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For two classical Brownian particles an analog of continuous-variable quantum entanglement is presented:
The common probability distribution of the two coordinates and the corresponding coarse-grained velocities
cannot always be prepared via mixing of any factorized distributions referring to the two particles separately.
This is possible for particles which have interacted in the past, but do not interact at present. Three factors are
crucial for the effect: �1� separation of time scales of coordinate and momentum which motivates the definition
of coarse-grained velocities; �2� the resulting uncertainty relations between the coordinate of the Brownian
particle and the change of its coarse-grained velocity; �3� the fact that the coarse-grained velocity, though
pertaining to a single Brownian particle, is defined on a common context of two particles. The Brownian
entanglement is a consequence of a coarse-grained description and disappears for a finer resolution of the
Brownian motion. Analogies with the quantum situation are discussed, as well as possibilities of experimental
realization of the effect in examples of macroscopic Brownian motion.
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I. INTRODUCTION

There is a long tradition of seeking connections between
quantum mechanics and classical statistical physics. A list of
known examples includes �i� analogies between the notion of
complementarity in quantum mechanics and statistical ther-
modynamics, in particular, between quantum-mechanical un-
certainty relations and the energy-temperature uncertainty re-
lation in statistical thermodynamics �1–4�; �ii� mathematical
relations between Schrödinger and Fokker-Planck equations
�5�, which makes quantum intuition very useful, e.g., for
polymers �6�; �iii� attempts to derive Schrödinger equations
from a classical kinetic picture �7� or from classical stochas-
tic electrodynamics �8�; �iv� a recently proposed general axi-
omatic framework to consider complementarity and en-
tanglement beyond quantum mechanics�9�.

More generally, both quantum mechanics and statistical
physics are essentially probabilistic theories and already at
this level one expects to find certain analogies between their
concepts. The progress in this direction has been for a long
time plagued by statements on incompatibility between
quantum mechanics and classical probability theory, which
lies in the basis of classical statistical physics. It was, how-
ever, noted that such opinions are not warranted �10�, and
recently it was shown explicitly that several basic relations
of quantum mechanics can be derived from the classical
probability theory provided the contexts of physical condi-
tions �measurement setups� are properly taken into account
�11�.

Once the basic probabilistic ground of quantum mechan-
ics and classical statistical physics is recognized to be the
same, one wonders whether some unusual aspects of quan-
tum mechanics, such as entanglement, can find analogies in
classical statistical physics. We see at least two reasons for
seeking such analogies. First, it is going to refresh our un-
derstanding of classical statistical physics, and may imply in
the future that advantages offered by quantum mechanics in

certain tasks of information processing and transfer are not
unique to quantum mechanics, and can be looked for in clas-
sical areas of physics as well �11�. Second, it is useful for
understanding quantum mechanics that certain concepts be-
lieved to be purely quantum—that is, incomprehensible in
classical terms—can find natural classical analogies. In fact,
the works and ideas mentioned in the above points �i�–�iii�
were partially directed toward this goal. More recent results
along these lines are classical analogies to quantum entangle-
ment found in classical optics �12,13� �more generally, in
classical wave physics�, chaotic classical dynamics �14� and
classical information theory �15� �secret classical correla-
tions�, as well as classical probabilistic models for certain
aspects of �multitime� quantum measurements �16�.

The purpose of the present paper is to show that quantum
entanglement can have a natural analogy in the physics of
Brownian particles �Brownian entanglement�. The reason for
the existence of this analogy can be qualitatively explained
as follows. It is known that the dynamics of a Brownian
particle can be observed at two levels �5�. Within the first,
more fundamental, level the Brownian particle coupled to a
thermal bath at temperature T is described via definite coor-
dinate x and momentum p and moves under influence of
external potential, friction force, and an external random
force. The latter two forces are generated by the bath. The
second, overdamped regime applies when the characteristic
relaxation time of the coordinate �x is much larger than that
of the momentum �p, �x��p �overdamped regime�. On times
much larger than �p one is interested in the change of the
coordinate and defines the coarse-grained velocity as v
=�x /�t for �x��t��p. This definition of v is the only op-
erationally meaningful one for the �effective� velocity within
the overdamped regime. It appears that the coarse-grained
velocity, though pertaining to single particles, is defined in
the context of the whole system of coupled Brownian par-
ticles. Together with uncertainty relations between the coor-
dinate and the change of the coarse-grained velocity—the
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role of Planck’s constant is being played by the temperature
of the bath—this contextuality feature will be shown to cause
a phenomenon similar to quantum entanglement: The com-
mon probability distribution of the two coordinates and the
corresponding coarse-grained velocities—for two Brownian
particles which interacted in the past, but need not interact in
the present—cannot be prepared via mixing of any factorized
distributions referring to the two particles separately. This
Brownian entanglement is a consequence of a coarse-grained
description and disappears within the first �more fundamen-
tal� level of description, simply because entanglement is ab-
sent in classical mechanics.

The paper is organized as follows. In Sec. II we recall the
phenomenon of �continuous-variable� quantum entangle-
ment, focusing especially on the relations between the en-
tanglement and the uncertainty relations. Section III dis-
cusses coarse-grained velocities and uncertainty relations for
the classical Brownian motion. The next two sections define
and study the phenomenon of Brownian entanglement. Sec-
tions V and VI offer a detailed comparison between the fea-
tures of quantum entanglement and those of its Brownian
counterpart. In Sec. VII we discuss possibilities of experi-
mental realization of Brownian entanglement. Our conclu-
sions are presented in the last section. Some technical ques-
tions are worked out in the Appendix.

II. QUANTUM ENTANGLEMENT

A. Statistical interpretation

This section recalls the phenomenon of entanglement in
quantum mechanics, and especially underlines its connec-
tions with the uncertainty relations.

Before starting, it is useful to stress that in the present
paper we adhere to the statistical �ensemble� interpretation of
quantum mechanics, where a quantum “state” is described by
a density matrix �̂, and any state, including a pure state
������, refers to an ensemble E��̂� of identically prepared
systems; see, e.g., Refs. �17–27�.1 To put it succinctly: quan-
tum mechanics makes2

�i� statistical statements on
�ii� the results of measurements done
�iii� on ensembles of identically prepared systems.
As was stressed repeatedly �17–27�, in particular by ex-

perimentalists �26�, the experimentally relevant statements of
quantum mechanics do not require more than the minimal

statistical interpretation.3 Moreover, this interpretation deals
more successfully with the measurement problem, as in-
stanced by a recent exactly solvable model �27�, and allows
us to reconcile quantum mechanics with classical probability
theory �11�. The fact that discussions on quantum entangle-
ment �and on Bell inequalities and related matters� do not
employ the statistical interpretation is a mere prejudice; see
Refs. �24,25,28� for examples of such discussions on the
basis of statistical interpretation.

B. Definition of entanglement

Consider a quantum system S consisting of two sub-
systems S1 and S2. A state �̂ of S is called entangled, see,
e.g., Ref. �29�, �or nonseparable� with respect to S1 and S2, if
it cannot be represented as

�̂ = �
k=1

n

pk�̂k
�1�

� �̂k
�2�, �

k=1

n

pk = 1, pk � 0, �1�

where �̂i
�1� and �̂i

�2� are arbitrary density matrices living in the
Hilbert spaces of S1 and S2, respectively, n is an integer, and
where 	pk
k=1

n is a probability distribution.
According to definition �1�, a separable quantum state can

always be prepared by means of mixing4 noncorrelated states
�̂k

�1�
� �̂k

�2� of the two subsystems. For a pure state �̂= ������
we return to the more known definition of entanglement: ���
cannot be represented as ���= ���1 � ���2. For this particular
case the absence of entanglement implies the absence of any
correlation. In contrast, for the more general situation given
by Eq. �1�, a nonentangled state can still possess certain
�classical� correlations, since the totally uncorrelated situa-
tions will be given as �̂= �̂�1� � �̂�2�.

