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We discuss the necessity of using nonstandard boson operators for diagonalizing quadratic bosonic forms
which are not positive definite and its convenience for describing the temporal evolution of the system. Such
operators correspond to non-Hermitian coordinates and momenta and are associated with complex frequencies.
As application, we examine a bosonic version of a BCS-like pairing Hamiltonian, which, in contrast with the
fermionic case, is stable just for limited values of the gap parameter and requires the use of the present
extended treatment for a general diagonal representation. The dynamical stability of such forms and the
occurrence of nondiagonalizable cases are also discussed.
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Quadratic bosonic forms arise naturally in many areas of
physics at different levels of approximation. Starting from
the basic example of coupled harmonic oscillators, their
ubiquity is testified to by their appearance in standard treat-
ments of quantum optics �1�, disordered systems �2�, Bose-
Einstein condensates �3–6�, and other interacting many-body
boson and fermion systems �7,8�. In the latter they constitute
the core of the random-phase approximation �RPA�, which
arises as a first-order treatment in a bosonized description of
the system excitations or, alternatively, from the linearization
of the time-dependent mean-field equations of motion �time-
dependent Hartree, Hartree-Fock �HF�, or HF-Bogoliubov
�HFB� �7,8��. The ensuing forms are quite general and may
contain all types of mixing terms �qipj, qiqj, and pipj� when
expressed in terms of coordinates and momenta. Although
the standard situation—i.e., that where the RPA is con-
structed upon a stable mean field �the Hartree, HF or HFB
vacuum�—corresponds to a positive form, in more general
treatments the RPA can also be made on top of unstable
mean fields, as occurs in the study of instabilities in binary
Bose-Einstein condensates �3–6�, and even around nonsta-
tionary running mean fields, as in the case of the static
path+RPA treatment of the partition function �9,10�, derived
from its path integral representation. In these cases the ensu-
ing forms may not be positive and may lead, as is well
known, to complex frequencies. Quadratic bosonic forms are
also relevant in the study of dynamical systems �11–13�, pro-
viding a basic framework for investigating diverse aspects
such as integrals of motion and semiclassical limits.

Now, a basic problem with such forms is that while in the
fermionic case they can always be diagonalized by means of
a standard Bogoliubov transformation �7�, in the bosonic
case they may not admit a similar diagonal representation in
terms of standard boson operators or in terms of the usual
Hermitian coordinates and momenta. These cases can of
course only arise in unstable forms which are not positive
definite. The aim of this work is to discuss the diagonal
representation of such forms in terms of nonstandard boson-
like quasiparticle operators �or, equivalently, non-Hermitian
coordinates and momenta�, associated with complex normal
modes. This requires the use of generalized Bogoliubov
transformations since the usual one leads to a vanishing
norm in the case of complex frequencies. The present treat-

ment allows one then to identify the operators characterized
by an exponentially increasing or decreasing evolution, pro-
viding a precise description of the dynamics and of the qua-
dratic invariants in the presence of instabilities. It will also
become apparent that an analysis of the dynamical stability
based just on the Hamiltonian positivity may not be suffi-
cient.

As an application, we will discuss a bosonic version of a
BCS-type pairing Hamiltonian, which, in contrast with the
fermionic case, exhibits a complex behavior, losing its posi-
tive definite character above a certain threshold value of the
gap parameter and becoming dynamically unstable above a
second higher threshold. In the presence of a perturbation it
may even lead to a reentry of dynamical stability after an
initial breakdown. This example illustrates the existence of
simple quadratic forms which cannot be written in diagonal
form in terms of standard boson operators or coordinates and
momenta. Moreover, it also shows the existence of nondi-
agonalizable cases which do not correspond to a zero fre-
quency �and hence to a free-particle term, in contrast with
standard Goldstone or zero-frequency RPA modes arising
from mean fields with broken symmetries �7�� and which are
characterized by equations of motions which cannot be fully
decoupled.

