin-particle systems char-
acterized by multivalued wave functions �anyon systems
�11��.

II. THE SCHRÖDINGER EQUATION IN GENERALIZED
COORDINATES

The Schrödinger equation for a quantum-mechanical par-
ticle bounded to a surface � reads

−
�2

2m
��0 + �3

2���u1,u2� + V�u1,u2,u3���u1,u2� = E��u1,u2� ,

�1�

where m is the particle mass and E its energy. The surface �
is defined as the surface for which the third coordinate u3 is
zero and the potential V is a completely confining potential,
i.e.,

V�u1,u2,u3� = �0 if u3 = 0,

� else.
� �2�

The operators �0 and �i in Eq. �1� are �12�

�0 = �� + M2 − K , �3�

�i =
�

�ui , i = 1,2,3, �4�

where �� is the Laplace-Beltrami operator on � and M and
K are the mean and Gaussian curvatures �in our case, M is
nonzero but K is zero; see Eq. �11��.

III. THE PARAMETRIZATION AND SHAPE OF THE
MÖBIUS-SHELL STRUCTURE

Now consider a Möbius surface. We can parametrize it by
coordinates �u1 ,u2�� �0;L�� �−w ;w�, where L is the length
�one turn� and 2w is the width of the strip. Since M is not a
separable function of u1 and u2 for the Möbius surface pa-
rametrized, it is not possible to separate � in Eq. �1� in func-
tions of u1 and u2. Hence, we solve Eq. �1� by employing a
simple two-dimensional finite-difference scheme so as to ob-
tain energy eigenvalues E and associated eigenstates �.
Boundary conditions for the Möbius surface are as follows:

��u1,u2 = − w� = ��u1,u2 = w� = 0 �5�

and

��u1 = 0,u2� = ��u1 = L,− u2� . �6�

For comparison, we also compute analytically eigenstates
and eigenvalues for the flat-cylinder problem case with
boundary conditions
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��u1,u2 = − w� = ��u1,u2 = w� = 0 �7�

and

��u1 = 0,u2� = ��u1 = L,u2� , �8�

and similar for the flat-Möbius problem. Both latter-
mentioned problems �cylinder flat and Möbius flat� imply
solving the Schrödinger problem and discarding the M2

kinetic-energy contributions. In this way, we can verify our
numerical results against analytical results and identify the
importance of the Möbius topology versus the cylinder to-
pology as well as surface-curvature effects.

Consider a rectangular strip of paper. Applying a half
twist and gluing the ends together leads to the formation of a
Möbius-shell structure. We can push and pull the paper so
the exact shape is not determined; however, disregarding ex-
ternal forces including gravity implies that the resulting
shape minimizes the elastic energy. The problem of deter-
mining this shape goes back to 1930 and the exact math-
ematical description of the shape is still not known �13–18�.

In the case of a Möbius-shell structure made out of paper
it is reasonable to assume that the shape is the result of pure
bending, and the same is probably true for the nanostructures
�1�. Then the shape is developable and is completely deter-
mined by the median or center curve of the Möbius structure.
If r�u� is a parametrization of the median then the parametri-
zation of the Möbius structure is given by

x�u,v� = r�u� + v�b�u� +
��u�
��u�

t�u�� , �9�

where t is the tangent vector, b is the binormal vector, � is
the curvature, and � is the torsion �15–17�. If we let s denote
the arclength on the median and put

	 =
�

�
and 
 =

d	

ds
, �10�

then the mean and Gaussian curvatures are

M = −
�

2

1 + 	

1 + v

and K = 0, �11�

respectively. The elastic energy is

E =
1

2
	 M2dA =

1

2
	

0

L 	
−w

w �2

4

�1 + 	2�2

�1 + v
�2 dv ds

=
1

8
	

0

L �2�1 + 	2�2



ln�1 + w


1 − w

�ds , �12�

where we recall that ds= 
r��u�
du. We do not attempt to
determine the exact shape as we only want to determine a
reasonable shape. Hence, we consider curves of the form