Two important features of quantum entanglement should
be noted. First, it can be tested only through measuring some
correlations between the subsystems S1 and S2. Observables
pertaining to S1 or to S2 alone are obviously insensitive to
entanglement. Second, if the state �1� is prepared by two
different observers 1 and 2, then this preparation is seen to
involve correlated actions of them, and thus the correspond-
ing observers have to communicate classically.

C. Classical systems

In classics the representation �1� is apparently always pos-
sible. Indeed, let us have a probability distribution P�x1 ,x2�
of two classical systems S1 and S2 represented by random
variables x1 and x2. Assume for simplicity that x1 can take

1The minimal statistical interpretation should of course be distin-
guished from various hidden-variable theories and assumptions, in
particular, from the pre-assigned initial value assumptions, where
quantum measurements are viewed as merely revealing pre-existing
values of all observables. Unfortunately, some proponents of the
statistical interpretation were unclear at this point, a fact that for a
while discredited this interpretation. For well-balanced discussions
on this and related points, see Refs. �21–24�.

2This way of putting the message of statistical interpretation is
adopted from Ref. �25�.

3Still, as correctly pointed out in Refs. �28,30�, the choice of in-
terpretation can and does influence one’s estimates of importance
for various scientific problems.

4Mixing ensembles E��̂1� and E��̂2� with probabilities p1 and p2,
respectively, means that one throws the dice with probabilities of
outcomes equal to p1 and p2, and depending on the outcome one
picks up a system from E��̂1� or E��̂2�, keeping no information on
where the system came from. Alternatively, one can join together
Np1 systems from E��̂1� and Np2 systems from E��̂2� �N�1�, so
that no information is kept on where a single system came from.
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values a1 ,… ,an, while x2 can take values b1 ,… ,bn. Then
P�x1 ,x2� can be written as

P�x1,x2� = �
�=a1,…,an

�
�=b1,…,bn

P��,��	�x1
	x2�, �2�

where 	��=1 if �=�, and 	��=0 otherwise. Provided that
	�x1

and 	x2� are two legitimate probability distributions be-
longing to S1 and S2, that is, provided there are no mecha-
nisms prohibiting the realization of 	�x1

and 	x2� as physi-
cally acceptable distributions usable in the actual
preparation, the representation �1� is realized for the classical
situation: there is no entanglement.

In fact the quantum situation goes to the classical one
right in Eq. �1� if we assume that the involved density ma-
trices are always diagonal. So it is the presence of nondiago-
nal elements of the given density matrix that makes the situ-
ations different.

D. Semiclassical systems

We shall now localize the cause of quantum entanglement
for systems which behave �semi�classically in several other
respects. This will help us to understand the way of search-
ing for entanglement in nonquantum situations.

Let S1 and S2 be two quantum �noninteracting� harmonic
oscillators, and the overall density matrix �in the coordinate
representation� ��x1 ,x1� ;x2 ,x2�� be a Gaussian function of its
variables. The corresponding coordinate and momenta opera-
tors are denoted by x̂1 , p̂1 and x̂2 , p̂2, respectively. As is well
known, a Gaussian state is conveniently dealt with help of
the Wigner functions W�x , p�, which is a function of x and p
and is equivalent to the density matrix.5 In contrast to the
latter it has several properties expected for the common
probability distribution of the coordinate and momentum. In
particular, the analysis via Wigner functions will provide us
below with a richer intuition on the relations between en-
tanglement and uncertainty relations, thus between entangle-
ment and noncommutativity.

Since the overall Hamiltonian of S1 and S2 is assumed to
be harmonic, the initially Gaussian state remains Gaussian
for all times and the corresponding Wigner function will be
positive and thus will partially admit a classical interpreta-
tion in terms of common probability distribution of the co-
ordinate and momentum �31,32�. A related fact is that for
two harmonic oscillators the Ehrenfest equations of motion
can be recast into a classical form �32�. So many aspects of
this system can be accounted for in classical terms.

In order to see why in spite of these classical features the
system of two oscillators can be entangled, note that for the
Wigner functions one can rewrite the condition �1� as

W�x1,p1;x2,p2� =� d
 P�
�W1�x1,p1�
W2�x2,p2�
� ,

�3�

P�
� � 0, � d
 P�
� = 1,

where W1 and W2 are separate Wigner functions for S1 and
S2, respectively, and P�
� is some probability distribution. If
S1 and S2 were classical oscillators, then instead of Wigner
functions we would have distribution functions, and one can
always write down the analog of Eq. �2� for the common
distribution function P�x1 , p1 ;x2 , p2� and 
= ��1�1 ,�2 ,�2�:

P�x1,p1;x2,p2� =� d�1d�1d�2d�2P��1,�1;�2,�2�

�	��1 − x1�	��1 − p1�

�	��2 − x2�	��2 − p2� . �4�

In the classical situation this means that there is no entangle-
ment. The same formula �4� can formally be written down
also for the positive Wigner functions W�x1 , p1 ;x2 , p2�. How-
ever, in the quantum situation 	��1−x1�	��1− p1� and 	��2

−x2�	��2− p2� are not legitimate Wigner functions, since
they prescribe definite values to both coordinate and momen-
tum and thus do not respect the uncertainty relations.

We conclude that the uncertainty relations are
necessary—but not sufficient—for the existence of entangle-
ment in semiclassical systems.

E. A simple sufficient condition for quantum entanglement

The definition of the entanglement as given by Eq. �1� is
not practical �except for a pure density matrix �̂, when no
entanglement means no correlations�. It is therefore useful to
have certain sufficient conditions for the presence of en-
tanglement which will be easy to handle in applications and
which will have a transparent physical meaning.

We choose the units in such a way that the coordinate and
the momentum have the same dimension as ��. For a har-
monic oscillator with mass m and frequency  it will suffice
to make the following canonical transformation: x̂→�mx̂,
p̂→ p̂ /�m.

For a two-particle system S with coordinate and momenta
operators x̂1 , x̂2 and p̂1 , p̂2, respectively, one can propose the
following sufficient condition for the entanglement �33�.

Let us first note that the standard uncertainty relation

��x̂2���p̂2� �
�2

4
, �5�

�x̂  x̂ − �x̂�, �p̂  p̂ − �p̂� , �6�

implies

��x̂2� + ��p̂2� � ��x̂2� +
�2

4��x̂2�
, �7�

and then one gets via minimizing the right-hand side of Eq.
�7� over ��x̂2� �which produces ��x̂2�→� /2, to be put in the
right-hand side of Eq. �7��:

��x̂2� + ��p̂2� � � . �8�
5For good reviews on the properties of Wigner function, see Ref.

�32�.
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Now assume that the two-particle system is described by
a factorized density matrix:

�̂ = �̂�1�
� �̂�2�. �9�

Then due to Eq. �8� one can write

���x̂1 − �x̂2�2� + ���p̂1 + �p̂2�2� = ��x̂1
2� + ��p̂1

2� + ��x̂2
2�

+ ��p̂2
2� � 2� , �10�

just because for noncorrelated systems the corresponding
variances add up. If the overall system is in a separable state,
then Eq. �10� is even strengthened, since the variance of any

observable ��Â2� increases under mixing, i.e., under a trans-
formation:

	pk, �̂k
 → �
k

pk�̂k, pk � 0, �
k

pk = 1, �11�

where �̂k are normalized �tr �̂k=1� density matrices. Indeed,

��Â2� = �
k

pk tr��̂k�Â − �Â��2�

= �
k

pk	tr��̂kÂ
2� − tr��̂kÂ�2
 + �

k

pk	tr��̂kÂ� − �Â�
2

= �
k

pk��Â2�k + �
k

pk	tr��̂kÂ� − �Â�
2 � �
k

pk��Â2�k.