A general Hermitian quadratic form in boson annihilation
and creation operators bi and bi

†, can be written as

H = �
i,j

Aij�bi
†bj +

1

2
�ij� +

1

2
�Bijbi

†bj
† + Bij

* bibj� �1a�

=
1

2
Z†HZ, H = � A B

B* At �, Z = � b

b† � , �1b�

where A is a Hermitian matrix, B is symmetric, and Z†

= �b† ,b�, with b and b† arrays of components bi and bi
†. The

extended matrix H is Hermitian and satisfies in addition

H̄ � THtT = H, T = �0 1

1 0
� . �2�

The boson commutation relations �bi ,bj�= �bi
† ,bj

†�=0 and
�bi ,bj

†�=�ij can be succinctly expressed as
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ZZ† − �Z†tZt�t = M, M = �1 0

0 − 1
� . �3�

It is well known that if the matrix H possesses only
strictly positive eigenvalues, the quadratic form �1� can be
diagonalized by means of a standard linear Bogoliubov
transformation for bosons preserving Eqs. �3� �7�. This is the
standard situation where �1� represents a stable system with a
discrete positive spectrum, such as a system of coupled har-
monic oscillators. In general, however, and in contrast with
the fermionic case, it is not always possible to represent Eqs.
�1� as a diagonal form in standard boson operators. The
physical reason is obvious. If H is not strictly positive, Eq.
�1� may represent the Hamiltonian of systems like a free
particle or a particle in a repulsive quadratic potential �H
� p2−q2� when expressed in terms of coordinates and mo-
menta, which do not possess a discrete spectrum. Nonethe-
less, one may still attempt to write �1� as a convenient diag-
onal form in suitable operators, such that the ensuing
equations of motion become decoupled and trivial to solve.

Let us consider for this aim a general linear transforma-
tion �7,8�

Z = WZ�, Z� = �b�

b̄�
� , �4�

where b̄i� is not necessarily the adjoint of bi�, although bi� and

b̄j� are still assumed to satisfy the same boson commutation

relations—i.e., Z�Z̄�− �Z̄�tZ�t�t=M, where Z̄���b̄� ,b��
=Z�tT. Since Z†= Z̄�W̄, with W̄�TWtT, the matrix W
should then fulfill

WMW̄ = M , �5�

implying W−1=MW̄M. No conjugation is involved in Eq.

�5�. Note that Z̄�ZtT=Z† while in general Z̄��Z�†

= Z̄�W̄�W†�−1. If b̄�=b�†, then W̄=W† �and vice versa� and
Eq. �4� reduces to a standard Bogoliubov transformation for
bosons �7,8�. Equations �4� allow one to rewrite H as

H =
1

2
Z̄�H�Z�, H� = W̄HW = �A� B�

B̄� A�t� , �6�

where relation �2� is preserved �H̄�=H�, implying B� , B̄�
symmetric�, although in general H�†�H�. Finding a repre-
sentation where H� is diagonal implies then an eigenvalue
equation with “metric” M—i.e., HW=MWMH�—which
can be recast as a standard eigenvalue equation for a non-

Hermitian matrix H̃:

H̃W = WH̃�, H̃ � MH = � A B

− B* − At � . �7�

This matrix is precisely that which determines the tempo-
ral evolution of the system when H is the Hamiltonian, as the
Heisenberg equation of motion for b and b† is

i
dZ

dt
= − �H,Z� = H̃Z . �8�

Its solution for a time-independent H̃ is therefore

Z�t� = U�t�Z�0�, U�t� = exp�− iH̃t� �9�

(or in general U�t�=T exp�−i	0
t H̃�t��dt��, where T denotes

time ordering). The eigenvalues of H̃ characterize then the
temporal evolution and can be complex in unstable systems.

Nevertheless, since H̃†=HM=MH̃M and �Eq. �2��

TH̃tT = − MH̃M , �10�

it is easily verified that the commutation relations �3� are

always preserved ∀t�R, as Ū�t��TUtT=U†�t� and

U�t�MŪ�t�=M. Moreover, the last identity remains valid

also for complex times �although in this case Ū�t��U†�t��, so
that Eq. �9� is a particular example of the general transfor-
mation �4�, becoming a standard Bogoliubov transformation
for bosons for t�R.