r�u� = �c1sin u,c2sin 2u,c3cos 3u� , �13�

representing the general form of the median of a Möbius
structure. The case c1=c2=1 and c3=3/2 is the parametriza-
tion given by Schwarz �16,17�. We now consider the optimi-
zation problem

minimize 	
0

2� �2�1 + 	2�2



ln�1 + w


1 − w

�
r�
du , �14�

such that 	
0

2�


r�
du = L = 200 Å, �15�

and 

�u�
 � w−1 = 0.3 Å−1, u � �0,2�� . �16�

Using the optimization toolbox in MATLAB we find the nu-
merical solution

c1 = 32.252 Å, c2 = 19.051 Å, c3 = 6.264 Å. �17�

The resulting Möbius structure is shown in Fig. 1.
The Möbius structure can be developed into a rectangle

with rectangular coordinates �u1 ,u2�� �0;L�� �−w ;w� given
by

u1 = s�u� + v	�u� = 	
0

u


r��u�
du + v
��u�
��u�

and u2 = v .

�18�

Using these coordinates, �� is the usual Laplacian in the
plane and Eq. �3� becomes

�0 = �1
2 + �2

2 + M2. �19�

IV. NUMERICAL RESULTS AND DISCUSSION

In Fig. 2, the M2 contribution to the Laplacian is plotted
in contour in the �u1 ,u2� plane as computed according to Eq.
�11� for the parameter values L=200 Å and 2w=6.67 Å. Ob-
viously, the relatively complicated geometry of the Möbius
structure makes the M2 contribution a complicated function
of �u1 ,u2� coordinates. The observed lack of symmetry leads
to splitting of states which are degenerate in the flat-Möbius
case �i.e., states with quantum numbers +m and −m as de-
fined in Eq. �20��. In Table I, we give the first ten values of

FIG. 1. �Color online� The Möbius structure color coded with
the value of M2 �in Å−2�, the square of the mean curvature. The
units on the axes are in ångstroms.
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the eigenenergy E corresponding to the flat-cylinder problem
case. These values can be found analytically using separation
of variables as will be next explained. Assuming a separable
solution ��u1 ,u2�=�1�u1��2�u2� and imposing the cylinder
boundary conditions in Eqs. �7� and �8� leads to the follow-
ing eigenstates by solving Eq. �1� for M =0:

�1�u1� = sin�m�

L
u1 + 
� , �20�

with 
 an arbitrary phase, and

�2�u2� = sin�n�

w
u2� , �21�

or

�2�u2� = cos� �2n + 1��
2w

u2� , �22�

where n is an integer �0, ±1, ±2, ±3,…� and m is an even
number �0, ±2, ±4, ±6,…�. The corresponding energy ei-
genvalues are

E =
�2

2m
��m�

L
�2

+ �n�

w
�2� , �23�

if �2 is one of the functions in Eq. �21�, or

E =
�2

2m
��m�

L
�2

+ � �2n + 1��
2w

�2� , �24�

if �2 is one of the functions in Eq. �22�.
We may obtain the eigenstates for the flat-Möbius

problem by use of the flat-cylinder problem eigenstates
just found. Note that flat-Möbius strip eigenstates on
the domain �u1 ,u2�= �0;L�� �−w ;w� are also solutions to the
flat-cylinder problem on the �double� domain �u1 ,u2�
= �0;2L�� �−w ;w� restricted to the domain �u1 ,u2�
= �0;L�� �−w ;w�. This fact allows us to identify the flat-
Möbius structure eigenstates as

��u1,u2� = �1�u1��2�u2�

= sin�m�

2L
u1 + 
�cos� �2n + 1��

2w
u2� , �25�

with m=0, ±4, ±8, ±12,… and n=0, ±1, ±2, ±3,…, or

��u1,u2� = �1�u1��2�u2� = sin�m�

2L
u1 + 
�sin�n�

w
u2� ,

�26�

with m= ±2, ±6, ±10,… and n=0, ±1, ±2, ±3,…. The cor-
responding energy eigenvalues are

E =
�2

2m
��m�

2L
�2

+ � �2n + 1��
2w

�2� , �27�

if � is one of the functions in Eq. �25�, or

TABLE I. Computed first three eigenenergy values E in meV for
a particle with mass m=9.11�10−31 kg confined to �in case �a�� a
flat-cylinder �or flat-Möbius� structure, and �in case �b�� a Möbius-
shell structure including M2 contributions. Geometrical parameters
are L=200 Å and width 2w=6.67 Å and Planck’s constant is
�=1.0545�10−34 J s. Note that due to the small width �2w�, the
first several eigenenergies and eigenstates for the flat-cylinder and
flat-Möbius structure problems are the same.