�12�

Employing Eq. �12� for Â=�x̂1−�x̂2 and for Â=�p̂1−�p̂2,
we get that though Eq. �10� was obtained for the factorized
state �9�, it remains valid for an arbitrary nonentangled state
�kpk�̂k

�1�
� �̂k

�2�. Thus the violation

���x̂1 − �x̂2�2� + ���p̂1 + �p̂2�2� � 2� �13�

of Eq. �10� is a sufficient condition for entanglement.
Equation �13� has a transparent physical meaning: en-

tanglement is present, if fluctuations do not sum up addi-
tively, i.e., if the changes �x̂1 and �x̂2 of the coordinates tend
to correlate with each other, while those of the momenta tend
to anticorrelate.

Alternative sufficient conditions for entanglement can be
built based on ���x̂1+�x̂2�2�+ ���p̂1−�p̂2�2� or ���x̂1

+�x̂2�2�+ ���p̂1+�p̂2�2�, etc. Various conditions obtained in
this way are obviously not equivalent to each other. An ob-
vious way to strengthen it is to demand that

���x̂1 + ��x̂2�2� + ���p̂1 + ��p̂2�2� � 2� , �14�

at least for one of four independent choices �= ±1, �= ±1.
For some special states �e.g., Gaussian states� there exist

in literature necessary and sufficient conditions for entangle-
ment �34�. For our purposes conditions �13�, �14� are suffi-
cient.

F. Operational issues

Let us finally recall how the condition �13� is checked
operationally. To this end, we rewrite this inequality as

��x̂1
2� + ��x̂2

2� + ��p̂1
2� + ��p̂2

2� �15�

− 2��x̂1�x̂2� + 2��p̂1�p̂2� � 2� . �16�

Within the traditional approach, one needs two ensembles
of systems S, each one consisting of identically prepared
correlated subsystems S1 and S2. Assuming that S1 and S2 are
in possession of observers 1 and 2, respectively, the observer
1 measures on the first �second� ensemble x̂1�p̂1�, while the
observer 2 measures on the first �second� ensemble x̂2�p̂2�.
Two ensembles are involved, since x̂1 and p̂1 �respectively, x̂2
and p̂2� do not commute: �x̂k , p̂l�= i�	kl, with 	kl being Kro-
necker’s delta. Now the quantities in Eq. �15� can be esti-
mated by each observer separately, while for the quantities in
Eq. �16� the observers need to put the results of their mea-
surements together �or to communicate in any other classical
way� and to count the coinciding events.

Within an approach proposed recently �33�, one needs
only one single ensemble for measuring the averages in Eqs.
�15� and �16�. The corresponding measurement can be done
by a single apparatus.6

III. COARSE-GRAINED VELOCITIES
AND UNCERTAINTY RELATIONS

FOR BROWNIAN PARTICLES

Consider N identical Brownian particles with coordinates
x= �x1 ,… ,xN� and mass m interacting with N independent
thermal baths at temperatures Ti and subjected to a potential
U�x1 ,… ,xN�. The overdamped limit is defined by the follow-
ing two conditions �5� �for a more detailed discussion, see
the Appendix�:

�i� The characteristic relaxation time7 of the �real� mo-
menta mẋi is much smaller than the one of the coordinates.

�ii� One is interested in times which are much larger than
the relaxation time of the momenta, but which can be much
smaller than or comparable to the relaxation time of the
coordinates.
Under these conditions the dynamics of the system is de-
scribed by the following Langevin equations �5�:

ẋi = f i�x� + �i�t�, f i�x� = − �xi
U�x� ,

�17�
��i�t�� j�t��� = 2Ti	ij	�t − t�� ,

where for our convenience both the mass m and the damping
constant �coupling constant of the particles to the bath� are in

6Strictly speaking, the argument in Ref. �35� was given for sys-
tems living in a finite-dimensional Hilbert space, but most likely it
extends to the infinite-dimensional situations.

7The characteristic relaxation time �� of a random time-dependent
variable � �e.g., coordinate or momentum� is an ensemble notion
and is defined as the time necessary for the conditional distribution
of � to become memoryless: P�� , t�+����� , t��= P�� , t�+���. For the
system of Brownian particles sufficiently strongly coupled to their
thermal baths, the arbitrarinesses of the above definition �e.g., the
precise choice of �� and t�� do not change the physical content of
the definition �5�.
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the main text taken equal to 1 �they are re-inserted in the
Appendix�.8

The conditional probability P�x , t�x� , t�� is known to sat-
isfy the following Fokker-Planck equation �5�:

�tP�x,t�x�,t�� = − �
i

�xi
�f i�x�P�x,t�x�,t�� �

+ �
i

Ti�xixi

2 P�x,t�x�,t��, t � t�. �18�

Eq. �18� is associated with the following initial condition:

P�x,t�x�,t� = 	�x − x��  �
i=1

N

	�xi − xi�� , �19�

as follows from the very definition of the conditional prob-
ability.

Consider an ensemble ��x , t� of all realizations of the
whole N-particle system which at time t have a coordinate
vector x. Such an ensemble can be selected out of all pos-
sible realizations by measuring x= �x1 ,… ,xN�. For this en-
semble the average coarse-grained velocity for the Brownian
particle with index j might naively be defined as

v j�x,t� = lim
�→0

� dy
yj − xj

�
P�y,t + ��x,t� . �20�

However, it was pointed out by Nelson �7� that the absence
of regular trajectories enforces us to define different veloci-
ties for different directions of time:

v+,j�x,t� = lim
�→+0

� dyj
yj − xj

�
P�yj,t + ��x,t� , �21�

v−,j�x,t� = lim
�→+0

� dyj
xj − yj

�
P�yj,t − ��x,t� . �22�

The physical meaning of these expressions can be explained
as follows.

�i� As seen from the definitions, v+,j�x , t� is the average
velocity to move anywhere starting from �x , t�, whereas
v−,j�x , t� is the average velocity to come from anywhere and
to arrive at x at the moment t.

Since these velocities are defined already in the over-
damped limit, � is assumed to be much larger than the char-
acteristic relaxation time of the �real� momentum which is
small in the overdamped limit. Therefore we call Eqs. �21�,
�22� coarse-grained velocities. It is known that for the over-
damped Brownian motion almost all trajectories are not
smooth. This is connected to the chaotic influences of the
bath�s� which randomize the real momenta on much smaller
times, and this is also the reason for v+,j�x , t�� =v−,j�x , t�.
The difference v+,j�x , t�−v−,j�x , t� thus characterizes the de-
gree of the above nonsmoothness.

Recall that if one would take � much smaller than the
characteristic relaxation time of the momentum—which
would amount to applying definitions �21� and �22� to a
smoother trajectory—then v+,j�x , t� and v−,j�x , t� would be
equal to each other and equal to the average momentum.
These points are discussed in detail in the Appendix.

�ii� Here is an operational procedure for measuring
v+,j�x , t� and v−,j�x , t�. Consider the overall ensemble of the
Brownian particles. The single members of this ensemble are
N coupled Brownian particles. For each such single member
one measures

�i� the coordinate of the Brownian particle with index j at
the moment t−�;

�ii� the coordinates of all Brownian particles at the mo-
ment t;

�iii� the coordinate of the same Brownian particle with
index j at the moment t+�.
Repeating these points many times on various members of
the above overall ensemble, ignoring all the results from �i�
and �iii�, and selecting events from the second step, we re-
construct the ensemble ��x , t�. Employing the results from
�i� and �iii� and conditioning repeatedly upon a single mem-
ber from ��x , t�, we estimate the conditional probabilities
P�yj , t±��x , t� and then finally calculate v+,j�x , t� and
v−,j�x , t� via Eqs. �21�, �22�.

