
Adiabatic theorem for non-Hermitian time-dependent open systems

Avner Fleischer and Nimrod Moiseyev
Department of Chemistry and Minerva Center of Nonlinear Physics in Complex Systems Technion, Israel Institute of Technology,

Haifa 32000, Israel
�Received 5 April 2005; published 8 September 2005�

In the conventional quantum mechanics �i.e., Hermitian quantum mechanics� the adiabatic theorem for
systems subjected to time-periodic fields holds only for bound systems and not for open ones �where ionization
and dissociation take place� �D. W. Hone, R. Ketzmerik, and W. Kohn, Phys. Rev. A 56, 4045 �1997��. Here
with the help of the �t , t�� formalism combined with the complex scaling method we derive an adiabatic
theorem for open systems and provide an analytical criterion for the validity of the adiabatic limit. The use of
the complex scaling transformation plays a key role in our derivation. As a numerical example we apply the
adiabatic theorem we derived to a one-dimensional model Hamiltonian of Xe atom which interacts with strong,
monochromatic sine-square laser pulses. We show that the generation of odd-order harmonics and the absence
of hyper-Raman lines, even when the pulses are extremely short, can be explained with the help of the
adiabatic theorem we derived.
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I. MOTIVATION

When matter is exposed to intense laser fields, high har-
monics �HH’s� of the incident radiation may be produced.
Usually, only odd harmonics are obtained even when the
laser pulses are short �for theoretical and experimental work
which demonstrates this see �1,2�, respectively�. Since the
duration of the pulse in time is inversely proportional to its
width in energy space, one may find this result surprising, as
one may expect to obtain also a large distribution of frequen-
cies in the scattered field. Why are only odd harmonics ob-
tained even when the laser pulses are short?

For cw lasers �and symmetric field-free potential� using
the non-Hermitian Floquet theory it was proved that only
odd harmonics are obtained when the dynamics is controlled
by a single-resonance Floquet quasienergy �QE� state �3,4�.
When laser pulses are used it was argued that this proof still
holds since usually the populated resonance states are asso-
ciated with very different lifetimes and the dynamics is con-
trolled by the resonance state which has the longest lifetime.
However, this argument may hold only when the duration of
the laser pulses is large enough to enable the decay of the
short-lived resonances. Indeed numerical simulations
showed that the harmonic generation spectra �HGS� as ob-
tained from a single non-Hermitian �complex-scaled� reso-
nance Floquet state is in remarkable agreement with the re-
sults obtained from conventional �i.e., Hermitian� time-
dependent simulations �5�.

The question that is addressed in this work is whether an
analytical criterion for the shape and duration of the laser
pulse for which the system is controlled by a single-
resonance Floquet state can be given. It is obvious that the
question regarding the possibility of the population of a
single-resonance state is connected with the question regard-
ing the degree of adiabaticity of the process. The question is
therefore under which conditions can a short laser pulse be
defined as an adiabatic one. The answer to this question is
important not only to harmonic generation �HG� studies but
also for other, more general studies where lasers are used to

control the dynamics—for example, STIRAP �Stimulated
Raman Adiabatic Passage� procedures �6�.

In order to answer this question we use the �t , t�� formal-
ism �7� together with the non-Hermitian quantum mechanics
�NHQM� formalism. The use of NHQM formalism to de-
scribe the dynamics of atoms and molecules subjected to cw
laser fields is essential, since only then can the dynamics be
described in terms of physical, square-integrable, resonance
Floquet states. Otherwise, the description of the dynamics in
terms of Hermitian Floquet states results in very little physi-
cal insight into the problem, as well as numerical problems,
not to mention that it is limited to a description of bound
systems only. In the Hermitian case the spectrum is continu-
ous and becomes discrete only due to the use of finite box
quantization; moreover, a single Floquet state in Hermitian
QM cannot describe either the resonance phenomena or the
field ionization phenomena �8�.

Our strategy is as follows. In Sec. II we give a brief re-
view of the formalism used in our derivation �namely, the
�t , t�� formalism for Hermitian and non-Hermitian Hamilto-
nians�. In Sec. III we introduce our derivation of the adia-
batic theorem for open quantum systems in strong laser
pulses. In Sec. IV we apply the adiabatic theorem as derived
in Sec. III to a test-case model Hamiltonian which describes
a one-dimensional �1D� Xe atom subjected to a sine-square
pulse of monochromatic laser. In Sec. IV we conclude.

II. BRIEF REVIEW OF THE „t , t�… FORMALISM

The �t , t�� formalism enables one to obtain analytical so-
lutions for any time-dependent Schrödinger equation �TDSE�
with time-dependent Hamiltonians. The formalism rests on
lifting of the TDSE to an extended Hilbert space, propaga-
tion of the wave function there, and finally projecting back to
the physical Hilbert space.

The solution of a general TDSE is given as usual by
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H�r,t���r,t� = i�
�

�t
��r,t� , �1�

with the initial condition ��r , t=0� and the vector operator r
describes the internal degrees of freedom. It has been shown
by Peskin and Moiseyev that by regarding time as an extra
coordinate t�, one can obtain another Schrödinger equation
with a time-independent Hamiltonian in the extended Hilbert

space �r , t��, whose solution �̄�r , t� , t� has an analytical time
dependence �given by the analytical time evolution operator
associated with time-independent Hamiltonians� �7�. Our de-
sired wave function ��r , t� can be deduced from this wave
function by a simple operation �which will be shown later�.
The advantage is that efficient propagation schemes designed
for solving the TDSE with time-independent Hamiltonians
could then be used also for time-dependent Hamiltonians,
thus releasing one from the difficulties associated with time
ordering.