Equation �10� implies that Det�H̃t−��=Det�H̃+��, so

that the eigenvalues of H̃ �the same as those of H̃t� always
come in pairs ��i ,�ī� of opposite sign ��ī=−�i�. Equation
�10� also entails that the corresponding eigenvectors Wi �col-

umns of W� satisfy the orthogonality relations W̄jMWi=

−W̄iMWj =0 if �i�−� j, with W̄i�Wi
tT, which are those re-

quired by Eq. �5� �the required norm is W̄īMWi=1�. In ad-

dition, for H Hermitian, Det�H̃−��*=Det�H̃†−�*�=Det�H̃
−�*�, so that if � is an eigenvalue, so is �*. Combined with
Eq. �10� this implies that if Wi is an eigenvector with eigen-
value �i, Wī* �TWi

* is an eigenvector with eigenvalue −�i
*.

For �i real, the required norm can then be reduced to the
usual one for bosons �7�, Wi

†MWi=1. However, for �i com-

plex, the usual norm vanishes �Wi
†MWi=W̄ī*MWi=0 as �i

�−�ī* =�i
*� while the present one does not in general. Note

finally that the eigenvalues of H̃ are the same as those of

H̃s�
HM
H. When those of H are all non-negative, 
H
and hence H̃s are Hermitian, so that all eigenvalues of H̃ are
real.

Let us assume now that the matrix H̃ is diagonalizable,
such that a nonsingular matrix W of eigenvectors exists.

Then W̄MW will be nonsingular, and due to the orthogo-
nality relations can be set equal to M if eigenvectors are

ordered and chosen such that W̄j̄MWi=�ij. The ensuing W
will then satisfy Eqs. �5� and �7� with H̃� diagonal. Through

the relation H�=MH̃� and Eq. �6� we obtain finally the
diagonal representation

H = �
i

�i�b̄i�bi� +
1

2
� , �11�

where bi�=W̄īMZ and b̄i�=Z†MWi, with Wi and Wī the
eigenvectors with eigenvalues �i and −�i satisfying the

present norm �W̄īMWi=1�. If �i is real, we may choose Wī
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=TWi
* such that W̄ī=Wi

† �with Wi
†MWi=1� and hence b̄i�

=bi�
†. Nonetheless, for complex �i, b̄i��bi�

†. Equation �11�
remains, however, physically meaningful, as the eigenvalues
�i determine the temporal evolution. We immediately obtain
from Eqs. �11� and �9� the decoupled evolution

bi��t� = e−i�itbi��0�, b̄i��t� = ei�itb̄i��0� , �12�

in all cases, together with the quadratic invariants b̄i�bi�

=Z†MWiW̄īMZ. If all eigenvalues �i are real and positive

�with b̄i�=bi�
†�, we have the standard case of a positive-

definite quadratic form. If all �i are real but some of them are

negative �with b̄i�=bi�
†�, the system is unstable in the sense

that H is no longer positive and does not possess a minimum
energy, but the spectrum is still discrete and the temporal
evolution �9� remains stable. Finally, when some of the �i are
complex, the evolution becomes unbounded, with
bi��t��bi��t�� increasing �decreasing� exponentially for Im��i�
�0 and increasing t. In these cases the sign of �i in Eqs. �12�
depends on the choice of operators and can be changed with

the transformation bi�→−b̄i�, b̄i�→bi� �which preserves the

commutation relations� such that b̄i�bi�+ 1
2 →−�b̄i�bi�+ 1

2
� �for

�i real the sign can be fixed by the additional condition b̄i�

=bi�
†�. Cases where H̃ is not diagonalizable �which may arise

when its eigenvalues are not all different� are also dynami-
cally unbounded as the temporal evolution determined by
Eq. �9� will contain terms proportional to some power of t
�times some exponential; see example�.