�iii� The above ensemble ��x , t� is different from an en-
semble � j�xj , t� obtained by measuring xj �at time t� irrespec-
tive of other coordinates. Indeed, ��x , t� is defined globally,
and if there are different observers in possession of each
Brownian particle, they have to communicate to each other
in order to be able to construct ��x , t�. In contrast, � j�xj , t� is
defined exclusively with respect to the Brownian particle
with index j. This point will be discussed in more detail later
on in Sec. V.

The calculation of v+,i�x , t� and v−,i�x , t� is straightforward
upon using the following three things: first, the relation

P�x,t + ��y,t� = 	�x − y� + ��
i

�− f i�y��xi
	�x − y�

+ Ti�xixi

2 	�x − y�� , �23�

which follows from Eqs. �18�, �19�; second, the Bayes for-
mula, and, third, partial integration assuming natural bound-
ary conditions at infinity: P�x , t�→0 if xj→ ±�. Starting
from definitions �21�, �22�, we obtain

8Equation �17� can be obtained from the complete Langevin equa-
tions of motion �with the same definition of �i�t� as in Eq. �17��:
mẍi+ ẋi= f i�x�+�i�t�, by disregarding the first term mẍi correspond-
ing to acceleration. One might make this heuristically by requiring
that the friction force ẋi dominates, and that the second-derivative ẍi

is small for long times. More rigorous derivation of this classical
problem is presented in Ref. �5�, and is recalled in the Appendix for
a simple model. In their turn the above complete Langevin equa-
tions can be rigorously derived from the Newton equations of mo-
tion for the Brownian particles and the baths. Here are the basic
conditions for this derivation: �i� the thermodynamical �macro-
scopic� limit for the baths; �ii� a reasonable model for the particle-
bath interaction; �iii� the initially equilibrium state of the baths,
described by the corresponding Gibbs distributions at temperature
Ti �this is how the random noises �i�t� come into existence�. The
details of the derivation can be looked up, e.g., in Refs. �36,37�.
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v+,j�x,t� = lim
�→+0

� dy
yj − xj

�
P�y,t + ��x,t�

=� dy�yj − xj��
i

�− f i�x��yi
	�x − y�

+ Ti�yiyi

2 	�x − y�� = f j�x� , �24�

v−,j�x,t� = lim
�→+0

� dy
xj − yj

�
P�y,t − ��x,t�

= lim
�→+0

� dy
xj − yj

�
P�x,t�y,t − ��

P�y,t − ��
P�x,t�

=� dy�xj − yj�
P�y,t�
P�x,t��i

�− f�y��xi
	�x − y�

+ Ti�xixi
	�x − y��

= f j�x� − 2Tj�xj
ln P�x,t� . �25�

The difference between the coarse-grained velocities
v+,j�x , t� and v−,j�x , t� is

uj�x,t� =
v−,j�x,t� − v+,j�x,t�

2
= − Tj�xj

ln P�x,t� . �26�

Recall that this quantity is nonzero due to the action of the
thermal bath �the factor Tj in Eq. �26��, and due to the fact
that at the coarse-grained level of description almost all tra-
jectories of the Brownian particles are not smooth. Some-
times uj�x , t� is referred to as “osmotic velocity” of the
Brownian particle with index j �7�. We shall use this word as
a useful shorthand for the more precise term “change of the
coarse-grained velocity.”

Note that once the interactions between the Brownian par-
ticles are absent: U�x�=�kU�xk�—and then correlations are
absent, P�x , t�=�kP�xk , t�, if they were absent initially—the
coarse-grained velocities v±,j depend only the corresponding
coordinate: v±,j�x , t�=v±,j�xj , t�.

The regular �or mechanical� counterpart of the coarse-
grained velocity for the Brownian particle with unit mass and
index j can be naturally associated with the Newtonian force
f j�x�=−�xjU�x�, as defined by Eq. �17�. When the bath�s� are
absent, this is the only contribution to the coarse-grained
velocity. The fact that velocity appears to be proportional to
force reminds us that we are in the overdamped regime of
description, where, in particular, friction ẋ dominates over
acceleration ẍ.

Uncertainty relations and their interpretation

Uncertainty relations exist not only in quantum mechanics
but also in physics of underdamped �8� and overdamped �38�
Brownian motion. As the very subject of statistical physics,
they arise out of ignorance reasons, or more precisely due to
separation of time scales: though the real classical particles
involved in the classical Brownian motion certainly do have
sharply defined coordinates and momenta at the microscopi-
cal level, at the coarse-grained �overdamped� level of de-

scription each Brownian particle does not have a well-
defined trajectory, and cannot possess sharply defined
coordinate and coarse-grained velocity, as verified below.

We saw above that the coarse-grained velocities v+,j�x , t�
and v−,j�x , t� are defined with respect to the ensemble ��x , t�
of all Brownian particles which at the moment t pass via
coordinate vector x. On the other hand, ��x , t� is by itself a
subensemble embedded with probability �weight� P�x , t� into
the ensemble of all realizations of the random coordinate
vector x at the time t. Thus both v+,j�x , t� and v−,j�x , t�, as
well as the osmotic velocity uj�x , t� are random quantities as
functions of the random configuration of N Brownian par-
ticles x= �x1 ,… ,xN�. In other words, this randomness enters
via the context �x , t� which was chosen to define the en-
semble ��x , t�.

More specifically, let us focus on the common distribution
function P�x ,u ; t� of

x = �x1,…,xN� and u = �u1,…,uN� , �27�

P�x,u;t� = P�x,t��
j=1

N

	„uj − uj�x,t�… , �28�

where uj�x , t� is defined by Eq. �26�.
One has after averaging over P�x ,u ; t�

�uj� =� dujdx ujP�x,t�	„uj − uj�x,t�…

= − Tj� dx �xj
P�x,t� = 0, �29�

Š�xk − �xk���uj − �uj��‹ =� dx uj�x,t�P�x,t��xk − �xk��

= − Tj� dx�xk − �xk���xj
P�x,t�

= Tj	kj . �30�

The fact of �uj�=0 is natural, since uj is the �coarse-grained�
velocity difference generated due to the interaction to the
bath. It is also seen from Eq. �30� that uj of the correspond-
ing Brownian particle correlates only with its own coordi-
nate. This is related to the assumed independence of the ther-
mal baths which act on different Brownian particles.

Applying to Eq. �30� the standard Cauchy-Schwartz in-
equality one deduces

Š�xk − �xk��2
‹Š�uj − �uj��2

‹ � �Š�xk − �xk���uj − �uj��‹�2 = Tj
2	kj ,

�31�

which implies an uncertainty relation between the uncer-
tainty of the coordinate and that of the osmotic velocity �38�.

Obviously, the regular counterpart f j�x , t� of the coarse-
grained velocity does not �and should not� enter the uncer-
tainty relation.
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IV. BROWNIAN ENTANGLEMENT

Consider now two Brownian particles. An analog of en-
tanglement can be introduced in the following way. Call the
state of two particles nonentangled �separable� if the com-
mon distribution function �28� of the coordinates and the
osmotic velocities can be prepared by mixing noncorrelated
distributions,9

P�x1,u1,x2,u2� =� d
 P�
�P1�x1,u1�
P2�x2,u2�
 ,

�32�

P�
� � 0, � d
 P�
� = 1.

