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We consider the inverse problem of in-line holography, applied to minimally destructive imaging of cold
atom clouds. Absorption imaging near resonance provides a simple, but destructive measurement of atom
column density. Imaging off resonance greatly reduces heating, and sequential images may be taken. Under the
conditions required for off-resonant imaging, the generally intractable inverse problem may be linearized. A
minimally destructive, quantitative and high-resolution image of the atom cloud column density is then re-
trieved from a single diffraction pattern.
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The simplest optical measurement of object structure is
made by illuminating the object with radiation and recording
the diffraction pattern produced �Fig. 1�. The inverse prob-
lem of retrieving the structure of a noncrystalline object from
its Fresnel diffraction pattern has been studied since Gabor’s
first incomplete solution, known as in-line holography �1�.
This Communication solves the particular inverse problem of
retrieving the structure of a cold atom cloud from a single
diffraction pattern.

Minimally destructive imaging of cold atoms requires
weak absorption. High-resolution imaging also places con-
straints on phase shifts. Under these assumptions, we derive
a linear solution which retrieves the column density of the
atom cloud from a single diffraction pattern. We apply this
solution to demonstrate off-resonant imaging of a cold atom
cloud without beamsplitters, phase plates, or imaging optics.

Gabor’s in-line holography recovers an approximation of
the original wavefield by illuminating a photographic trans-
parency of the diffraction pattern. The reconstructed wave-
field is contaminated by the superimposition of an out-of-
focus twin image �2�. Other forms of holography use a
reference beam to record an interference pattern, rather than
a diffraction pattern, and so separate the twin image �3�. In
this Communication we demonstrate a nonholographic
method of retrieval. Such methods have been proposed when
it is inconvenient or impossible to generate a coherent refer-
ence beam. The first step is common with Gabor’s method: a
diffraction pattern is recorded without the need for optics
such as lenses and beamsplitters. In the second step, rather
than reconstructing the wavefield by optical propagation
�physical or numerical�, an image is extracted by solving an
inverse problem with specified constraints.

There is insufficient information in a single intensity im-
age to retrieve both the amplitude and the phase of the wave-
field. This information deficit may be balanced, and the in-
verse problem solved, if the object is assumed to be purely

absorbing �4� or purely phase shifting �5�, but these assump-
tions are seldom valid in practice.

Instead, we present a single-image solution based on the
assumption of a monomorphous object �one made of a single
material�, so that both the phase shift � and the absorption �
of the object are proportional to the column density of ma-
terial along the optical path ��x�=�−�

0 N�r�dz:

��x� = k���x� and ��x� = k���x� . �1�

The variable x represents coordinates in a plane transverse to
the incident wave propagating along the z axis and k
=2� /� is the wave number for illuminating radiation of
wavelength �. The absorption and phase coefficients � and �
correspond to a refractive index of the form

n = 1 + N�r��� + i�� , �2�

with N�r� the atom number density. This monomorphous ob-
ject assumption has been used in compensating defocus and
spherical aberration in electron micrographs �6� and
transport-of-intensity imaging �7�.

Immediately after an optically thin object �Fig. 1�a��, an
incident scalar plane wave of amplitude f0 becomes f�x�
= f0 exp(−��x�+ i��x�), and this wavefield may be propa-
gated through a distance z by the Fresnel transform
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FIG. 1. Recording a diffraction pattern. Vertical lines represent
intensity profiles. In part �b�, point-source illumination magnifies
the diffraction pattern.
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f�x,z� =
exp�ikz�

i�z
�

−�

+�

f�x�exp� i�

�z
�x − x��2	dx�. �3�

The Fresnel approximation agrees closely with the complete
scalar diffraction theory, except for propagation at large
angles to the axis or within a few wavelengths of the object.
Optical detectors measure intensity I= �f �2 and it can be
shown �8� that the Fourier transform F of the diffracted in-
tensity measured at z can be expressed in terms of the object-
plane wavefield f�x� as

