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Spin chains as perfect quantum state mirrors
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Quantum information transfer is an important part of quantum information processing. Several proposals for
quantum information transfer along linear arrays of nearest-neighbor coupled qubits or spins were made
recently. Perfect transfer was shown to exist in two models with specifically designed strongly inhomogeneous
couplings. We show that perfect transfer occurs in an entire class of chains, including systems whose nearest-
neighbor couplings vary only weakly along the chain. The key to these observations is the Jordan-Wigner
mapping of spins to noninteracting lattice fermions that display perfectly periodic dynamics if the single-
particle energy spectrum is appropriate. After a half-period of that dynamics, any state is transformed into its
mirror image with respect to the center of the chain. The absence of fermion interactions preserves these
features at an arbitrary temperature and allows for the transfer of nontrivially entangled states of several spins

or qubits.

DOI: 10.1103/PhysRevA.72.030301

Quantum information processing (QIP) [1] has been an
increasingly important area of physics research over the past
decade. The generic building block of QIP is the qubit,
which is naturally realized as a spin-1/2 particle. A multitude
of coupled spin-1/2 systems have been discussed as possible
candidates for the quantum gates needed in quantum com-
puting [2]. Only recently a new focal field of activity has
developed, dealing not with the processing, but with the
transport of quantum information. As most kinds of directed
transport take advantage of one-dimensional structures it
seems natural to explore the possibilities of one-dimensional
arrays of coupled spin-1/2 systems as transmission lines for
quantum information.

In [3] a sequence of external rf pulses was proposed to
drive single-spin quantum information down a chain of
Ising-coupled spins. Other studies proposed using the natural
internal dynamics of coupled spins for the transfer of infor-
mation. In a homogeneous ferromagnetic Heisenberg chain
[4] initially in its ground state, a single-spin state generated
at one end of the chain is transferred to the other end with
reasonable (but not perfect) fidelity by means of spin waves.
This approach is restricted to zero temperature and single
spin-wave (and consequently single spin-flip) states since
multiple spin-wave states are unstable under the Heisenberg
interaction. This excludes the transport of entanglement, ex-
cept for states of the type @1 | )+ 8| 1) (with the two spins
initially located at fixed sites). The time evolution of these
states was studied analytically [5] in an otherwise completely
polarized infinitely long ferromagnetic Heisenberg chain.
Initial states «|7 1)+/8|] |) were also studied analytically,
but with the Heisenberg interaction changed to an XX inter-
action in order to exclude spin-wave interactions. Spin chain
models for single-spin quantum information transport may
be implemented as Josephson junction arrays [6]; another
proposal [7] involves more general spin networks.

Gaussian spin wave packets (i.e., Gaussian-weighted su-
perpositions of single-spin-flip states) may be more suitable
for information transfer than single localized flipped spin
states [8], because they may be tailored so as to occupy only
the least dispersive part of the spin-wave dispersion relation
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w(k). Two [9,10] or more [11] spin chains may be used in
parallel to enhance the fidelity of quantum information trans-
fer via appropriate protocols. The dynamics of several
entanglement-related quantities in the ground state of an in-
finitely long anisotropic XY chain with a supercritical mag-
netic field were also studied exhaustively [12], confirming
the typical power-law decays found earlier in correlations of
this model and related ones [13-20].

Other studies have looked for cases where a quantum
state is transported perfectly, that is, without any decay or
dissipation, along a spin chain. Perfect transmission is pos-
sible in a translationally invariant ring, if the time evolution
operator for some particular time is equal to a lattice trans-
lation; it was found, however, that the 12-site antiferromag-
netic Heisenberg ring does not fulfill the necessary condi-
tions [21]. Perfect transmission was demonstrated [22] for an
open-ended XX chain with inhomogeneous coupling: the
amplitude for the transfer of a single flipped spin from one
end of a completely spin-polarized chain to the opposite end
is unity for certain times. This result is understood intuitively
by observing that the, say, 2/+1 sites of the chain can be
mapped to the 2J+1 eigenstates of J, for a single fictitious
particle with angular momentum quantum number J. With
appropriately chosen matrix elements along the spin chain,
the motion of the single flipped spin from one end of the
chain to the opposite end, and back, corresponds to the mo-
tion of the fictitious particle’s angular momentum in a trans-
verse (x or y) magnetic field. That motion brings the ficti-
tious particle from the J,=J state to the J,=—/ state and back
periodically. The perfect ground-state transport of more gen-
eral states is also possible [24]. A state involving a number of
spins in the left half of a symmetric quantum spin chain is
mirrored about the middle of the chain so that the local in-
formation contained in it is effectively transported to the
right half of the chain. The inhomogeneous XX chain of [22]
shares this property with a similar system possessing an ad-
ditional site-dependent magnetic field in the z direction.