We shall naturally require that the separate distributions
P1�x1 ,u1�
� and P2�x2 ,u2�
� ensure the basic properties �29�,
�30� of the osmotic velocity uj. For the rest they can be
completely arbitrary. The requirements �29�, �30� make the
basic difference when comparing to the �naive� classical dis-
cussion in Sec. II C, where any distribution was admissible.
More detailed discussion on the physical meaning of Eq.
�32�, and, in particular, on its similarities and differences
with the definition �1� of quantum entanglement, is post-
poned until Sec. VI.

For simplicity we choose units such that x and u have the
same dimension as �T �e.g., we measure time in units of
square root of the damping constant; see the Appendix�. We
take also T1=T2=T again for simplicity. In the same way as
we derived Eqs. �5�, �13�, one can write the Brownian uncer-
tainty relation �31� as

��u1
2� + ��x1

2� � 2T, ��u2
2� + ��x2

2� � 2T , �33�

and proceed to derive

���u1 + �u2�2� + ���x1 − �x2�2� � 4T , �34�

as a sufficient condition for the entanglement. More general
relations �14� can also be obviously transferred to the
Brownian situation:

���u1 + ��u2�2� + ���x1 + ��x2�2� � 4T , �35�

where � and � can independently assume values ±1.

A. Gaussian state of two interacting Brownian particles

It will be useful to work out a simple model for two
coupled Brownian particles, where the above general con-
cepts can be visualized and studied in detail.

Consider now two harmonically interacting Brownian
particles with an overall potential energy,

U�x1,x2� =
ax1

2

2
+

ax2
2

2
+ gx1x2, �36�

where a�0 and g characterizes the interaction between the
particles.10 The particles interact with independent bath at the
same temperature T.

The Fokker-Planck equation �18� for the dynamics of
these Brownian particles can be solved directly and the out-
come is known to be given by the following two-dimensional
Gaussian �provided the initial distribution was Gaussian�:

P�x1,x2;t� =
�det C

2�
exp�−

1

2 �
i,j=1

2

Ci,jxixj� ,

C−1 = � �x1
2�t�� �x1�t�x2�t��

�x1�t�x2�t�� �x2
2�t��

�  ��11�t� �12�t�
�12�t� �22�t�

� ,

�37�

where for simplicity we assumed that

�x1�t�� = �x2�t�� = 0, �38�

for all times. It is also useful to note the marginal distribu-
tions of P�x1 ,x2 ; t�:

Pj�xj;t� = exp�−
xj

2

2� j j�t�
�, j = 1,2. �39�

The easiest way to obtain �11�t� , �22�t�, and �12�t� is to
look directly at the Langevin equations �17� with the poten-
tial �36�:

ẋ1�t� + ax1�t� + gx2�t� = �1�t� ,
�40�

ẋ2�t� + ax2�t� + gx1�t� = �2�t� ,

which can be more conveniently rewritten in terms of the
relative coordinate r−= �x1−x2� /2 and the center-of-mass co-
ordinate r+= �x1+x2� /2:

ṙ±�t� = − �a ± g�r±�t� +
1

2
��1�t� ± �2�t�� , �41�

and then solved directly:

r±�t� = e−�a±g�tr±�0� +
1

2
�

0

t

ds e−�a±g�s��1�t − s� ± �2�t − s�� .

�42�

Equations �26�, �37� produce for the coarse-grained veloc-
ity difference �osmotic velocity� of the first and the second
particle, respectively,

9We consider only the common distribution function of the coor-
dinates and the osmotic velocities, and not, e.g., the common dis-
tribution of the coordinates and forward velocities v+,j�x , t�, simply
because due to the Brownian uncertainty relation �30� only the
former can lead to a nontrivial definition of entanglement. Recall in
this context that the quantum uncertainty relations are necessary for
the existence of the quantum entanglement. 10Note that the positivity of U�x1 ,x2� is implied by g2�a2.

BROWNIAN ENTANGLEMENT PHYSICAL REVIEW A 72, 032102 �2005�

032102-7



u1�x,t� =
T��22x1 − �12x2�

�11�22 − �12
2 , u2�x,t� =

T��11x2 − �12x1�
�11�22 − �12

2 .

�43�

These results display the fact that the osmotic velocity of the
first particle depends explicitly on the coordinate of the sec-
ond one �and vice versa�.

The sufficient condition �35� reduces to

���u1 + ��u2�2� + ���x1 + ��x2�2� =
T2��22 + �11 − 2��12�

�11�22 − �12
2

+ �22 + �11 + 2��12 � 4T . �44�

A simpler expression is obtained for �11=�22:
11

T2

�11 + ��12
+ �11 + ��12 � 2T . �45�

This condition is of course not satisfied for �12=0, as the
minimal value of �11+T2 /�11 over �11 is just equal to 2T.
For the correlated situation �12�0 and we apply Eq. �45� for
�=1, �=−1, while for the anticorrelated situation �12�0 we
use in the same way Eq. �45� for �=−1, �=1. With these we
get from Eq. �45� the following condition:

��11 − T�2 � �12
2 + 2T��12� . �46�

It is seen that this sufficient condition for the Brownian en-
tanglement is symmetric with respect to correlation and an-
ticorrelation, and it can be satisfied if �11 is sufficiently close
to T and ��12� is finite. Equation �46� can be also satisfied
when the particles are either correlated or anticorrelated suf-
ficiently strongly, e.g., when ��12� is sufficiently large and
sufficiently close to its upper bound �11. Note that Eq. �46� is
not satisfied for T→0. This is natural, since there are no
Brownian uncertainty relations in this limit.

Thus the Brownian entanglement can exist for sufficiently
strongly fluctuating and/or sufficiently strongly interacting
Brownian particles.

Let us check Eq. �45� more specifically with the stationary
�equilibrium� state of the Brownian particles which is estab-
lished for long times provided the potential energy U�x1 ,x2�
is �strictly� positive, and where

�11 = �22 =
Ta

a2 − g2 , �12 = −
Tg

a2 − g2 . �47�

These relations can be obtained either by directly solving Eq.
�42� and then taking the limit t→�, or directly via the sta-
tionary distribution for the particles which is known to be
Gibbsian: P�x1 ,x2��exp�−U�x1 ,x2� /T�.

Equation �46� reduces to12

�g� � − 1 + �1 + �a − 1�2. �48�

Thus if �g� is large enough, there can be entanglement in the
equilibrium state.

B. Entanglement for two noninteracting Brownian particles

In the quantum case two subsystems can be entangled
even if they interacted in the past, but they do not interact at
the moment when the entanglement is tested. This is also the
case with the Brownian particles, as we show now.

Return to the above system of two harmonically interact-
ing Brownian particles and assume that they did interact for
t�0 but are not interacting for positive times.13 One has
from Eq. �40� �or from Eq. �42��

� j j�t� = e−2at� j j�0� +
T

a
�1 − e−2at� ,

�49�
�12�t� = e−2at�12�0�, j = 1,2.

We assume that the condition �45� �with �11=�22 at all
times� was satisfied at the initial time, so that the Brownian
entanglement was present. For positive times and a�0,
�12�t� gradually disappears. This means that for long times
the sufficient condition �45� for the Brownian entanglement
will not be valid. Clearly, no Brownian entanglement can
persist for long times, since the particles become in this limit
completely noncorrelated, i.e., the common probaility distri-
bution for t→� factorizes P�x1 ,x2 , t�= P�x1 , t�P�x2 , t� �com-
pare with our discussion after Eq. �26��.