F�I�x,z�� = �
−�

+�

f*�x + �zu/2�f�x − �zu/2�

	exp�− 2�ix · u�dx , �4�

in which u is the spatial frequency conjugate to x. Written in
terms of absorption and phase shifts, this is

F�I�x,z�� = I0�
−�

+�

exp
− ��x + �zu/2� − ��x − �zu/2�

+ i���x − �zu/2� − ��x + �zu/2���

	exp�− 2�ix · u�dx . �5�

Assuming both real and imaginary parts of the exponential
are small, we expand and apply the Fourier shift theorem to
yield

F�I�x,z�� = I0„��u� − 2 cos���zu2�F���x��

+ 2 sin���zu2�F���x��… . �6�

This expression �10,9� relates absorption and phase shift to
the intensity of the diffraction pattern. The linearizing as-
sumption used in obtaining Eq. �6� implies

2��x� 
 1 �7�

and ���x + �zu/2� − ��x − �zu/2�� 
 1. �8�

The object must not be strongly absorbing, but it need not be
completely transparent. The phase shift should obey the fi-
nite difference condition Eq. �8�, which restricts large varia-
tions in the phase shift to coarse structures in the object.
Note that weak phase shift (���x��
1) is sufficient to satisfy
Eq. �8� but is not necessary �9�. This phase condition may
always be met at small z, but phase objects of many radians
thickness may require impractically small propagation dis-
tances, and phase shifts of order 1 radian are preferable.

For monomorphous objects obeying Eq. �2�, there is then
a linear shift-invariant relation between the normalized con-
trast I / I0−1 and the column density �:

F� I − I0

I0

 = 2k„� sin���zu2� − � cos���zu2�…F���x�� .

�9�

The factor h̃�u ;z�=� sin���zu2�−� cos���zu2� is termed the
contrast transfer function �CTF�, and is plotted in Fig. 2 for
positive and negative values of the phase coefficient �. Equa-
tion �9� can be solved formally for �, but the zeros in the

CTF render the retrieval an ill-posed inverse problem.
The inverse problem may be regularized, for example by

the Tikhonov method �11�. Rather than dividing F�I / I0−1�
by h̃�u ;z�, the Tikhonov filter retrieves the column density
by the modified division

��x� =
1

2k
F−1� h̃�u;z�

h̃2�u;z� + �2
F� I − I0

I0


 �10�

which closely approximates division by the CTF except at
spatial frequencies where the CTF is near zero. Larger values
of the Tikhonov parameter � reduce the amplification of
noise in the retrieval process, but at the expense of image
distortions. Smaller values yield less distorted but noisier
retrievals; a normalized alpha value of 0.2 was used. Algo-
rithmic optimization of � is possible, for example using
Fourier-wavelet regularized deconvolution �12�.

It is clear from Fig. 2 that the solution is more stable if the
object advances the phase of the incident wave ���0�, and
the CTF zero crossing at low spatial frequencies is avoided.
The column density may be retrieved for phase-retarding ob-
jects ��
0� but, as shown in Fig. 2, the focusing action of
the phase shift cancels the absorption contrast at low spatial
frequencies and lower quality retrievals result.

If the diffraction pattern is re-imaged by a lens, the system
may be defocused behind the object so that the effective
propagation distance z is negative. It follows from Eq. �9�
that the sign condition on � is then reversed. For lensless
imaging, negative z cannot be achieved and the object should
be phase advancing.

Magnified images can be retrieved even without lenses.
Rather than using plane-wave illumination, a point source of
light a distance R1 before the object produces a spherical
wave incident on the object �Fig. 1�b��. The diffraction at
detector distance R2 is magnified by the geometric factor
M = �R1+R2� /R1, but is otherwise identical to the plane-wave
pattern of Fig. 1�a� at the effective propagation distance zeff
=R2 /M �13�.

Conventional optical materials are phase retarding ��

0� but for x-ray imaging �9�, and for imaging atomic gases
with light blue detuned from an atomic resonance, the phase
is advanced. We now show that our solution to the diffraction
imaging inverse problem is exactly suited to off-resonant im-
aging of cold atom clouds.