Here we analyze the ingredients necessary for perfect
quantum state mirroring (for both pure and mixed states) and
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we show how the two particular systems described in [24]
can be generalized to an infinite number of cases. This opens
up possibilities for quantum spin chain engineering that may
be used for the design of spin chains with desirable proper-
ties in addition to a perfect state transfer. As an example we
construct a spin chain without local magnetic fields and with
only mildly inhomogeneous couplings. In fact, the necessary
degree of inhomogeneity decreases with the growing chain
length. We further show that the perfect mirroring property is
stable against thermal fluctuations and we demonstrate how
that property makes arbitrary spin autocorrelation functions
perfectly periodic in time.

The model we consider is an inhomogeneous open-ended
(N+1) site S =% XX chain with Hamiltonian

N N
; . o1
H=22 J(S; f—l"‘S?S}"—l)"‘Eht(S?"'E)’ (1)
i=1 i=0
where S (a=x,y,z) are the usual § =% operators with eigen-
values i%, and J; and h; are local couplings and magnetic
fields, respectively. Equation (1) can be mapped to a Hamil-
tonian of noninteracting spinless lattice fermions,

N N
H= E Ji(cj_lci + cjci_l) + 2 h[c;c,», (2)
i=1 i=0

by means of the Jordan-Wigner transformation [25,26] be-
tween spin and fermion operators:

. 1
Sé=cle - —, 3
P=clei-3 3
i-1
St = (= DSk = [T (1 - 2¢jep)e]. )
k=0

Due to its bilinear nature, Eq. (2) can be diagonalized,
N
H= 2 sycf,c,,. (5)
=0

Here c,i: creates a fermion in a single-particle eigenstate of
energy £,, whereas clT creates one at lattice site i. Once the €,
and the corresponding eigenstates are known, the dynamics
generated by H can be calculated in detail, since every eigen-
state of H is uniquely characterized by the fermion occupa-
tion numbers of the single-particle states.

The single-particle energies ¢,(v=0,...,N) and the corre-
sponding eigenstates are the eigenvalues and eigenvectors,
respectively, of a symmetric tridiagonal matrix H; with diag-
onal elements (hg,h;,...,hy) and subdiagonal elements
(J1:J2, ..., Jy); all J; are strictly positive [27].

We further assume the system to possess a mirror symme-
try, h;=hy_; and J;=Jy,,_;. The (N+1)-dimensional eigen-
vectors x of H,, H;x=¢ X, then have definite parity, that is,
every eigenvector is either even, with components x;=xy_;,
or odd, x;=—x,_;. This resembles closely the situation in el-
ementary one-dimensional (continuum) quantum mechanics,
where for a symmetric potential the energy eigenfunctions
have definite parity and are nondegenerate. From the well-
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known theorem relating the number of zeros of the wave
function to the number of the energy eigenvalue (in ascend-
ing order), one can then conclude that even and odd eigen-
functions alternate as energy increases. It turns out that the
same line of arguments is possible for the quantum lattice
system of interest here, due to the following theorem [28]:
For a real symmetric tridiagonal matrix with only positive
subdiagonal elements: (i) all eigenvalues are real and non-
degenerate and (ii) the sequence of the components of the jth
eigenvector (in ascending order of the eigenvalues, j
=0,1,...) shows exactly j sign changes. This implies that the
eigenvectors of H, are alternately even and odd. To achieve
perfect mirror inversion of an arbitrary many-particle state
by some operation M it is sufficient that M transforms all
single-particle eigenstates into their mirror images. Note that
M is not simply the reflection (parity) P, since P changes the
sign of all odd single-particle states. That sign change must
be compensated for by a dynamic phase factor exp[im(2n
+1)] (n is an arbitrary integer) to achieve perfect mirror in-
version. This entails conditions on the energy spectrum €,: a
single-particle state |i) localized at site i evolves in time ac-
cording to