Let us define the following Floquet-type operator

HF�r,t�� ���H�r,t� − i�
�

�t
��

t�=t
= H�r,t�� − i�

�

�t�
,

0 � t� � tf , �2�

where t� should be regarded as a coordinate and tf is the final
time of propagation. When the Hamiltonian H�r , t� is time
periodic with period T, the operator is the Floquet operator
and tf �T. Provided that correct boundary conditions are
chosen for the t� coordinate, this operator is Hermitian since
it is the sum of two Hermitian operators. This operator has
eigenstates and eigenvalues which are given by the eigen-
value equation

HF�r,t�����r,t�� = �����r,t�� , �3�

and the set of eigenstates is complete in the extended Hilbert
space �r , t�� with respect to the inner product:

		��
�����r,t� �
1

tf
�

0

tf

dt��
−�

�

d3r��
*�r,t������r,t�� = ��,��.

�4�

Say the following TDSE with time-independent Hamil-

tonian needs to be solved with initial state �̄�r , t� , t=0�:

HF�r,t���̄�r,t�,t� = i�
�

�t
�̄�r,t�,t� . �5�

Using the definition of HF�r , t�� this equation reads

H�r,t���̄�r,t�,t� = i�� �

�t
+

�

�t�
��̄�r,t�,t� . �6�

By setting the cut t= t� on Eq. �6� one gets


�H�r,t���̄�r,t�,t��
t�=t = H�r,t��
�̄�r,t�,t�
t�=t�

= i�
�

�t
�
�̄�r,t�,t�
t�=t� , �7�

where the property

�

�t
�
�̄�r,t�,t�
t�=t� =�
� �

�t
+

�

�t�
��̄�r,t�,t���

t�=t
�8�

�which holds true for any function of t� and t� has been used.
The relation between the solution of Eq. �7� and the solution
of the original TDSE �Eq. �1�� is given by

��r,t� = 
�̄�r,t�,t�
t�=t, �9�

provided that these two differential equations have the same
initial condition. Hence,


�̄�r,t�,t�
t�=t=0 = ��r,t = 0� . �10�

It is seen from Eq. �10� that apparently the initial condi-
tion is not unique. While this holds true in the case that one
is interested only in the physical wave function ��r , t�, it
should be noted that if one wishes to calculate physical quan-
tities in the extended Hilbert space using the function

�̄�r , t� , t� and then go back to the original Hilbert space and
get the correct results, the initial condition in the extended
Hilbert space should behave as a delta-function in t�. The

correct initial condition will therefore be �̄�r , t� , t=0�
=��r , t=0���t��.

The main advantage of the �t , t�� formalism from a nu-
merical point of view is that it enables the use of an analyti-
cal expression for the time evolution operator, without the
necessity of time ordering, even when the Hamiltonian is
strongly time dependent. Any TDSE with a time-dependent
Hamiltonian could be replaced by a different TDSE, with a
time-independent Hamiltonian, for which a greater number
of accurate integration schemes exist and the solution is

given formally by �̄�r , t� , t�=e−�i/��HF�r,t��t�̄�r , t� , t=0�. The
price one pays, however, is that the new TDSE need to be
integrated over one extra dimension.

The main advantage of the �t , t�� formalism from a con-
ceptional point of view is that it enables one to describe any
time-dependent dynamics in terms of stationary eigenstates
and eigenvalues.

So far, the derivation has been carried out within the
framework of conventional �i.e., Hermitian� quantum me-
chanics. Using the complex-scaling �CS� transformation
�9,10�

HF�r,t�� → HF
	�r,t�� � H�rei	,t� − i�

�

�t
, �11�

the quasienergy spectrum of the Floquet Hamiltonian be-
comes complex and square-integrable resonance states,
which were embedded in the continuum in the unscaled
problem, are uncovered. For the sake of simplicity we drop
the index 	 in all 	-dependent expressions �operators, eigen-
values, eigenvectors, etc.� in the proceeding text.

The Floquet operator HF can be represented with the or-
thogonal Fourier basis set �1/�T�ei
nt�, n=0, ±1, ±2, . . ., as
a square matrix
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�HF�r�
=

�n�,n =
1

T
�

0

T

dt�e−i
n�t�HF�r,t��ei
nt�, �12�

where T=2� /
. The left and right eigenvectors �biorthogo-
nal set of eigenvectors �11�� of this Floquet matrix are the
Fourier components of the Floquet states as defined in Eq.
�3�—that is,

�HF�r�
=

�t�� �
L�r� = E��� �

L�r� , �13�

�HF�r�
=

��� �
R�r� = E��� �

R�r� , �14�

where

��� �
L/R�r��n � ��,n

L/R�r� . �15�

Since in our case �HF�r�
=

�t= �HF�r�
=

�, then �� �
L�r�=�� �

R�r�.
There are two sets of eigenfunctions of the Floquet operator
HF�r , t��:

��
R�r,t�� = �

n

��,n
R �r�ei
nt� �16�

and

��
L�r,t�� = �

n

��,n
L �r�e−i
nt� = �

n

��,n
R �r�e−i
nt�. �17�

As pointed out in �12� the c product, which is associated
with the nonusual inner product in linear algebra �see, for
example, Wilkinson’s textbook �11��, reads

„��
L�r,t��
���

R �r,t��…r,t� = �
n

���,n
R 
���,n

R �r = ��,��, �18�

where (��
L�r , t�� 
���

R �r , t��)r,t��	��
L��r , t�� 
���

R �r , t���r,t�.
However, as proposed recently by Moiseyev and Lein �13�,
the inner product should be modified even further when
time-dependent functions are used as a basis set due to the
time-asymmetry problem in NHQM. If we define ��

R�r , t�
and E�=Er�

− �i /2�
� to be the Floquet eigenfunctions and
eigenvalues, respectively, then the time-dependent basis
functions could be

��
R�r,t�,t� = e−�i/��E�t��

R�r,t�� �19�

�which are solutions of the TDSE� and also the left functions

��
L�r,t�,t� = e+�i/��E�

* t��
L�r,t�� . �20�

Following the modified definition of the inner product
�“finite-range” product, “F product” �13��,

„��
L�t�
���

R �t�…r,t� � e+�i/��E�
* te−�i/��E��t

„��
L�r,t��
���

R �r,t��…r,t�

= e−
�t��,��, �21�

it implies that the �th quasienergy state decays exponentially
in time. For a more detailed discussion see �13,14�.