Parameter values E�1� E�2� E�3�

Case �a� 845.8 849.7 860.7

Case �b� 841.5 843.6 847.9

FIG. 2. �Color online� Plot of the M2 contri-
bution to the kinetic energy versus coordinates u1

and u2 in the domain �u1 ,u2�= �0;L�� �−w ;w�.
Parameter values for L and w are as in Table I.
The maximum value of the M2 contribution is
approximately 5.6�10−3 Å−2 �dark red� corre-
sponding to �in energy, i.e., ��2 /2m�M2� a maxi-
mum value of approximately 21 meV.
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E =
�2

2m
��m�

2L
�2

+ �n�

w
�2� , �28�

if � is one of the functions in Eq. �26�.

In Fig. 3, we show the first three eigenstates �contour
plots� for the flat-Möbius structure case �upper left, middle
left, and lower left plots� and the Möbius structure case in-
cluding the M2 contributions �upper right, middle right, and

FIG. 3. �Color online� Contour plots of the first three eigenstates for the flat-Möbius structure case �upper left, middle left, and lower left
plots� and the Möbius-structure case including the M2 contributions �upper right, middle right, and lower right plots�. Eigenstates are plotted
versus coordinates u1 and u2 in the domain �u1 ,u2�= �0;L�� �−w ;w�. Parameter values for L and w are as in Table I.
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lower right plots�. Apparently, as is found analytically for the
flat-Möbius problem, the ground state has no nodes, the first
excited state two nodes, and the second excited state four
nodes. Note also that all states are doubly degenerate for the
flat-Möbius structure problem. The effect of the M2 contri-
bution to the Möbius problem is most significant for the
ground state �compare upper left with upper right plots�. In
actual fact, due to the strongest effect of the potential at u1

values near 0.4 and 1.6, the slopes of the ground state are
highest near the same u1 values. Since the −��2 /2m�M2 con-
tribution is a negative kinetic-energy contribution, the
−��2 /2m���1

2+�2
2� contribution to the kinetic energy must

compensate, hence being more positive where M2 is high
since the potential energy is constant �zero� everywhere in-
side the Möbius shell and eigenstates have a definite energy.
The above assertion is easily observed in Fig. 3, upper right
plot, since the ground state is a concave function of u1 and
u2, i.e., �1

2� and �2
2� are negative. Note, in particular, that

with the small value of the Möbius width �2w� as compared
to the length �L�, the first several eigenstates in the flat-
cylinder problem case are also eigenstates in the flat-Möbius
problem case.

The effect of the M2 on energies is to shift ground-state
energy by −4.3 meV. Similarly, the first excited and second
excited states are shifted downward in energy by −6.1 and

−12.8 meV, respectively. It must be noted here that the
ground state and first excited states in the Möbius-structure
case �with M2 contribution� are nondegenerate solely due to
the M2 constribution stemming from curvature effects to the
kinetic energy.

V. CONCLUSIONS

The problem of a quantum-mechanical particle bounded
to a Möbius-shell structure is analyzed using differential-
geometry methods. The geometry of the Möbius-shell struc-
ture is found by minimizing the elastic energy for a given
structure of parametrizations. In particular, eigenstates and
associated eigenvalues are determined accounting for contri-
butions from Möbius-shell confinement to the kinetic-energy
operator in the Schrödinger problem. A comparison with the
corresponding eigenstates and eigenvalues for the flat-
Möbius structure is given and it is shown that the ground-
state double degeneracy found in the flat-Möbius structure
case is lifted when including surface-curvature effects in the
kinetic-energy operator of the Schrödinger problem. More-
over, the forms of the ground-state and excited-state wave
functions are significantly altered due to surface-curvature
effects.
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