N
ety = > e~ v)(uli), 6)
=0

where |v) is a single-particle energy eigenstate with energy
g,(fi=1). The alternating parity implies (N—i|v)
=(-1)%i|v), and thus

IN=i)= 2 [N =) = 2 (= 1))l (7

Perfect quantum state mirroring occurs if, for some time 7,
time evolution equals reflection,

e”M7i) = %[N - i) (8)

(up to some global phase ¢,) for all i. This is obviously the
case if e7®v"=¢~(™*%0) or equivalently

e,7=[2n(v) + v]m+ ¢y, 9)

where n(v) is an arbitrary integer function. Note that every
spatially symmetric system whose single-particle energies
obey (9) generates a perfect mirror image of any input state
since it does so for all single-particle states.

The two systems discussed in [24] correspond to (i) a
linear spectrum, &,=wy+ vw, which, for 7=m/w, leads to
¢p=mwy/ v and n(v)=0, and (ii) a quadratic spectrum, &,
=wy+ 1 v+1+(2p+1)/q]w, p and g positive integers, which,
for T=gm/ w, leads to ¢y=mqwy/ w and n(v)=g[v(v+1)/2]
+pv.

As the function n(v») in (9) is completely arbitrary, there
are infinitely many single-particle spectra suitable for quan-
tum state mirroring. For a given nondegenerate single-
particle spectrum there exists a unique symmetric tridiagonal
Hamiltonian matrix with non-negative subdiagonal elements
and with the additional spatial symmetry properties dis-
cussed above [29]. The actual construction of that matrix
from its eigenvalues may proceed either via a direct algo-
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rithm [30] or by simulated annealing [31]. The possibility of
generalizing the work of [24] by solving an inverse eigen-
value problem was already pointed out in [32,33].

While most schemes for quantum information transfer in
spin chains are restricted to states generated from the com-
pletely polarized ground state by manipulating a single spin,
we stress that the class of models discussed here perfectly
mirrors states involving an arbitrary number of lattice sites.
This is due to the fact that the Jordan-Wigner transformation
(3) and (4) maps the spins to noninteracting fermions. Since
due to (9) all single-fermion states are mirrored perfectly at
the same instant of time 7, so are all many-fermion states,
pure or mixed, including finite-temperature density opera-
tors.

Since mirroring twice reproduces the initial state, the time
evolution of the system should be periodic with period 27.
This can, in fact, be verified by considering the equilibrium
time autocorrelation function of an arbitrary observable A
=AT:

(AAY = Z71 (n|e P A~ HIA|n)

n

— Z—lz e—ﬂEnei(E”—Em)t|<n|A|m>

n,m

% (10)

where Z=3,¢7PEn with B=(kyzT)™" is the canonical partition
function; |n) is a many-particle eigenstate of H. Since all
(E,—E,,) are multiples of some energy, (A(r)A) is a periodic
function of 7. See Fig. 2 below, for an example.