III. ADIABATIC THEOREM FOR TIME-DEPENDENT
SYSTEMS

The adiabatic theorem for time-dependent bound systems
was derived in 1997 by Kohn et al. �15� and in 1999 by

Drese and Holthaus �16� who used the �t , t�� formalism to
describe the evolution of a system subjected to chirped laser
pulses. As discussed by Kohn and co-workers, the adiabatic
approach is not applicable for open systems since the
quasienergy level spacing reduces to zero as the number of
basis functions used in the numerical calculation is in-
creased. To avoid this difficulty Baer et al. �17� applied the
adiabatic theorem to time-dependent open systems in the
high-frequency regime where the system was stabilized and
the resonances �which were embedded in the continuum part
of the Floquet spectra� became so narrow that they could be
practically treated as bound states. The purpose of our work
is to derive the adiabatic theorem for general time-dependent
open systems where there are no bound states and the reso-
nances are not necessarily narrow. We are using the non-
Hermitian Floquet formalism �through the CS formalism�
which allows us to describe the dynamics in term of non-
Hermitian resonance states �see, for example, �9,10,18–21�
and also the work of Day et al. �22� who used the NH Flo-
quet multistate method to study the applicability of the
single-Floquet-resonance approximation in the description of
the dynamics of the H atom subjected to intense laser fields
of various strengths�.

Below we derive the adiabatic theorem for time-
dependent open systems using the extended �t , t�� formalism.
By the term “extended” �t , t�� formalism we mean that in the
same manner presented, one may add any number of time
“coordinates” to the Schrödinger equation as one wishes, if
by this a better understanding or easier solution of the prob-
lem is achieved. Here we found that by the addition of two
time coordiantes to the TDSE, we simplified the derivation
of the adiabaticity criteria for photoinduced dynamical sys-
tems. In this sense, we are using a �t , t� , t�� formalism.

We would like to study the dynamics of a single active
electron in an atom or molecule, subjected to a pulse of
strong monochromatic linearly polarized laser radiation. In
the dipole approximation the TDSE which describes this pro-
cess is

H�r,t��R�r,t� = i�
�

�t
�R�r,t� , �22�

where

H�r,t� = H0�r� − er · f�t�cos�
t� �23�

and

f�t� � �0ekf�t� . �24�

Here f�t� is the function which describes the envelope of the
laser pulse and f�t� is a vector as defined in Eq. �24�; �0 is the
laser’s amplitude, ek is a unit vector in the direction of the
electric component of the laser field, and 
 is the laser’s
frequency, with T=2� /
 the optical period. H0�r� is the
field-free Hamiltonian, and the vector operator r describes
the internal degrees of freedom �the coordinates are complex
scaled throughout�.

In the same spirit of Sec. II, we define the operator
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HF�r,t�,t�� � H̃�r,t�,t�� − i�
�

�t�
− i�

�

�t�
, �25�

where

H̃�r,t�,t�� � H0�r� − er · f�t��cos�
t�� �26�

and t� , t� should be regarded as additional coordinates. Upon
complex scaling �23� HF�r , t� , t�� becomes non-Hermitian.
Therefore the inner c product should be used as mentioned
before. The quasienergy solutions of this complex-scaled
Floquet-type operator are

HF�r,t�,t���k
R�r,t�,t�� = �k�k

R�r,t�,t�� , �27�

HF
†*�r,t�,t���k

L�r,t�,t�� = �k�k
L�r,t�,t�� , �28�

where the symbol HF
†* does not stand for an operator but for

the transpose of the matrix representing the operator HF. The
eigenfunctions form a complete set in the extended Hilbert
space r , t� , t�.

Say we want to solve the following TDSE with the initial

state �̃�r , t� , t� , t=0�:

HF�r,t�,t���̃R�r,t�,t�,t� = i�
�

�t
�̃R�r,t�,t�,t� . �29�

The solution to this equation is

�̃R�r,t�,t�,t� = e−�i/��HF�r,t�,t��t�̃R�r,t�,t�,t = 0�

= �
k

cke
−�i/���kt�k

R�r,t�,t�� , �30�

and a function �̃L�r , t� , t� , t�, which is not a solution of any
Schrödinger equation, is defined as

�̃L�r,t�,t�,t� = �
k

cke
+�i/���k

*t�k
L�r,t�,t�� , �31�

where by taking the cut t�= t�= t=0 on Eq. �30�
it is easily seen that the expansion coefficients

are ck= (
�k
L�r , t� , t��
t�=t�=0
�̃R�r , t� , t� , t�
t�=t�=t=0)r.

�e−�i/���kt�k
R�r , t� , t��
t�=t�=t is a solution of the original TDSE

�apply the cut t�= t�= t on Eq. �27� and compare the result to
the result obtained when the function

e−�i/���kt�k

R�r , t� , t��
t�=t�=t is substituted in the original
TDSE�; therefore, any linear combination of these solutions
is also a solution�.

Let us now return to the main purpose of this article: the
derivation of the adiabatic theorem for non-Hermitian open
systems. We would like to treat t� as an adiabatic coordinate
�this is the coordinate associated with the pulse envelope� in
the same way that the electronic motion is separated from the
nuclear one in the treatment of molecules within the Born-
Oppenheimer approximation. First we define the operator

Had�r,t�,t�� � H̃�r,t�,t�� − i�
�

�t�
, �32�

where t� should be regarded as a parameter now. This means
that this Hamiltonian is a Floquet Hamiltonian describing the

interaction of the atom with cw laser of strength �1 where
following Eq. �24�:

�1 = 
f�t�
 = �0f�t� . �33�

The eigenstates of this operator form a complete basis �in
the r-t� space�, for every value of the parameter t�:

Had�r,t�,t����
ad,R�r,t�,t�� = ��

ad�t����
ad,R�r,t�,t�� . �34�

Notice that due to the complex scaling, �k and ��
ad�t�� get

complex values.
We can expand each eigenstate of the complete problem

�Eq. �27�� in this basis:

�k
R�r,t�,t�� = �

��

���
ad,R�r,t�,t�����,k�t�� . �35�

Substituting Eq. �35� into Eq. �27�, multiplying the obtained
equation from the left-hand side by ��

ad,L�r , t� , t��, and inte-
grating over r and t�, one gets, in matrix notation, the equal-
ity


− i�
�

�t�
I= + �E= ad�t�� + V= �t������ k�t�� = �k�� k�t�� , �36�

where

�E= ad�t����,�� = ��
ad�t����,��,

�V= �t����,�� = ���
ad,L�r,t�,t���− i�

�

�t�
����

ad,R�r,t�,t���
r,t�

,

��� k�t���� = ��,k�t�� . �37�

Notice that in case that the matrix on the left-hand side of
Eq. �36� is diagonal, a homogeneous systems of uncoupled
equations is obtained. In such a case one should solve each
equation separately. Therefore, the sum in Eq. �35� reduces
to a single product. This is exactly the adiabatic approxima-
tion as appears in the Born-Oppenheimer context. The next
step in our derivation is to represent the matrix �E= ad�t��
+V= �t��� by its spectral decomposition

�E= ad�t�� + V= �t���D= R�t�� = D= R�t��W= �t�� , �38�

�E= ad�t�� + V= �t���tD= L�t�� = D= L�t��W= �t�� . �39�

The matrix of eigenvalues W= �t�� is diagonal, and the right
and left eigenvectors are normalized with respect to each
other in order to maintain the correct inner product:

�D= L�t���tD= R�t�� = I= . �40�

In the case that the matrix �E= ad�t��+V= �t��� is not strictly
diagonal we can use first-order perturbation theory to get the
first-order deviation from diagonal. If we treat the matrix
V= �t�� as a perturbation, we get

�D= R�t�����,� = � ���,� �� = �

�V= �t�����,�

��
ad�t�� − ���

ad�t��
�� � � .

�41�

The matrix will be diagonal to a good approximation if
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A��t�� � �
����


�D= R�t�����,�
 � 1, �42�

which produces the adiabaticity criterion

A��t��� �
����

� ����
ad,L�r,t�,t���−i�

�

�t�
���

ad,R�r,t�,t���
r,t�

��
ad�t�� − ���

ad �t��
� � 1.

�43�

Using the specific form of the Hamiltonian of the problem
given in Eq. �23� and the Hellman-Feynman theorem one
gets the adiabatic condition for time-dependent open sys-
tems:

A��t�� � 1, �44�

where

A��t�� � 
e
��0�df�t��
dt�

� �
����

� „���
ad,L�r,t�,t��
r · ek cos�
t��
��

ad,R�r,t�,t��…r,t�

���
ad�t�� − ���

ad �t���2 � . �45�

The index � is a superindex, since �Eq. �34�� it is easily
seen that not only is ��

ad,L/R�r , t� , t�� a solution of the eigen-
value equation, with eigenvalue ��

ad�t��, but also

ei
mt���
ad,L/R�r , t� , t�� is a solution, with the eigenvalue

��
ad�t��+�
m, for any integer m. Let us take all the states

whose corresponding eigenvalues lie in the interval �0,�
�
�the first Brillouin zone� and define them to have index m
=0; we call these states � j

ad,L�r , t� , t�� and � j
ad,R�r , t� , t�� and

the corresponding eigenvalues Ej
ad�t�� and get

��
ad,R�r,t�,t�� � � j

ad,R�r,t�,t��ei
mt�, �46�

��
ad,L�r,t�,t�� � � j

ad,L�r,t�,t��e−i
mt�, �47�

��
ad�t�� � Ej

ad�t�� + �
m , �48�
where

0 � Ej
ad�t�� � �
 . �49�

Thus, the index � actually counts both the position of the
quasienergy within the first Brillouin zone �the index j� and
the Brillouin zone itself �the index m�. With respect to the
generalized inner product, two states with one or more of the
indices �j ,m� different are orthogonal.

Going back to Eq. �45� now, it is seen that the probability
to couple an initial adiabatic state ��=�j,0�

ad �r , t� , t�� to any

other adiabatic state �
��=�j�,m��
ad �r , t� , t�� is given by

A�j,0��t�� = F�t�� �
j��j

a�j��
�j� �t�� , �50�

where

F�t�� = 
e
��0�df�t��
dt�

� , �51�

a�j��
�j� �t�� = �

m��0


c�j�,m��
�j,0� �t��
 , �52�

and the functions c
�j�,m��
�j,0� �t��, which will be termed adiabatic

cross terms from now on, are given by

c�j�,m��
�j,0� �t��

=
„�� j�

ad,L�r,t�,t��
r · ek cos�
t��e−i
m�t�
� j
ad,R�r,t�,t���…r,t�

�Ej�
ad�t�� − Ej

ad�t�� + �
m��2
.

�53�

Since the energies Ej�
ad�t�� are complex �the Hamiltonian is

non-Hermitian�, then for j� j� it is most unlikely that Ej�
ad

=Ej
ad. It is clear that the denominator hardly ever vanishes

even when m�=0. This holds true even when j= j� but m�
�0.

Therefore, the criterion for a pulse to be considered adia-
batic is that the condition

A�j,0��t�� � 1 �54�

be fulfilled.
What is the adiabatic state ��=�j,0�

ad �r , t� , t�� whose cou-

plings to all other states �
��=�j�,m��
ad �r , t� , t�� should remain

small in the adiabatic limit? Assuming that the system is in a
stationary state of the field-free problem � j�r� before the
action of the field �relying on the superposition principle of
the solutions of the TDSE generality is not lost by this as-
sumption� and provided that the field is switched adiabati-
cally, this Floquet resonanace state ��=�j,0�

ad �r , t� , t�� is the
state which is “born” from the stationary state � j�x� as the
field is switched on. If the process is not done adiabatically,
many Floquet resonanace states will be populated, resulting
in considerable couplings of ��=�j,0�

ad �r , t� , t�� to them and col-
lapse of the adiabatic condition in Eq. �54�. The only adia-
batic check which is physically meaningful is one in which �
denotes a resonance state �which is associated with a square-
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integrable function�. ��, however, stands for both resonances
and rotated continuum states.