We may also express �1� in terms of hermitian coordinates
q= �b+b†� /
2 and momenta p= �b−b†� / �
2i�, satisfying
�pi , pj�= �qi ,qj�=0, �qi , pj�= i�ij, as

H =
1

2�
i,j

Tijpipj + Vijqiqj + Uijqipj + Uij
t piqj �13a�

=
1

2
RtHcR, Hc = � V U

Ut T
�, R = �q

p
� , �13b�

where V ,T=Re�A±B� and U=Im�B−A�, with T, V, and Hc

symmetric. The corresponding transformation is

Z = SR, Hc = S†HS , �14�

where

S =
1

2

�1 i

1 − i
�

is unitary and satisfies S†=StT. The commutation relation for
R reads

RRt − �RRt�t = Mc, Mc = S†MS = � 0 i

− i 0
� , �15�

and the transformation �4� becomes

R = WcR�, WcMcWc
t = Mc, �16�

where Wc=S†WS and R�= � q�
p�

� satisfies Eq. �15�. Note that
q� , p� will not be Hermitian if Wc is complex. Standard lin-

ear canonical transformations among Hermitian coordinates
and momenta correspond to Wc real, which is equivalent to

the condition W̄=W† in Eq. �5�.
We may now rewrite Eqs. �13� as H= 1

2R�tHc�R�, where
Hc�=Wc

t HcWc is symmetric although not necessarily real.
Finding a representation with Hc� diagonal implies then the
nonstandard eigenvalue problem

H̃cWc = WcH̃c�, H̃c = McHc = i� Ut T

− V − U
� , �17�

with U�=0 and V� ,T� diagonal in H̃c�=McHc�, which leads

to the coupled equations H̃cWci=−iVi�Wcī and H̃cWcī

= iTi�Wci, for the columns of Wc. The required norm �Eqs.

�16�� is again W̄cīMWci=1. The matrix H̃c determines the

evolution of q , p, as idR /dt=H̃cR, and its eigenvalues are of

course the same as those of H̃, as H̃c=S†H̃S. If a matrix Wc
�real or complex� satisfying Eqs. �16� and �17� exists, we
obtain the diagonal form

H =
1

2�
i

�Ti�pi�
2 + Vi�qi�

2�, Ti�Vi� = �i
2, �18�

where pi�=−W̄ciMR, qi�=W̄cīMR, and �i are the eigenval-

ues of H̃ or H̃c. For �i�0 we may always set Ti�=Vi�=�i by
a scaling pi�→sipi�, qi�→qi� /si, where si=
4 Vi� /Ti� can be
complex, in which case we may choose Wci=S†�Wi

+Wī� /
2 and Wcī= iS†�Wi−Wī� /
2, with Wi and Wī the

eigenvectors of H̃ with eigenvalues ±�i satisfying W̄īMWi

=1, such that pi�
2+qi�

2=2b̄i�bi�+1. The ensuing operators
pi� ,qi� will not be Hermitian when �i is complex, but their
evolution will still be given by the usual expressions qi��t�
=qi��0�cos��it�+ pi��0�sin��it� and pi��t�= pi��0�cos��it�
−qi��0�sin��it�.

When H̃ is diagonalizable, Eq. �18� is obviously equiva-
lent to Eq. �11� �with Z�=SR� for T�=V��. However, Eq. �18�
is more general since it may also contain free-particle terms
1
2Ti�pi�

2 when �i=0, which cannot be written in the form �11�.
In these cases the matrix H̃ is not diagonalizable, as easily
recognized from the ensuing linear evolution pi��t�= p��0�
and qi��t�=qi��0�+ tTi�pi��0�, having a degenerate eigenvalue
0. Nonetheless, it should be emphasized that it is not always
possible to represent Eq. �13� in the diagonal form �18�, as

nondiagonalizable cases where no eigenvalue of H̃ vanishes
also exist �see example�. Let us also remark that if one con-
siders just Hermitian qi� and pi� in Eq. �18�, with Ti� and Vi�

real, the eigenvalues �i of H̃ are either real �Ti�Vi��0� or
purely imaginary �Ti�Vi��0�. Thus, quadratic forms whose

matrix H̃ possesses full complex eigenvalues �see example�
cannot be written in the diagonal form (18) unless non-
Hermitian coordinates and momenta q� , p� are admitted.