The freedom in the choice of n(v) in (9) may be used for
quantum spin chain engineering, that is, the design of sys-
tems with desirable additional properties. As an example of
these possibilities we show how the well-studied homoge-
neous XX chain [J;=J in (1)] may be modified to display the
perfect mirroring property. The system proposed in [22] has
J; growing from the boundary to the center of the system,
with a maximum value proportional to the chain length, if
the time for perfect transfer is kept constant. If the maximum
achievable J; is fixed by physical restrictions, the J; toward
the boundary of the system decrease ~N~"? as the chain
length N grows and the transmission time grows ~N, imply-
ing a constant signal transmission velocity [23]. The very
weak couplings close to the ends of the chain would make
such a system extremely susceptible to external perturba-
tions. It is therefore interesting to know whether the same
performance (constant signal velocity) can be achieved with
more homogeneous “wires,” that is, less variation in the J;.
Note that J,=J leads to the familiar spin wave dispersion
relation &,=w(k)=2Jcosk [k=m(v+1)/(N+2)] for the
single-particle states. For small k, thus, &,—2J~ —k?, which
fulfills the spectral condition (9) for perfect mirror inversion.
It is possible, by only slightly distorting the cosine disper-
sion, to fulfill that condition througout the entire k range. If
the unit of energy (say, the energy gap above the lowest
single-particle eigenvalue) is kept constant, the coupling ob-
viously scales with chain length as J~ N?. In that case the
transmission time is constant, regardless of the chain length.
For an easy comparison of energy eigenvalues and periodici-
ties between chains of different lengths, we decided to
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FIG. 1. z spin correlation function (real part) between the two
ends of a 31-spin chain at temperatures 7=0 (solid line) and T
=1000 (dashed line), in the vicinity of =7r. The maximum possible
value 1/4 of the correlation at 7= 7r demonstrates perfect state trans-
fer. Inset: same correlation for 7=0 over an extended time range.
(Note the symmetry with respect to = 1r; the correlation function is
periodic with period 277.)

choose that possibility. The eigenvalues ¢, of a chain with 31
sites, for example, may be chosen as g,=0,+21,+40,
+61,£80,£97,£116,=£131,+146,£161,+172,£183, =192,
*199,%204,%=207. The corresponding nearest-neighbor cou-
plings J; then vary between 101.5 and 108.5, a relative varia-
tion of +3.3 percent. With growing length the variation in the
J; decreases; for a 50-site system, for example, it amounts to
only about one percent.

In Fig. 1 we demonstrate the perfect transfer of a single-
site state between the first and last sites of a chain with N
=30. The correlation (S5(0)S85,(¢)) is zero at /=0 and reaches
its maximum possible value 1/4 at r=7=m. Thus, an §°
eigenstate initially prepared at site 0 can be retrieved at the
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FIG. 2. (Color online) x spin autocorrelation function (real part)
at site 19 of a 41-spin chain at temperatures T=0 (solid line) and
T=10"* (dashed line). The maximum at the left edge of the graph is
the one at =0, that at the right edge (slightly thinner blue lines) is
the one at =481, after 24 periods of the correlation function (¢ axis
shifted). Inset: nearest-neighbor exchange constants J;.
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initially uncorrelated site 30 after time 7 at any temperature.
The inset of Fig. 1 gives an impression of the irregular be-
havior of the correlation during the whole time range be-
tween O and .

Figure 2 shows the autocorrelation function of the x spin
component at site 19 in a 41-site chain, demonstrating the
periodicity, Eq. (10). It is important to note that by the
Jordan-Wigner transformation (4) a two-spin correlation
(S7(0)S5(2)) becomes (in fermionic terms) a complicated
many-particle correlation involving lattice sites O through k.
The single-fermion eigenstates and eigenvalues enter the cor-
relation function in an entirely nontrivial way; nevertheless it
is perfectly periodic. The figure shows the initial decay of the
correlation at t=0 and its 24th “revival” at t=487. Note the
rapid decay and the absence of oscillations at high 7. In fact,
for the homogeneous XX chain (J;=J) the x autocorrelation
is known [34-36] to be a Gaussian at T=c° in the thermody-
namic limit, while all nonlocal x correlations vanish identi-
cally. The inset shows the weakly varying nearest-neighbor
exchange constants J;. Note that the correlation functions
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displayed in Figs. 1 and 2 are not particularly significant for
quantum information processing; they were picked more or
less arbitrarily to illustrate our main result, the perfect trans-
fer of many-qubit states.

To conclude, we have found an infinitely large class of
inhomogeneously coupled spin chain systems capable of per-
fect quantum information transfer. The freedom of choice
within that class relaxes the stringent constraints on the local
spin couplings and magnetic fields that previous models
[22,24] had to meet. We have demonstrated perfect state
transfer over fairly long distances in a chain with almost
homogeneous exchange coupling and without an external
magnetic field. While many previous proposals have been
restricted to the transfer of single-spin states at zero tempera-
ture, the systems discussed here are capable of transferring
genuinely entangled states involving several qubits, at an ar-
bitrary temperature. Sensitivity to perturbations like noise
and imperfections [6,10,37] will be the subject of further
research.
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