One should notice that the derivation of the adiabatic
theorem presented above holds for many-electron systems.
In order to avoid complicated notation the symbol r can
stand for many electrons. It also holds for polychromatic
radiation, where the cw field is a collection of monochro-
matic fields with frequencies 
i and phases �i.

Notice that for a given problem �a given spectral profile of
the cw field and a given field-free potential�, the sum over
the absolute value of the adiabatic cross terms should be
calculated as a function of the effective cw-field intensity
�which is symbolized here through t�� only once. The adia-
batic cross terms should then be converted to be functions of
time through the explicit time dependence of the pulse enve-
lope, and then the sum of their absolute values should be
multiplied by the time derivative of the pulse envelope and
by the maximal field intensity to obtain the final expression
which indicates whether the adiabatic criterion is fulfilled or
not.

It is easily seen in Eq. �51� that for a given system, the
shape and intensity of the laser pulse determine its adiaba-
ticity since these parameters influence the shape-derivative
term. A short pulse which is switched on or off abruptly and
has a high maximal intensity will most likely not be adia-
batic.

In the case that the adiabaticity criterion is fulfilled, the
sum in Eq. �35� could be reduced to a single product

�k,j
R �r,t�,t�� � � j

ad,R�r,t�,t��� j,k�t�� , �55�

and the adiabatic states are assigned with two good quantum
numbers k and j. The solution to the eigenvalue equation
�Eq. �36�� is now (�V= �t����,���0)

� j,k�t�� = exp�+
i

�
�kt��exp�−

i

�
�t�

d�Ej
ad���� . �56�

By using Eqs. �30�, �55�, and �56� we get that the adiabatic
solution, in the �t , t� , t�� formalism, is given by

�̃R�r,t�,t�,t� = 
�
k

ck exp�−
i

�
�k�t − t����� j

ad,R�r,t�,t��

�exp�−
i

�
�t�

d�Ej
ad���� . �57�

Now, applying the cut t�= t in order to obtain the physical
solution of Eq. �22� one gets �eliminating the phase factor
�kck�

�R�r,t� = 
�̃R�r,t�,t�,t�
t�=t�=t

= �exp�−
i

�
�t

d�Ej
ad����

�� j
ad,R�r,t�,t���

t�=t�=t

. �58�

This is the adiabatic solution of the TDSE associated with
the initial state � j�r�.

Let us summarize and clarify the procedure that needs to
be made in order to determine if a pulse is adiabatic or not.
The determination is carried out through the calculation of
the expression A�j,0��t� �it is t now, not t��:

�1� Perform non-Hermitian adiabatic Floquet simulations
�Eq. �34�� with cw field, for a range of intensities �1 which
covers all intensities between zero and the maximal intensity
�0 that the studied laser pulse reaches. The adiabatic Floquet
Hamiltonian is therefore

Had�r,t�,�1� � H0�r� − er · ek �1 cos�
t�� − i�
�

�t�
, �59�

and the eigenvalue equation to be solved is

Had�r,t�,�1�� j
ad,R�r,t�,�1� = Ej

ad��1�� j
ad,R�r,t�,�1� . �60�

Obtain the quasienergy spectrum Ej
ad��1� and all the adia-

batic cross terms c
�j�,m��
�j,0� ��1� as defined in Eqs. �60� and �53�

as a function of the intensities. This stage is done only once,
for a given system.

�2� For a given laser pulse f�t� with a maximal intensity
�0, evaluate the effective cw-field intensity as function of
time �0f�t� �Eq. �24��. Then, convert the adiabatic cross
terms to be functions of time via the equality �Eq. �33��

�1 = �0f�t�

using c
�j�,m��
�j,0� ��1� as calculated in step �1�, c

�j�,m��
�j,0� �t�

=c
�j�,m��
�j,0� �f−1��1 /�0��, where f−1 is the transformation which

fulfills f−1�f�t��= t.
�3� For each given resonance state �= �j ,0� calculate

A�j,0��t� = F�t� �
j��j

�
m��0


c�j�,m��
�j,0� �t�
 �61�

using c
�j�,m��
�j,0� �t� from step �2� where notice that here t� in Eqs.

�50�–�53� is replaced by t. If for a given resonance state �
= �j ,0� the corresponding expression A�j,0��t� is smaller than
unity at every instant, it is guaranteed that the system ini-
tially at the bound state which corresponds to this resonance
will evolve adiabatically to that resonance. In this case the
HGS spectra will show only odd harmonics and the ioniza-
tion probability as a function of time will have a simple
form, which will be shown.

IV. ILLUSTRATIVE NUMERICAL EXAMPLE

We studied a single-electron 1D Xe atom subjected to a
single sine-square pulse of a strong monochromatic laser
field in two approaches. In the first one Hermitian simula-
tions were carried out whereas in the second non-Hermitian
Floquet simulations based on the complex scaling method
were carried out. The Hermitian simulations were carried out
by solving the TDSE


−
�2

2m

�2

�x2 + V0�x� − ex�0f�t�cos�
t����x,t� = i�
�

�t
��x,t� ,

�62�

with a sine-square envelope
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f�t� = sin� 
t

2N
� , �63�

and the field-free effective potential V0�x� was an inverse
Gaussian

V0�x� = − 0.63 exp�− 0.1424x2� , �64�

which supports two bound states that mimic the two lowest
electronic states of Xe, with energies E0=−0.4451 a.u. and
E1=−0.1400 a.u. and a third weakly bound state with energy
E2=−0.00014 a.u.