The following example clearly illustrates the previous
situations. Let us consider the Hamiltonian

H = �
�=±

���b�
†b� +

1

2
� + 	�b+b− + b+

†b−
†� �19a�
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=
1

2 �
�=±

���p�
2 + q�

2� + 	�q+q− − p+p−� , �19b�

which represents two boson modes interacting through a
BCS-like pairing term. We assume �+��−�0, and write
�±=�±
, with ��0, 0�
��. The eigenvalues of the ensu-
ing matrix H �or Hc�, twofold degenerate, are

�± = � ± 

2 + 	2, �20�

which are both positive only for �	��
�2−
2=
�+�− �the
condition for a positive mass and potential tensor in Eq.

�19b��. However, the four eigenvalues of H̃=MH are

��
± = ± ��
 + 
�2 − 	2�, � = ± , �21�

which are real for �	���= ��++�−� /2. Thus, if 
�2−
2

� �	���, H is no longer positive definite ��−�0�, but all
eigenvalues ��

± remain real �and distinct�, implying that the
temporal evolution is still bounded �quasiperiodic�. How-
ever, for �	���, all eigenvalues are complex �with nonzero
real part if 
�0� and the evolution becomes unbounded.

Let us obtain now the diagonal representation of H. It is
sufficient to consider in Eq. �5� a BCS-like transformation
for bosons of the form

b� = ub�� − vb̄−�� , b�
† = ub̄�� − vb−�� , �22�

which correspond to q�=uq��−vq−�� and p�=up��+vp−�� . The

commutation relations are preserved if u2−v2=1�WMW̄
=M� and the inverse transformation �MW̄M� is obtained

for v→−v �b��=ub�+vb−�
† , b̄��=ub�

†+vb−��. Now, for

�u

v
� =
� ± 

2
,  = 
�2 − 	2, �23�

where we assume �0 ��	���� and signs in square roots
are to be chosen such that 2uv=	, we may express H as a
sum of two independent modes,

H = �
�=±

���b̄��b�� +
1

2
� =

1

2 �
�=±

���p��
2 + q��

2� , �24�

where �����
+. If �	���, u and v are both real, so that b̄��

=b��
†, with q�� and p��, Hermitian, while if �	���, u and v are

complex, implying b̄i��bi�
† and qi� , pi� no longer Hermitian.

Instead, ����*=−�−� and u*= iv �with Im���0 for 	�0�,
entailing b��

†= ib−�� , b̄��
†= ib̄−�� and q��

†= iq−�� , p��
†=−ip−�� . Note

that in this case the usual norm vanishes ��u�2− �v�2=0� but
the present one remains unchanged �u2−v2=1 still holds�.

If �	��
�2−
2, �±�0, so that both modes have a dis-
crete positive spectrum. However, if 
�2−
2� �	���, �+
�0 but �−�0, so that the spectrum of the lowest mode,
though still discrete, becomes negative, implying that H has
no longer a minimum energy. Care should be taken here to

select the correct eigenvalue in Eq. �21�, as H̃ still has two
positive eigenvalues ��−

−�0�. Note also that for �	�
=
�2−
2, �−

±=0, reflecting the onset of the instability, but H̃
is still diagonalizable, as u and v remain finite. The lowest
mode in Eq. �24� has here a single degenerate eigenvalue 0.

Finally, for �	���, the operators b�� and b̄�� represent com-
plex modes with an exponentially increasing or decreasing
evolution. The evolution of the original operators b� and b�

†

for any �	��� can be immediately obtained from Eqs. �12�
and �22� and is given by

b��t� = e−i��t�b� + v�1 − e2it��vb� + ub−�
† �� , �25�

where b��b��0� and b�
†�b�

†�0�, with b�
†�t�= �b��t��†. It be-

comes clearly unbounded for �	���.