It is, however, to be stressed that for certain not very long
times we shall surely have the condition �45� satisfied, at
least once it was satisfied initially. Moreover, if even this
condition was not satisfied at t=0, it can curiously get valid
for some �not very long� times. Here is an example. For free
Brownian particles with a=0, the correlation �12�t� does not
change in time at all, but instead the dispersion of the coor-
dinates increases linearly with time: � j j�t�=� j j�0�+2Tt. Con-
dition �46� for the presence of entanglement now reads

��11�0� − T + 2Tt� � ��12
2 �0� + 2T��12�0�� . �50�

Even if this condition was not valid at t=0, ��11�0�−T�
���12

2 �0�+2T��12�0��, and in the case that one has addition-
ally �11�0��T, Eq. �50� can still be satisfied in the time
window

t− � t � t+, �51�

where

t± =
T − �11�0� ± ��12

2 + 2T��12�
2T

. �52�

Our general conclusion is that the Brownian entanglement
is possible if the two Brownian particles do interact or had

11This equality will be satisfied for two identical Brownian par-
ticles if their initial conditions are the same.

12Conditions �48� are compatible with the stability requirement
a� �g�, which comes from demanding positivity of U�x1 ,x2�. In-
deed, once �g� satisfies Eq. �48�, a� �g� becomes a�2+a�� �a−1�2

and is satisfied provided a�1/4.

13To avoid possible misunderstanding, recall that the thermal
baths acting on two particles were taken to be completely indepen-
dent of each other, so that there is no influence via them.
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interacted strongly enough. The absence of interactions at
present need not always destroy the Brownian entanglement,
for some finite times it may even facilitate the sufficient con-
ditions for its existence, as we just saw.

V. LOCAL OSMOTIC VELOCITIES

In Sec. III we have seen that the definition of the coarse-
grained velocities �21�, �22�, �26� is given via the ensemble
��x1 ,x2 , t� in the common context of the two Brownian par-
ticles.

Let us now turn to the local velocities determined with
respect to the ensemble �1�x1 , t�, which is obtained by mea-
suring at time t only the coordinate x1 of the first particle.

There are two completely equivalent ways for determin-
ing the coarse-grained velocities over this ensemble. The first
way amounts to repeating definitions �21�, �22� for the en-
semble �1�x1 , t�,

�±,1�x1,t� = ± lim
�→+0

� dy1
y1 − x1

�
P�y1,t ± ��x1,t� , �53�

where all the involved probability distributions contain no
references on the second Brownian particle. The correspond-
ing osmotic velocity reads, in complete analogy to Eq. �26�,

�1�x1,t� = �−,1�x1,t� − �+,1�x1,t� . �54�

The second way is to note that if observer 1 has no infor-
mation at all from observer 2, then he effectively sums the
ensemble ��x1 ,x2 , t� over all possible results of the second
coordinate x2 at time t with his result x1 being fixed. Each
value of x2 during this summation is then met with probabil-
ity P�x2 , t�x1 , t�, and this results in

�±,1�x1,t� =� dx2v±,1�x1,x2,t�P�x2,t�x1,t� . �55�

The equivalence between definitions �53�, �55� can be estab-
lished via Eqs. �24�, �25� and the Bayes formula.14

Completely similar definitions can be given for the second
particle, employing the ensemble ��x2� obtained by measur-
ing the second particle’s coordinate only. For the correspond-

ing osmotic component one now has from Eqs. �26�, �54�,
�55�:

� j�xj,t� = − Tj�xj
P�xj,t�, j = 1,2. �56�

For the Brownian particle in the harmonic potential, as de-
scribed, e.g., by Eq. �39�, one has

� j�xj,t� = Tj
xj

� j j�t�
. �57�

If now the definition �32� of nonentanglement is applied
to the common distribution function,

P�x1,�1,x2,�2� = P1�x1�	��1 − �1�x1��P2�x2�	��2 − �2�x2�� ,

�58�

then it is seen to be satisfied trivially: no entanglement oc-
curs with locally defined osmotic velocities

VI. DISCUSSION

Let us compare in more detail the physical meaning of the
quantum-mechanical entanglement versus its Brownian ana-
log.

�i� In analogy to continuous-variable quantum entangle-
ment, Brownian entanglement is defined as a type of corre-
lation between the coordinates and the changes of the coarse-
grained velocities �osmotic velocities� of two Brownian
particles, which is impossible to reproduce by mixing
noncorrelated—that is, referring to each particle separately—
distributions.

�ii� The Brownian uncertainty relation �30� between the
coordinate and the change of the coarse-grained velocity is
necessary for the very existence of the Brownian entangle-
ment. This is again similar to the quantum situation, where
the analogous role of a necessary condition is being played
by the quantum uncertainty relations.

�iii� The momentum operator p̂ in quantum mechanics—
though being equal in Heisenberg representation to the time
derivative of the coordinate operator p̂=m�d /dt�x̂—does not
in general fully characterize the intuitive notion of “change
of the coordinate for an infinitesimal time.”15

In contrast, the Brownian entanglement is about the coor-
dinates and the coarse-grained velocities which do character-

14Note that for obtaining the local coarse-grained velocities
�±,1�x1 , t� we had to average v±,1�x1 ,x2 , t� over the conditional dis-
tribution P�x2 , t�x1 , t�, and not over the unconstrained probability of
the second coordinate P�x2 , t�. This inequivalence can be illustrated
with the help of the following fact of probability theory concerning
three random variables A ,B ,C: �CP�C�P�A�BC�
��CP�C�B�P�A�BC�=�CP�AC�B�= P�A�B�. Would we adopt the
second possibility, e.g., ũ�x1 , t�=�dx2u�x1 ,x2 , t�P�x2 , t�, this would
lead us to an explicitly common-context �nonlocal� quantity, e.g.,
for the above example of harmonic oscillators we would get
ũ�x1 , t�=T�22�t�x1 / ��11�t��22�t�−�12

2 �t��, which explicitly depends
on the dispersion �22�t� of the second particle. If the two particles
do not interact for positive times, but did interact in the past �for
t�0�, ũ�x1 , t� can still be influenced, e.g., by external fields which
apply on the second particle for positive times �apparent or false
nonlocality�.

15This is a general point. A difference Â�t�− Â�0�=�0
t dt�d /dt�Â of

Heisenberg operators does not fully characterize the change in time

of the observable Â, because there are ensembles described by �time
independent in the Heisenberg representation� states ������ for

which �Â�t�− Â�0�����=0. This seems to imply that the value of Â
did not change at all, but this is not correct, since the above eigen-
value relation may be still compatible—due to noncommutativity

�Â�t� , Â�0���0—with different statistics of Â�t� and Â�0�, e.g.,

���Â3�t����� ���Â3�0����. For more elaborated discussion and con-
crete examples, see Ref. �39�. For unbound operators, such as x̂ and
p̂, the above reasonings may need to be technically modified, since
eigenstates of unbound operators are not normalizable. In this con-

text it may suffice to require �Â�t�− Â�0������0.
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ize the change of the coordinates on the coarse-grained scale
of time.

�iv� Both quantum entanglement and its Brownian analog
can exist for subsystems which interacted in the past, but do
not interact at the present.

�v� In quantum mechanics the sufficient condition �13�
for entanglement involves correlations between the coordi-
nate operators x̂1 and x̂2, and the momentum operators p̂1 , p̂2
of the subsystems S1 and S2. Quantum entanglement can only
be found after the results obtained via measurements on the
corresponding subensembles for the subsystems S1 and S2
are put together. The situation with the Brownian entangle-
ment is similar, since it also requires correlation experiments.

�vi� The traditional point of view is that for checking
quantum entanglement �e.g., via sufficient condition �13��
one needs to make measurements of the noncommuting co-
ordinate x̂k and momentum p̂k for each quantum particle �k
=1,2�. To this end one usually employs two different en-
sembles of particles S1 and S2 and correspondingly two dif-
ferent measuring apparatuses. In contrast, the Brownian en-
tanglement involves only consecutive coordinate
measurements done on a single ensemble of the Brownian
pairs. It may seem that this constitutes an operational differ-
ence between the quantum entanglement and its Brownian
analog, possibly preventing the complete unification of the
matters. However, this standard difference in ensembles to be
employed can be reconsidered taking into the fact that a
quantum state may be determined using a single apparatus
�35�. This scheme employs an auxiliary system in a known
state such that it first couples with the target system, and only
later the commuting variables of the full system are mea-
sured. This setup may be invoked here to ascertain that both
clasically and quantum-mechanically commutative measure-
ments may completely suffice for the state determination of a
single ensemble, and thus for detecting the entanglement. In
this respect the two concepts of entanglement �quantum and
Brownian� are similar.