The wave function was taken initially at the ground state
�g.s.� of the field-free Hamiltonian of the system,

��x,t = 0� = �1�x� , �65�

and was calculated for times 0� t�NT �single sine-square
pulse, N is the number of optical cycles that entered the
pulse�. Using this wave function the ionization probability at
times t=� /2
+n� /
 ,0�n�2N−1 was calculated �at
these times the potential felt by the electron was the field-
free potential V0�x��:

Pion�t� = 1 − �
i=1

3


	�i
��t��
2, �66�

where �i were the bound states of the field-free problem
�three bound states over which we summed in this example�.
Also the HGS was calculated, which following the classical-
quantum correspondence principle �Larmor formula �24��
equals the modulus square of the Fourier-transformed time-
dependent acceleration expectation value. This is actually the
intensity of the radiation emitted by the oscillating electron
as presented in energy space:

���� = � 1

NT
�

0

NT 1

m
���t��−

�V0�x�
�x

+ e�0f�t�cos�
t����t��e−i�tdt�2

. �67�

The non-Hermitian simulations were Floquet simulations
which were carried out for different field intensities. The
quasienergy spectrum of complex energies Ej

ad��1� and the

adiabatic cross terms c
�j�,m��
�j,0� ��1� were calculated for each in-

tensity. Then, these quantities were expressed as a function
of time through Eq. �33�—i.e., t= f−1��1 /�0�. It was verified
that in the cases where the adiabatic criterion was fulfilled,
the HGS obtained from the Hermitian propagation simula-
tion contained only odd harmonics. A more quantitative mea-
sure of the existence of the adiabatic criterion was obtained
through a comparison of ionization probabilities as obtained
from the Hermitian propagation simulation and the non-
Hermitian simulation.

In order to get the non-Hermitian Floquet Hamiltonian,
the complex coordinate method was used. The Floquet
Hamiltonian �Eq. �59��

Had�x,t�,�1� � − e−2i	 �2

2m

�2

�x2 + V0�xei	�

− exei	�1cos�
t�� − i�
�

�t�
�68�

was diagonalized. Provided that the scaling parameter 	 was
sufficiently large, the resonance quasienergy states were 	
independent:

Ej
ad�t�� = Erj

�t�� −
i

2

 j�t��, 
 j =

�

� j
, �69�

Erj
being the position of the state, 
 j being the width of the

state, and � j its lifetime. Since the resonance states had finite
lifetimes and since the resonances are the states which are
associated with the dynamics, these resonance lifetimes
should have fingerprints in the Hermitian propagation simu-
lation. Indeed it was found to be so when the ionization
probabilities, as computed in the two simulations, were com-
pared. The ionization probability at each instant was given
by the following expression, which was obtained using Eq.
�58� and the F-product definition for the inner product �13�:

Pion�t� = exp�−
1

�
�t

d�
1���� , �70�

where 
1��� was associated with the Floquet resonanace state
that was “born” from the ground stationary state �1�x� as the
field was turned on. The resonances that were born from the
field-free Hamiltonian bound states were identified by plot-
ting the quasienergy spectrum as function of the effective
field intensity �1. The resonance complex quasienergy trajec-
tories started from the field-free Hamiltonian bound-state
real energies and formed continuous trajectories in the com-
plex energy plane as a function of intensity.

How was this expression for the ionization probability
obtained? According to the F-product definition when the
complex energy given in Eq. �69� is substituted into Eq. �58�,
the “ket” �right� solution of the non-Hermitian TDSE is ob-
tained,

�R�r,t� =�exp�−
1

2�
�t

d�
 j���

−
i

�
�t

d�Erj
����� j

ad,R�r,t�,t���
t�=t�=t

, �71�

and it is easily seen that this function decays with time. The
“bra” �left� solution is not a solution of a Schrödinger equa-
tion but is derived from the “ket” solution �the explanation of
this point is beyond the scope of this work; for an explana-
tion see �14��

�L�r,t� =�exp�−
1

2�
�t

d�
 j���

+
i

�
�t

d�Erj
����� j

ad,L�r,t�,t���
t�=t�=t

, �72�

and also this function decays with time. When the F product
of �L�r , t� and �R�r , t� is calculated �this is an overlap inte-
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gral without complex conjugation of the left state; in the
usual Dirac-product notation this reads 	�L��t� 
�R�t��� the
terms containing the real part of the energy cancel each other
and the overlap integral �c product� of the adiabatic Floquet
states gives unity �remember the completeness property of
Floquet states also in coordinate space alone�. The expres-
sion in Eq. �70� is obtained for the specific case that only the
Floquet resonance state which is born from the field-free
bound state is populated. When several Floquet states are
populated the same type of calculation could be repeated,
where this time �L�r , t� and �R�r , t� are given by a liner
combination of terms as in Eq. �71� with the proper coeffi-
cients. Since the adiabatic Floquet states are orthogonal to
each other, a generalization of the result of Eq. �70� is ob-
tained:

Pion�t� = �
i=1

3


	�i
��t = 0��
2 exp�−
1

�
�t

d�
i���� . �73�

Notice that in the non-Hermitian formalism the norm is not
conserved but decays with time; it contains the knowledge
about decay processes inherently.

The two functions as given in Eqs. �66� and �70� were
compared, and it was found that the resemblance between
the functions increased as the adiabatic limit was increas-
ingly reached by the laser pulse parameters.

The numerical method used to solve the TDSE with Her-
mitian Hamiltonian was the split-operator Forest-Ruth algo-
rithm with seven points �25�. The grid size, time step, and/or
grid step were adjusted as required to achieve convergence.
For the non-Hermitian Floquet simulation, the �t , t�� formal-
ism was used, with the complex coordinate method. The
number of basis functions, box length, and scaling angle
were adjusted as required to achieve convergence.

In Fig. 1 the HGS as obtained for pulse strength of �0
=0.035 a.u. �corresponding to intensity of 4.30
�1013 W/cm2�, pulse durations of N=5,10,50 optical
cycles, laser frequencies of 
=0.015,0.07,0.11 a.u. �corre-
sponding to energies of �
=0.408,1.90,2.99 eV and wave-
lengths of �=3040,651,414 nm, respectively�, and initial
state �1�x� are shown. The appearance of odd harmonics and
the absence of even or noninteger harmonics is in general the
main feature which appears for long pulses, regardless of the
frequency. The odd harmonics are obtained even for the
shortest laser pulses, although the existence of odd-
symmetry selection rules is sensitive to the frequency: some
deviation appears at a frequency of 
=0.07 a.u., and the
obtained spectra is more complicated.

