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We propose an alternative and simple method to create states of the quantized radiation field with controlled
holes in their photon-number distribution. The scheme relies on resonant interaction of a cavity field with
two-level Rydberg atoms plus selective atomic detection.
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As argued previously �1�, states having controlled holes in
their photon-number distribution �PND� are candidates hav-
ing potential application in optical data storage and optics
communication. Each hole of these states can be associated
with some signal �yes, 1, or ��, its absence being associated
with the opposite signal �no, 0, or ��. Such states may be
tailored either in stationary modes of electromagnetic field
trapped inside a high-Q microwave cavity �1–3� or traveling
modes �4,5�. In the first case, the generation could be imple-
mented either via dispersive atom-field interaction �1,2� or
via Raman interaction �3�. In the second case, one can em-
ploy a Mach-Zehnder interferometer including a nonlinear
Kerr medium �4� or via a simple scheme using a single beam
splitter plus a single detector �5�. The production of such
states has also been considered in the context of mesoscopic
Josephson junctions �6�.

According to a theorem by Hillery �7� such a state is
always nonclassical, since it is not a coherent state. In fact, as
explicitly shown by Mandel and Wolf �8�, an arbitrary field
state: �̂=�P���������d2� has its PND given by Pn

=�P�����n ����2d2�; since ��n ����2�0 then Pn�0 for all n
when P��� is a true probability density. Hence Pn=0, for
some value of n, corresponds to a state having no classical
analog, being purely quantum mechanical. So, making holes
in PND corresponds to generating nonclassical states.

In the present paper we will consider an alternative
method which simplifies the generation of the mentioned
states inside a cavity QED. Differently from the previous
scheme �1�, the present method employs a resonant interac-
tion instead of a dispersive one. Here we will use the Jaynes-
Cummings model describing a system having two-level at-
oms interacting resonantly with a single-mode cavity field
�9�. We show that the time required to prepare the desired
state is considerably reduced, which is relevant in view of
decoherence processes destroying the state.

Figure 1 displays the setup preparing the mentioned states
inside a high-Q cavity; SA represents “source of atoms,” “ex-
citation” prepares highly excited Rydberg atoms, “C” repre-
sents the cavity supporting the field mode, and “MG” stands
for “microwave generator” preparing a single field mode in a
coherent state �10�, inside the cavity.

Consider a two-level atom initially prepared in the excited

state �e�, entering the cavity and interacting resonantly with a
field mode prepared in a coherent state ���. The effective
Hamiltonian for the atom-field system in the interaction pic-
ture is �11�

Ĥ = ��â†Ŝ− + âŜ+� , �1�

where â �â†� is the annihilation �creation� operator for the

cavity field, Ŝ+ �Ŝ−� stands for the raising �lowering� operator
for the atomic system, and � is the atom-field coupling con-
stant. Since the Hamiltonian �1� is time independent, the evo-

lution operator is given by Û�t�=exp�−itĤ /�� and its appli-
cation to the initial state describing the whole atom-field
system, ��AF�0�= �e����, results

��AF�t�� = e−���2/2	
n=0

	
�n


n!
�cos�
n���e,n�

− i sin�
n���g,n + 1�� , �2�

where 
n=
n+1�. As a consequence, if one detects the
atom in the state �e�, after the time �1, then the cavity field
collapses onto the state

��F��1�� = N1	
n=0

	
�n


n!
cos�
n�1��n� , �3�

where N1 is a normalization factor. Now, by choosing the
interaction time �1 conveniently, so that 
n1+1��1=� /2, the
component �n1� in Eq. �3� vanishes.

Next, assume that a second atom in the state �e� enters
immediately after the detection of the first one; for the sec-
ond atom the initial field state inside the cavity is given by
the Eq. �3�, corresponding to the final state projected by the
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FIG. 1. Scheme of the setup creating a field inside the cavity

with controlled holes in its PND.
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detection of the first atom. As a result, the atom-field system
now evolves to the state �up to normalization�,

��AF��2�� = 	
n=0

	
�n


n!
�cos�
n�2�cos�
n�1��e,n�

− cos�
n�1�sin�
n�2��g,n + 1�� . �4�

Hence, if one detects the second atom in the state �e�, then
the cavity field collapses onto the state

��F��2�� = N2	
n=0

	
�n


n!
�cos�
n�2�cos�
n�1��n�� , �5�

where N2 is a normalization factor. Here the choice

n2+1��2=� /2 produces another hole, now at the compo-
nent �n2�.

By repeating the procedure N times, we obtain the gener-
alized result for the Nth atom,

��F��N�� = NN	
n=0

	
�n


n!


j=1

N

cos�
n� j��n� , �6�

where � j stands for the interaction time for the jth atom
crossing the cavity. Equation �6� shows that the number of
atoms coincides with the number of holes.

From Eq. �6� we find the expression of the PND, Pn
= ��n��F��N��2. In this way, a little algebra furnishes

Pn =

����2n/n!�

j=1

N

cos2�
n� j�

	
m=0

	

����2m/m!�

j=1

N

cos2�
m� j�

. �7�

We note that Eq. �7� defines the presence of holes in the
PND through the control of the interaction times spent by the
atoms to cross the cavity. When creating many holes in such
a way, the creation of each of them neither affects nor is
affected by the presence of others, as shown below and also
discussed in �1,3,5�.

To illustrate results we have plotted Fig. 2 showing the
controlled production of holes in the PND.

FIG. 2. Holes in the PND, for �=2.0, �a� at
n1=4, for the first atom; �b� at n1=4 and n2=1,
for the second atom; �c� at n1=4, n2=1, and n3

=7, for the third atom.
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To exemplify the procedure we take attention to the typi-
cal experimental values of the parameters involved for the
Rydberg atoms with principal quantum numbers 50 and 51.
This implies the coupling constant ��2�
47 kHz �12� and
leads to the interaction times �1=� / �2
n1+1���3.8 �s for
n1=1, �2=2.4 �s for n2=4, and �3=1.9 �s for n3=7. On the
other hand, the cavity-field damping time tcav�10 ms �13�
and the initial coherent state ��� with ���=2.0 leads to the
decoherence time td= tcav /2���2�1.3 ms, greater than 8.1 �s
�which is the sum of total interaction time required to com-
plete the production of the three holes specified above�.
Therefore, the scheme is experimentally feasible within the
microwave domain where the radiative time of Rydberg is
about Tr=30 ms.

In summary, we have employed the �resonant� Jaynes-

Cummings model describing the interaction of two-level
�Rydberg� atoms with a single-mode field in a coherent state,
to create controlled holes in photon-number distribution of
the field state. The scheme allows us to simplify a previous
one, by economizing the two Ramsey zones used in �1� and
the single Ramsey zone employed in �3�. This simplification
is relevant, since the time intervals spent by atoms to cross
the cavity and to cross the Ramsey zones are of same order,
about 1 �s �14�. In both schemes the cavity might have a
high quality to sustain the prepared field state for sufficiently
“large” times, in view of its degradation caused by decoher-
ence processes �15�.

Partial support from the CNPq, Brazilian agency, is grate-
fully acknowledged.
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