For �	�=�, H̃ is not diagonalizable, even though its ei-
genvalues ��

± are in this case all real and nonzero �but de-
generate�, and H cannot be written in the form �24�. How-
ever, the time evolution can still be obtained from Eq. �25�
taking the limit →0, which leads to

b��t� = e−i�
t��1 − it��b� − it	b−�
† � . �26�

The factor t confirms that the evolution equations cannot be
fully decoupled in this case, while the exponential multiply-
ing this factor shows that they do not arise from a free-
particle term either. We may, however, rewrite H in this case
�assuming, for instance, 	=�� as

H = 
�b̄+
s b+

s − b̄−
s b−

s � + 2	b̄−
s b̄+

s , �27�

where b�= �b�
s + b̄−�

s � /
2 and b�
†= �b̄�

s −b−�
s � /
2, with b�

s†=

−b−�
s , b̄�

s†= b̄−�
s , also satisfy boson commutation relations. In

the form �27�, H is “maximally decoupled,” in the sense that

the evolution equations for b̄�
s are fully decoupled, while

those of b�
s are coupled just to b̄−�

s . This leads to b̄�
s�t�

=ei�
tb̄�
s and b�

s�t�=e−i�
t�b�
s −2it	b̄−�

s �. Equation �26� can
also be obtained from these expressions. The associated in-

variants in this case are b̄−
s b̄+

s and b̄+
s b+

s − b̄−
s b−

s —i.e., the two
terms in Eq. �27�—which are mutually commuting.

If b� and b�
† were fermion operators, Eq. �19a� would

represent essentially a generic term of the standard BCS ap-
proximation to a pairing Hamiltonian �7� �HBCS
=�k,��k�bk�

† bk�+�k	k�bk+bk−+bk−
† bk+

† �, where k± denote
time-reversed states, 	k the BCS gap, bk� and bk�

† fermion
operators, and the splitting between �k± may represent the
effect of a Zeeman coupling to a magnetic field�. In the fer-
mionic case, Eq. �19a� �with 1

2 →− 1
2 � can be written as

�����b��
†b��− 1

2
�∀	, where ��=�
+, with =
�2+	2, are

the quasiparticle energies and b�� ,b��
† quasiparticle fermion

operators defined by b�=ub��+�vb−��
†, with u ,v

=
�±�� /2. The analogous boson problem is, in contrast,
stable just for limited values of 	, as the latter decreases
�rather than increases� the “quasiparticle energies” ��. The
onset of complex frequencies occurs finally when �−=−�+.

Let us also mention that in general, when H is not posi-
tive regions of dynamical stability may also arise between
fully unstable regions. For instance, if a perturbation
��b+

†b−+b−
†b+� is added to Eq. �19�, the eigenvalues of H and

H̃ become ��
±=�+�

2+ �	±��2 and ��

±

= ±
�̃�
2−�2��2 /
2−1�, with �̃�=�
+
	c

2−	2 and 	c=�2�1
+�2 /
2�. Those of H are split, and assuming � small such
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that H is positive at 	=0, the two lowest ones �−
± become

negative at different values 	c±=
�2−
2± ���. In such a case
�−

± becomes imaginary for 	c−� �	��	c+, but returns again
to real values for 	c+� �	��	c if ����
2 /
�2−
2, exhibit-
ing a reentry of dynamical stability. Finally, both �± become
fully complex for �	��	c. A diagonal representation of the
general form �24� is feasible except at the critical values 	c±
and 	c.

In summary, we have extended the standard methodology
employed for diagonalizing an Hermitian quadratic bosonic
form, employing generalized quasiparticle-boson-like opera-
tors for describing unstable cases with arbitrary complex fre-
quencies. In this way the operators exhibiting an exponen-
tially increasing or decreasing temporal evolution are
explicitly identified, together with the associated quadratic
invariants, allowing for a precise characterization of the sys-
tem evolution in the presence of general instabilities. While
positive- definite forms can be considered completely stable,

those which are not positive, but whose matrix H̃ is diago-
nalizable and has only real eigenvalues, can still be consid-
ered dynamically stable, as the temporal evolution remains

quasiperiodic, in contrast with the case where H̃ has com-
plex eigenvalues or is nondiagonalizable. Finally, we have
seen that a BCS-like Hamiltonian for bosons can be com-
pletely stable, just dynamically stable, or unstable depending
on the values of the gap parameter and requires the general-
ized approach for a diagonal representation valid for large

gaps. Moreover, it also shows that cases where H̃ is nondi-
agonalizable are not necessarily associated with zero fre-
quencies or free-particle terms and may arise even if all its
eigenvalues are nonzero. For such cases the evolution equa-
tions cannot be fully decoupled.
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