In Fig. 2 the complex quasienergies of the three reso-
nances which are born from the three bound states of the
field-free Hamiltonian �which will be given indices 1–3 from
now on�, as obtained from adiabatic Floquet simulations �Eq.
�60�� for 
=0.11 a.u. are shown as a function of the cw-field
strength �1. Notice that the lifetimes of these resonances are
not monotonic functions of the field intensity. It should be
noted that these were not the only resonances that appeared
in the quasienergy spectrum; there were also other reso-
nances which did not emerge from the field-free bound
states. However, as will be shown in Fig. 4, below, in this

case for not too large field intensities resonances 1–3 were
the only important resonances and they alone determined the
dynamical behavior of the system.

In Fig. 3 the ionization probability as obtained from the
Hermitian simulation �Eq. �66�� with pulse strength of �0
=0.035 a.u., pulse durations of N=5,10,50 optical cycles,
laser frequency of 
=0.11 a.u., and initial state �1�x� is
compared to the ionization probability as obtained from the
expression given in Eq. �70�, which is derived from the
F-product formalism together with the resonances quasiener-
gies obtained from the non-Hermitian simulation. It is seen

FIG. 1. �Color online� HGS obtained from Hermitian simula-
tions describing a 1D Xe atom subjected to various sine-square
pulses with strength of �0=0.035 a.u., laser frequencies of 

=0.015 a.u. �upper part�, 
=0.07 a.u. �middle part�, and 

=0.11 a.u. �lower part�, and pulse durations of N=5 �solid lines�, 10
�dot-dashed lines�, and 50 �solid-dotted lines� optical cycles. The
initial state was taken to be the ground state in all simulations. For
the longest pulse duration only odd harmonics appear in the spec-
trum and hyper-Raman lines are absent. This is also the basic fea-
ture in the case of short pulses, although some deviation from this
structure appears at a frequency of 
=0.07 a.u..

FIG. 2. �Color online� Positions �upper part� and lifetimes
�lower part� of the complex quasienergies of resonances 1–3 as a
function of the cw-field strength �1 as obtained from adiabatic non-
Hermitian Floquet simulations �Eqs. �60� and �69�� for 

=0.11 a.u..

A. FLEISCHER AND N. MOISEYEV PHYSICAL REVIEW A 72, 032103 �2005�

032103-8



that as the pulse becomes longer, the results obtained from
the two simulations become identical.

Both the results of HGS and ionization probabilities
showed that the time-dependent wave function of the studied
systems could be well approximated by the adiabatic expres-
sion given in Eq. �58�, even for short pulses. The values of
the terms which check the adiabatic criterion, as seen in Fig.
6, below, gave an explanation why this was so.

In Fig. 4 the expressions a�2�
�1�, a�3�

�1�, and a�3�
�2� �Eq. �52��

which describe the couplings between every two resonances
from the set of three tracked resonances is shown as function
of the cw-field strength �1, for the case 
=0.11 a.u. It can be
seen that the coupling between resonances 1 and 2 is strong
for field strengths of �1�0.04,0.064,0.072 a.u. This could
be partially explained on the basis of the values of the
quasienergies, as seen in Fig. 2, at least for two field
strengths out of the three. It is seen that for field strengths of
0.04 and 0.064 a.u. the real parts of the quasienergies cross,
resulting in a small value of the denominator in the expres-
sion given in Eq. �53� for c

�2,m��
�1,0� �at least for one m� term�. In

the same way the strong couplings between resonances 1 and
3 at a field strength of �1=0.064 a.u. and between resonances
2 and 3 at a field strength of �1=0.066 a.u. could be ex-
plained on the basis of the quasienergy values at these field
strengths. In particular it should be noticed that the couplings
between resonances 1 and 3 at �1=0.064 a.u. are the stron-
gest among all three resonances due to the close values of
both real and imaginary parts of the quasienergies. However,
it should be noted that the crossings in the quaisenergy plot
are not always indications of large couplings since also the
overlap between the wave functions �the nominator of the
expression for c

�j�,m��
�j,0� � is important.

In Fig. 5 the sum � j��1a
�j��
�1� ��1� which describes the cou-

plings between all quasistates of the system ��= �j� ,m�� to
resonance 1 �= �1,0� is shown as function of the cw-field
strength �1, for the case 
=0.11 a.u. In addition, also the
partial sum a�2�

�1���1�+a�3�
�1���1� which describes the couplings

between resonances 2 and 3 to the resonance state �= �1,0�
is shown. It can be shown that up to a moderate intensity of
�1�0.04 a.u. the first resonance is mainly coupled only to
the other two resonances and not to other, higher resonances
or continuum states. The entire dynamics is governed almost
solely by the three resonances which are born from the three
bound states of the field-free Hamiltonian.

The sums described above, which are functions of a cw-
field strength �1, are converted to be explicit functions of
time for the specific sine-square pulse with maximal inten-
sity �0=0.035 a.u. used in the simulation �Fig. 5, upper part�.
For this purpose for each time t , 0� t�NT the effective cw-
field strength 0.035f�t� is calculated and the values of the
two functions shown in Fig. 5 which fit this effective cw-
field strength are taken. Hence the two sum functions are
converted to be explicit functions of time. In the middle part
of Fig. 6 the full term A�1,0��t�, which represents the degree
of adiabaticity in the process of shining a 1D Xe atom ini-
tially at the ground state with a sine-square laser pulse sup-
porting N=5 optical cycles of monochromatic radiation with
frequency 
=0.11 a.u. and strength �0=0.035 a.u., is shown

FIG. 3. �Color online� Ionization probabilities obtained from
Hermitian simulations �lines� �Eq. �66�� for pulse durations of N
=5 �upper part�, N=10 �middle part�, and N=50 �lower part� optical
cycles and from non-Hermitian simulations �dots� �Eq. �70��. As the
pulse becomes longer the results obtained from the two simulations
become identical since the adiabaticity of the process is increased.