�vii� Here is finally the main conceptual difference be-
tween the quantum entanglement and its Brownian analog. In
quantum mechanics the above operators of coordinate and
momentum pertain to the corresponding subsystems S1 and
S2 independently of the full system context. By this we mean
that all the statistics of, e.g., p̂1 can be collected via local
measurements on the corresponding quantum subensemble,
whether or not this subensemble forms a part of any larger
ensemble.

In contrast, the very definition of the coarse-grained ve-
locities �21�, �22�, �26� involves a global �that is, depending
on the two subsystems� ensemble ��x , t�. As seen in Sec. V,
the purely local definition of coarse-grained velocities can
also be given, but there will not be any entanglement on that
level, for the same reason as there is no entanglement in
other classical systems �see Sec. II C�.

This conclusion on the main difference is close to the
analogous conclusion of Ref. �12�, which discusses similari-
ties between quantum entanglement and certain correlations
in classical optics.

VII. POSSIBILITIES OF EXPERIMENTAL REALIZATION

One hopes that an experimental verification of the Brown-
ian entanglement is going to be easier than that of its quan-

tum analog: since Brown’s discovery in 1828, various ex-
amples of Brownian motion are routinely observed in many
systems. On the other hand, the basic conditions needed for
observation of the Brownian entanglement amount to two
coupled Brownian particles and a resolution of the Brownian
motion sufficient for observing the osmotic velocities. Recall
that on the coarse-grained time scale the osmotic velocities
can be visualized as average kicks obtained by the Brownian
particle due to its interaction with bath particles.

Here we discuss two experimentally studied examples of
Brownian motion. The pecularity of these examples is that
the Brownian motion can be detected by the human eye
�without microscopes�. These are thus macroscopic examples
of Brownian motion. Recall that the typical examples of
Brownian motion involve much smaller scales: pollen mol-
ecules in water observed originally by Brown had a size
�10−3 cm, and even smaller lengths are typical for many
other realizations of the Brownian motion.

The first experiment �40� considers a two-dimensional cir-
cular container with elastic walls. Inside of the container
there are motorized balls with a mass of 120 g and a diameter
of 8 cm. Each ball is driven by a battery-powered motor
inside, and moves chaotically due to elastic collisions with
the walls of the container and with other motorized balls.
The set of balls �with concentration 50 balls/m2� models the
bath particles. The Brownian particles are modeled with a set
of ping-pong balls �with a mass 2 g and diameter 4 cm�
which undergo random collisions with the motorized balls.
The primary purpose of Ref. �40� was to study polymer sta-
tistics, so that the ping-pong balls were jointed into a long
chain by means of springs. The resulting coupled Brownian
motion produced a probability distribution for the end-to-end
distance of the ping-pong chain in close agreement with the
existing theories of two-dimensional �self-avoiding� random
walks. In this experiment the Langevin equation as such was
not tested directly, but there were several indirect reasons
supporting its validity �40�. This system would fit for observ-
ing the Brownian entanglement, because almost all needed
ingredients of this phenomenon are present.

A curious pedagogical analog of the above experiment is
the motion of a child’s toy called Bumble Ball �41�: a plastic
sphere about 11 cm in diameter with a symmetrical pattern of
rubber knobs extending about 3 cm from its surface. An in-
ternal motor rotates an off-axis mass such that when acti-
vated and placed on a hard surface, a Bumble Ball simulates
a random walk �41�. Joining two such balls with a spring and
placing them into a container creates a toy model which
might provide at least the most rough indications of the
Brownian entanglement.

The second experiment �42� studied a single sphere �a
ping-pong ball of a mass 2.5 g and diameter 4 cm� rolling
stochastically in an upflow of gas under flow speed
280 cm/c. The sphere rolls stochastically due to the turbu-
lence it generates in the gas stream �the corresponding Rey-
nolds number is �40�. The study focussed on the full time-
dependent dynamics of the sphere, as captured by video
imaging. It appears that the dynamics is that of the under-
damped Brownian particle in a harmonic potential. This cor-
respondence was thoroughly checked from various perspec-
tives. When looking for the Brownian entanglement in such a
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situation, it would be necessary to go to the overdamped
motion regime �e.g., by decreasing the mass of the sphere
and by increasing the flow speed of the stream� and to add
there a second sphere.

VIII. CONCLUSION

We have uncovered the phenomenon of Brownian en-
tanglement: a correlation effect between the coordinates and
the coarse-grained velocities of two classical Brownian par-
ticles, which resembles the quantum entanglement. In con-
trast to the latter, which is presently given a fundamental
status, the Brownian entanglement—as the very subject of
statistical physics—arises out of coarse-graining �incomplete
description� reasons. In that respect it is similar to other basic
relations of the statistical physics, such as the second law
�39�. In the present situation the coarse-graining comes due
to the time-scale separation: the evolution of the momenta of
the Brownian particles is very fast and cannot be resolved on
the time scales available to the experiment. The idea of time-
scale separations is one of the most pertinent ones in non-
equilibrium statistical physics. In a qualitative form it ap-
pears already in good textbooks on this subject �4,43�, and
has been since then formalized in various contexts and on
various levels of generality �44–48�.

Once there is time-scale separation between the �stochas-
tic� motion of the coordinate and the momentum of the
Brownian particles, the operational definition of velocity via
the rate of the coordinate leads to the coarse-grained velocity
which is not equal to the real momentum. The change of the
coarse-grained velocity is controlled by the Brownian uncer-
tainty relation. Moreover, the coarse-grained velocities ap-
pear to be contextual random quantities, i.e., they depend on
the concrete setting of the coordinate measurement used to
define them. These two aspects �uncertainty relations and
contextuality� suffice to define Brownian entanglement, simi-
larly to quantum entanglement, as the impossibility to pre-
pare the common distribution of the coordinates and the
coarse-grained velocities of two Brownian particles via mix-
ing locally independent �noncorrelated� distributions refer-
ring to the two particles separately. Again in analogy to
quantum entanglement, Brownian entanglement can be wit-
nessed via the uncertainty relations. Alternatively, it is also
possible to understand entanglement from the perspective of
noncommuting observables if the coarse-graining provides
nongenerating partitions�14�.

In this paper we demonstrated the Brownian entanglement
on the simplest, exactly solvable, one-dimensional models of
two interacting Brownian particles. It should be, however,
kept in mind that interacting Brownian particles �random
walks� are basic for several fields of modern statistical phys-
ics, such as colloids �49� or polymers �6�. One of the most
transparent examples from the polymer science is a DNA
macromolecule which consists of two interacting random
walks �strands� �6�. As we argued, the experimental observa-
tion of the Brownian entanglement might be easier than
those of the quantum entanglement, since there are realiza-
tions of macroscopic Brownian motion that are visible with
the human eye.