To date, all measurements of ground-state BEC’s have

FIG. 2. The contrast transfer function h̃, normalized, for phase-
advancing �solid line� and phase-retarding �dashed line� monomor-
phous objects. At low spatial frequencies the contrast approaches
the value for an in-focus absorption image.
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been made with near-resonant optical probes. On-resonance
absorption imaging is destructive for most BEC configura-
tions. Imaging with an off-resonant probe reduces heating
due to spontaneous emission, with the cloud instead shifting
the phase of the probe beam. Dark-field �14� and Zernike
phase-contrast �15� techniques of phase microscopy have
been used to render these phase-shifts visible and hence ob-
tain sequential, minimally destructive images of BEC. Other
methods investigated for off-resonant imaging include an in-
terferometric technique equivalent to off-axis image hologra-
phy �16� and a propagation-contrast method based on trans-
port of intensity �17�. Although minimally destructive
imaging has been crucial to observing many dynamic pro-
cesses in BEC, destructive absorption imaging is still widely
used.

As shown above, free space propagation produces phase
contrast without optics. Gaussian fits to atom cloud images
�peak column density and diameters only� have been ex-
tracted from fitting diffraction patterns �18�. Our solution
to the inverse problem retrieves detailed column-density
images of cold atom clouds, without requiring Zernike phase
plates or interferometry.

In the two-level approximation, the refractive index of an
atomic gas is

n = 1 + N�r�
�0�

4�

i − 2�

1 + 4�2 , �11�

where N is the number density of atoms, � is the detuning in
natural linewidths, and �0 is the resonant cross section
�3�2 /2� for closed transitions�. Comparison with Eq. �2�
confirms that such an atomic cloud is a monomorphous ob-
ject, with absorption and phase shifts through the cloud
given by Eq. �1�. Provided that the atom cloud satisfies the
weak-absorption condition Eq. �7� and limited-phase condi-
tion Eq. �8�, the CTF relation Eq. �9� applies. Substituting
the � and � coefficients from Eq. �11� yields the cold atom
CTF

h̃�u;z� = −
�0

2k�1 + 4�2�
�2� sin���zu2� + cos���zu2�� ,

�12�

which is then used in Eq. �10� to retrieve the column density
of the atom cloud. If the detuning is blue of resonance, the
atom cloud advances the phase of the incident light, and the
low-frequency CTF zero is avoided.

An important feature of this application to cold atom im-
aging is the regularizing effect of residual absorption. At zero
spatial frequency, the CTF falls to �1/2� of its maximum
value, but does not vanish completely as it would for a pure
phase object. Even small residual absorption is sufficient to
stabilize the retrieval and then the Tikhonov modified form
Eq. �10� need only be used at higher spatial frequencies
above umin=1/�2�z. Such partial regularization greatly re-
duces distortion, and retrievals approach the optimal linear
estimate �Wiener filter� which can only be calculated with
full advance knowledge of the object power spectrum.

This linearization of the inverse problem is only valid if
the atom cloud meets the absorption and phase conditions

��7� and �8��. Minimally destructive imaging necessarily
obeys the weak-absorption condition. The phase condition
Eq. �8� also broadly concurs with physical constraints due to
refraction and resolution. Light refracted by the object must
remain within the numerical aperture of the lens �or detector�
�14�. It follows that structures at the diffraction limit of the
imaging system should have phase variations less than one
radian. Objects satisfying this “thin object” condition—that
the detailed structure of the object must vary by less than a
radian—are likely to also satisfy the slowly varying phase
condition Eq. �8�.

Detuning the probe light by �max�0 /4 full linewidths from
resonance reduces the peak phase-shift to order one radian.
BEC’s typically have resonant optical densities �max�0
�300 and so detunings must be of order 100� to meet the
refraction condition. At such detunings, many images may be
taken before the cloud is appreciably heated. In the shot-
noise limit, further increasing detuning and intensity does not
improve the SNR beyond a limiting value, and in the pres-
ence of technical noise will reduce the SNR. It has been
shown that this SNR limit is determined only by the number
of spontaneous emission events and condensate parameters
�19�.