FIG. 4. �Color online� The expressions 6a�2�
�1���1� �solid line�,

a�3�
�1���1� �dashed line�, and 2.5a�3�

�2���1� �dotted line� �Eq. �52�� as a

function of the cw-field strength �1, for 
=0.11 a.u..

FIG. 5. �Color online� The expressions � j��1a
�j��
�1� ��1� �dashed

line� and a�2�
�1���1�+a�3�

�1���1� �solid line�, which describe, respectively,

the couplings between all quasistates of the system ��= �j� ,m�� or
only resonances 2 and 3 to resonance 1, �= �1,0�, are shown as a
function of the cw-field strength �1, for the case 
=0.11 a.u..
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as a function of time. It is seen that the term A�1,0��t� is
bounded by the value of �2�10−3 for all times, whether it
is calculated by coupling of the first resonance to other two
resonances only or to all other states. The structure of the
HHS for N=5 seen in Fig. 1 implies that this value is indeed
small and the process is adiabatic. In the lower part of Fig. 6
the same quantity is shown, but for 
=0.07 a.u. Here it is
seen that the terms A�1,0��t� are bounded by a much larger
value of �10−1 for all times and the more complex structure
of the HHS for N=5 seen in Fig. 1 implies that this value is
not small enough to indicate the appearance of an adiabatic
process. It should be noted that for a given system with field
strength �0, frequency 
, and sine-square pulse envelope, we
have F�t�= 
e
���0
 /2N�
sin�
t /N�
. Therefore, as the num-
ber of optical cycles the pulse supports increases, the general

shape of the terms A�1,0��t� is kept the same but is attenuated.
Therefore, for 
=0.07 a.u. as N gets bigger, the pulse’s en-
velope varies more slowly and the process becomes more
and more adiabatic, as seen in the HHS for N=50, for ex-
ample.

V. CONCLUSIONS

With the help of the �t , t�� formalism we derive an adia-
batic theorem for open systems. The use of the complex
scaling transformation plays a key role in our derivation. For
example, the spectrum of the Floquet Hamiltonian of an
open system is changed dramatically. Rather than a continu-
ous spectrum that is responsible for the absence of an adia-
batic limit for N �number of basis functions� →� in the
conventional QM, the resonances are associated with a point
spectrum and are separated from the continuum which is
rotated into the lower half of the complex energy plane.

An interesting important numerical result of our deriva-
tion is that the calculation of the effect of the pulse shape on
the dynamics does not require heavy computations. The en-
tire effect of the laser pulse is embedded in a multiplication
factor of df�t� /dt where �0f�t� is the variation of the maxi-
mum field amplitude as a function of time.

As a numerical example we applied the adiabatic theorem
to a model Hamiltonian of Xe atom �with symmetric field-
free potential� which interacts with strong, monochromatic
laser pulses. We have shown that the generation of odd-order
harmonics and the absence of even-order harmonics, even
when the pulses are extremely short, can be explained with
the help of the adiabatic theorem we derived.

The use of a single-electron 1D model to describe a real-
istic atom is justified since it has been shown before in many
cases that all the main strong field effects are reproduced.
Therefore the conclusions obtained with this model are also
valid for a realistic atom.

ACKNOWLEDGMENTS

This work was supported in part by the Israel Science
Foundation and by the fund for the promotion of research at
the Technion. Dr. Milan Šindelka is acknowledged for most
helpful and fruitful discussions.

�1� S. X. Hu and Z. Z. Xu, Phys. Rev. A 56, 3916 �1997�; S.
Dionissopoulou, T. Mercouris, and C. A. Nicolaides, ibid. 61,
063402 �2000�; A. Di Piazza and E. Fiordilino, ibid. 64,
013802 �2001�; V. Véniard, R. Taïeb, and A. Maquet, ibid. 65,
013202 �2001�.

�2� T. Millack, and A. Maquet, J. Mod. Opt. 40, 2161 �1993�; N.
Hay, R. de Nalda, T. Halfmann, K. J. Mendham, M. B. Mason,
M. Castillejo, and J. P. Marangos, Eur. Phys. J. D 14, 231
�2001�.

�3� N. Ben-Tal, N. Moiseyev, and A. Beswick, J. Phys. B 26,
3017 �1993�.

�4� O. E. Alon, V. Averbukh, and N. Moiseyev, Phys. Rev. Lett.
80, 3743 �1998�; 85, 5218 �2000�.

�5� N. Ben-Tal, N. Moiseyev, C. Leforestier, and R. Kosloff, J.
Chem. Phys. 94, 1636 �1991�.

�6� N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann,
Annu. Rev. Phys. Chem. 52, 763–809 �2001�.

�7� U. Peskin and N. Moiseyev, J. Chem. Phys. 99, 4590 �1993�.
�8� A. Fleischer, V. Averbukh, and N. Moiseyev, Phys. Rev. A 69,

043404 �2004�.
�9� W. P. Reinhardt, Annu. Rev. Phys. Chem. 33, 223 �1982�.

�10� N. Moiseyev, Phys. Rep. 302, 211 �1998�.

FIG. 6. �Color online� Upper part: the time-dependence of a
sine-square pulse �0 sin2�
t /2N� �solid line� and a scaled time de-
rivative 90��0
 /2N�sin�
t /N� �dashed line� for N=5, 
=0.11 a.u.,
and �0=0.035 a.u. Middle part: the full term A�1,0��t� �solid line�
and the partial term F�t��a�2�

�1��t�+a�3�
�1��t�� �dashed line� are shown as

a function of time. Both terms are bounded by the small value of
�2�10−3 for all times. Lower part: the same as in the middle part,
but for 
=0.07 a.u. Both terms are bounded by a larger value of
�10−1. It is therefore deduced that for 
=0.11 a.u. the process is
adiabatic but for 
=0.07 a.u. it is not, and this is indeed verified in
the HGS given in Fig. 1 for N=5.
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