One of our motivations was to understand the precise re-
lations between the quantum entanglement and its Brownian
analog. In Sec. VI we scrutinized this question in detail. The
basic difference between the two concepts can be character-
ized �loosely speaking� as overcontextuality of the over-
damped Brownian model as compared to quantum mechan-
ics. Qualitatively similar differences were noted in classical-
optics analogs of the quantum entanglement �12�. It is,
however, our current opinion that it might be possible to find
more complex examples of Brownian motion where the anal-
ogy between the two concepts is more complete. In particu-
lar, one may consider underdamped Brownian motion such
as stochastic electrodynamics �8�.
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APPENDIX

This appendix has two closely related purposes. First, we
shall apply the definition �21�, �22� of the coarse-grained
velocities in a nonoverdamped situation, that is, we shall take
� in those definitions much smaller than the characteristic
relaxation time of the �real� momenta. We shall convince
ourselves that the expected answer is obtained, relating the
coarse-grained velocities to the average �real� momentum. In
addition, we shall see that the the coarse-grained velocity
difference �osmotic velocity� �26� disappears in this situa-
tion, i.e., the definitions �21�, �22� become equivalent. Sec-
ond, based on an exactly solvable situation, we shall follow
in detail to the behavior of the coarse-grained velocity as a
function of �. For simplicity we operate here only with one
Brownian particle.

The evolution of the common probability distribution of
the coordinate x and the momentum p of the Brownian par-
ticle is described by the following Fokker-Planck-Kramers-
Klein equation �5�:

�tP = −
p

m
�xP + �p� �

m
p + V��x� + �T�p�P , �A1�

where m , �, and V�x� are mass, damping constant, and po-
tential, respectively, and where

P�x,p,t�x�,p�,t��, t � t�,

�A2�
P�x,p,t�x�,p�,t� = 	�x − x��	�p − p��

is the conditional probability to move from �x� , p�� at time t�
to �x , p� at time t. This equation corresponds to the Langevin
equation

mẍ = − ax − �ẋ + ��t�, ���t�� = 0,
�A3�
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���t���t��� = 2�T	�t − t�� ,

where −�ẋ is the friction force, and where ��t� is the random
Gaussian white noise.

Applying the definition �21� of the coarse-grained veloc-
ity and using Eqs. �A1�, �A2� one has

�+�x,t� = lim
�→+0

� dy
y − x

�
P�y,t + ��x,t�

= lim
�→+0

� dydpdp�
y − x

�

�P�y,p,t + ��x,p�,t�P�p�,t�x,t�

= −� dydp�y − x�P�p,t�x,t�
p

m
�y	�x − y�

=� dp P�p,t�x,t�
p

m
, �A4�

where P�p , t�x , t� is the conditional probability for having the
momentum equal to p at time t, provided the coordinate was
equal to x at the same time.

Likewise,

�−�x,t� = lim
�→+0

� dy
x − y

�
P�y,t − ��x,t�

= lim
�→+0

� dydpdp�
x − y

�

�P�x,p,t�y,p�,t − ��
P�y,p�,t − ��

P�x,t�

=� dydp�y − x�
P�y,p,t�
P�x,t�

p

m
�x	�x − y�

=� dp P�p,t�x,t�
p

m
= �+�x,t� . �A5�

The fact is that �−�x , t�=�+�x , t� can be easily generalized to
any number of interacting Brownian particles.

Now if there are no correlations between the momentum
and coordinate P�p , t�x , t�=P�p , t�, then �−�x , t�=�+�x , t� re-
duce to the usual average momentum. This is the case, in
particular, for the deterministic situation, where P�x , p , t�
=	�x−x�t��	�p− p�t��.

Thus provided � has been taken much smaller than any
relevant time scale related to the coordinate and/or the mo-
mentum, the coarse-grained velocity reduces to the average
momentum as it should. In this situation the osmotic velocity
is zero.

Now let us show the exactly solvable situation with a
harmonic potential

V�x� =
ax2

2
, �A6�

that if the characteristic relaxation times of the momentum

�p =
m

�
, �A7�

and the coordinate

�x =
�

a
, �A8�

are well separated,

�p � �x, �A9�

and if additionally

�x � � � �p, �A10�

one gets back the values for osmotic velocity which were
obtained in the main text by means of the overdamped
Fokker-Planck equation �18�.

The case with V�x�=ax2 /2 can be solved either directly
from Eq. �A1�, or using the equivalent Langevin equation
�A3�. The solution of the latter—obtained, e.g., via Laplace
transformation—reads

x�t� = x�0�g�t� +
1

m
p�0�f�t� +

1

m
�

0

t

dt�f�t − t����t�� ,

�A11�

where

f�t� =
e−2t − e−1t

1 − 2
, g�t� =

1e−2t − 2e−1t

1 − 2
, �A12�

1,2 =
�

2m
�1 ±�1 −

4am

�2 � . �A13�

For simplicity reasons we shall put x�0�= p�0�=0. This can
be done, since these quantities are assumed to be indepen-
dent of the noise by the very definition of the considered
stochastic process.

As the process �A11� is Gaussian, the two-time probabil-
ity distribution of the coordinate can be written down as

P�y,s;x,t� =
�d

2�
exp�−

1

2
�A11y2 + A22x

2 + 2A12xy�� ,

�A14�

where

d  ��t,t���s,s� − �2�s,t� , �A15�

�A11 A12

A12 A22
�−1

= ���s,s� ��s,t�
��s,t� ��t,t�

� =
1

d
� ��t,t� − ��s,t�

− ��s,t� ��s,s�
� ,

�A16�

and where ��s , t� is the correlation function of the coordi-
nate,
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��s,t� = �x�s�x�t��

=
2�T

m2 �
0

s �
0

t

dt1dt2f�s − t2�f�t − t2�	�t1 − t2�

=
2�T

m2 �
0

min�s,t�

dt�f�t��f�t� + �s − t�� . �A17�

Using

� dy y P�y,s�x,t� =� dy y
P�y,s;x,t�

P�x,t�
= − x

A12

A11
= x

��s,t�
��t,t�

,

�A18�

one gets, keeping � finite and fixed,

�+�x,t� =� dy
y − x

�
P�y,t + ��x,t� =

x

�
���t + �,t�

��t,t�
− 1� ,

�A19�

�−�x,t� =� dy
x − y

�
P�y,t − ��x,t� =

x

�
�1 −

��t − �,t�
��t,t� � ,

�A20�

for any ��0 smaller than t: t−��0.
If now � is the smallest time scale,

�−�x,t� − �+�x,t� =
2�T

m2

x�

��t,t���0

t

dt� ḟ2�t�� − f�t� ḟ�t��
+ O��2� �A21�

goes to zero with �→0 as was predicted above.
As seen from Eq. �A13�, the overdamped limit is realized

with the dimensionless parameter 4am /�2 being small:

4am

�2 � 1, �A22�

and then the characteristic relaxation times of the momentum
and the coordinate �obtained from Eqs. �A11�–�A13�� are
well separated,

�p =
m

�
�

1

1
� �x =

�

a
�

1

2
. �A23�

Now if

1t � 1, 1s � 1, 1�s − t� � 1, �A24�

one gets from Eq. �A17�

��s,t� =
T

a
�e−2�s−t� − e−2�t+s�� , �A25�

which coincides with the corresponding correlator obtained
from the overdamped Fokker-Planck equation directly. Tak-
ing now s= t±� in Eqs. �A19�, �A20� and employing Eq.
�A25� with the limit �→0—which now should be under-
stood in the context of conditions �A23�, �A24�—one can get
the expressions for �±�x , t�,

�+�x,t� = −
ax

�
, �−�x,t� = −

ax

�
−

2T

�

x

��t,t�
, �A26�

which can alternatively be derived from Eqs. �24�, �25�, if
we put there N=1 �only one Brownian particle�, f�x�
=−ax /� �the linear force divided over the friction constant�,
and P�x , t��exp�−x2 /2��t , t�� �Gaussian distribution func-
tion�.

Equation �A26� exhibits the fundamental difference for
the coarse-grained velocity of a Brownian particle between
arriving at a position x��−�x�� and leaving this position
��+�x��.
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