In proof-of-principle experiments, the point-projection
configuration of Fig. 1�b� was used to image a cold atom

FIG. 3. Above, the recorded diffraction pattern. Below, the col-
umn density retrieved using Eq. �10�, shown at twice the magnifi-
cation of the diffraction pattern. Plots averaged over the central five
rows of pixels are shown below the images. The overplotted gray
trace shows the column density calculated from an on-resonance
in-focus absorption image.
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cloud of peak resonant optical density 2.2. A weak linearly
polarized probe beam, detuned +3.1� from the
85Rb 4S1/2�F=3�→5P3/2�F=4� transition, diverged from the
cleaved endface of a single-mode optical fiber, expanding for
R1=125 mm before passing though a cloud of cold atoms
around 300 �m in diameter held in a magneto-optical trap
�MOT� vacuum chamber. Trapping beams were turned off
for the 300 �s duration of the probe pulse. The beam propa-
gated a further distance R2=155 mm to a CCD camera �Pho-
tometrics Coolsnap HQ, 1392	1040 pixels, 6.45 �m pitch�,
producing the diffraction pattern shown in Fig. 3. The
column-density image was retrieved using Eq. �10�; retriev-
als take around one second on a Pentium-III processor using
standard discrete Fourier transform algorithms �20�.

It is usually not possible to measure the propagation dis-
tances R1 and R2 accurately enough to produce an optimal
retrieval. Instead, the retrieval is performed with the contrast

transfer function h̃�u ;z� evaluated at various values of z until
a sharp image is retrieved. Thus focusing is performed in
software when retrieving, rather than by adjusting lens posi-
tions when imaging. As a corollary, the retrievals show ho-
lographic depth-of-field: one diffraction pattern can be used
to retrieve images at many different z values. The very real
problems of focusing the optics, and of the limited depth-of-
field inherent in high-resolution imaging, are completely ob-
viated.

While the precise setting and knowledge of the propaga-
tion distance is immaterial, its coarse setting affects the
shape and contrast of the diffraction pattern and hence the
signal-to-noise ratio �SNR� of the retrieved image. At short
distances only residual absorption contrast will be rendered.
At large propagation distances and for small phase-shifts, the
root-mean-square SNR approaches 71% of that obtained
with the Zernike technique �21�.

A further advantage of the point-projection configuration

is the absence of lenses, and their resolution-limiting aberra-
tions. Diffraction contrast may also be produced by defocus-
ing an existing absorption imaging system, which may be
more convenient than placing the camera very close to the
object. The advantages of holographic depth-of-field and
post-hoc focusing are retained.

In practice, the propagation distance is constrained by
resolution limits. For a detector of diameter D, the minimum
resolvable line spacing in the retrieved image is of order
2�R2 /D, as it is for a lens of the same diameter in the same
position. The R1 distance should then be chosen to provide
sufficient magnification that resolution is limited by diffrac-
tion and not by the pixel size. In our experiment, optical
access limited the resolution to 30 �m. We can predict that a
BEC in a glass cell imaged with R1=12 mm and R2
=60 mm on a D=25 mm CCD with 9 �m pixels yields a
pixel resolution of 3 �m and a diffraction-limited resolution
of 3.7 �m. Further, the CTF depends on z, �, � and u. Once
z is set by “focusing,” the remaining quantities are readily
measured to better than 1%. Such well-defined parameters
and the lack of lens aberrations yield highly quantitative col-
umn density measurements.

We solve the inverse problem of retrieving a quantitative
column density image from a single diffraction pattern by
exploiting the proportionality between absorption and phase
shift through a single-material object. The predicates of the
solution are uniquely suited to imaging cold atom clouds.
Lens aberrations are precluded by avoiding the need for im-
age formation entirely. Beam-splitters, phase-plates, and
other optical elements are also unnecessary. The holographic
record allows refocusing after the image has been acquired.
The solution can be used with existing absorption imaging
systems simply by defocusing the imaging lens. We calculate
near-wavelength resolution when using point-projection to
image Bose-Einstein condensates.
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