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Consider a system with an arbitrary constraint on its electron density �e.g., that there are N charges on a
certain group of atoms�. We show that in Kohn-Sham density functional theory, the minimum energy state
consistent with the constraint is actually a maximum with respect to the constraint potential, and that this
solution is unique. This leads us to an efficient algorithm for calculations on constrained systems. Illustrative
studies are shown for charge transfer in the zincbacteriochlorin-bacteriochlorin complex, polyene and alkane
chains.
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Density functional theory �DFT� �1� is widely used in
chemistry and solid-state physics to calculate various elec-
tronic ground-state properties. The normal procedure in-
volves the energy minimization of a system with an external
potential v�r� by searching over all N-representable densi-
ties; that is

E0 = min
�
�F��� +� v�r���r�dr� . �1�

It is important to note here that F, as a universal functional of
�, is independent of v�r�. However, the above minimization
does not locate any states other than the ground state of a
given symmetry. It was later shown �2� that by making an
appropriate choice of the external potential, one could use
DFT to compute the lowest energy of a system with an arbi-
trary density constraint. The resulting constrained DFT
�CDFT� formalism has been useful in describing charge �3�
and magnetization �4� fluctuations in solids, predicting spin-
dependent sticking of molecules on surfaces �5�, parametriz-
ing model Hamiltonians based on DFT calculations �6� and
characterizing electron transfer reactions in molecules �7�.
The CDFT approach to nonequilibrium systems should be
thought of as a simplified version of time-dependent DFT
�TDDFT� �8�. With TDDFT one can determine all the ex-
cited states of the system, whereas in CDFT one only has
access to those states that are ground states of an alternative
external potential. Now, to obtain the constrained state, one
must first find the particular external potential that has the
constrained state as its ground state. In previous applications,
this has been accomplished by inspection; one scans over the
potential and identifies the value that satisfies the desired
constraint. This technique is computationally intensive and
would be prohibitively difficult in a system with many inde-
pendent constraints. In this paper, we provide a method that
determines the constrained state directly. Our method, based
on the previous work of calculating the exact Kohn-Sham
�KS� potential from a given electron density �9�, performs an
unconstrained maximization to find the correct potential at
each iteration in the self-consistent procedure. At conver-
gence, it gives precisely the desired state and the required
potential. We then demonstrate the efficiency of this method
for a few electron transfer systems.

In the KS method �10�, the electronic energy is written as

E��� = �
�

�,�

�
i

N�

	�i�
−
1

2
�2
�i�� +� dr vn�r���r� + J���

+ Exc���,��� , �2�

where J is the classical Coulomb energy, Exc is the exchange-
correlation energy and vn is the external potential. N=��N�

is the total number of electrons and ��r� is the electron den-
sity, ��r�=��+��=���i

N�
�i��r�
2, with �i� being the lowest
energy orbitals for � spin of the reference noninteracting
system. Now add a general constraint to the density �2�,

�
�
� wc

��r����r�dr = Nc, �3�

where wc�r� acts as a weight function that defines the con-
strained property. For example, wc could be 1 inside a do-
main C and 0 otherwise, thus constraining the number of
electrons in C. To minimize the total energy in Eq. �2� under
the constraint Eq. �3�, a Lagrange multiplier, Vc, is used to
build a functional

W��,Vc� = E��� + Vc��
�
� wc

��r����r�dr − Nc� . �4�

Making W stationary under the condition that the orbitals are
normalized gives the following equations:

�−
1

2
�2 + vn�r� +� ��r��


r − r�

dr� + vxc��r� + Vcwc

��r���i�

= �i��i�, �5�

with a similar one for �i�
* . These equations are the standard

KS equations except for the addition of the constraint poten-
tial, Vcwc

��r�, in the effective Hamiltonian. Although wc
��r� is

predefined and known explicitly, Vc is only known implic-
itly: the correct Vc should make the density satisfy Eq. �3�.

However, for any given Vc, Eq. �5� uniquely determines a
set of orbitals. When these orbitals are used to calculate �
and then W, W becomes a function of Vc only. This is the
original idea behind optimized effective potential theory �11�
and its generalization to potential functionals �12�. We now
show that W�Vc� is a strictly concave function of Vc follow-
ing Ref. �9�. The first derivative of W�Vc� is
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dW

dVc
= �

�
�

i
� �W

��i�
*

��i�
*

�Vc
+ c.c.� +

�W

�Vc

= �
�
� wc

��r����r�dr − Nc. �6�

Here the fact that �W /��i�
* =0, i.e., Eq. �5�, has been used.

The stationary point of W�Vc� �dW /dVc=0� then restores the
constraint Eq. �3� automatically. To determine the character
of the stationary point, one needs to check the second deriva-
tive of W�Vc�,

d2W

dVc
2 = �

�
�

i

N� � wc
��r��i�

* �r�
��i��r�

��Vcwc
��r���

wc
��r��drdr� + c.c.

= �
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�
i
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��r��i�
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� wc
��r��drdr� + c.c.

= 2�
�

�
i

N�
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	�i�
wc
�
�a��
2

�i� − �a�

. �7�

Here first-order perturbation theory is used to evaluate
��i��r� /��Vcwc

��r���. In the final expression, the index i goes
over occupied orbitals, while a only has to go over the un-
occupied orbitals because the summand is antisymmetric
with the exchange of i and a. Assuming that the occupied
orbitals are chosen as the lowest eigenstates, Eq. �7� is al-
ways nonpositive. This implies that there is only one station-
ary point and that it is a maximum. Thus by optimizing W
through varying Vc, one can find the right Vc that produces
the ground state of the constrained system. Because both first
and second derivatives are easily calculated, the optimization
can be done efficiently.

Like the KS equations, Eq. �5� must be solved in a self-
consistent �SC� fashion because both the Coulomb potential
and vxc��r� depend on �. At each SC iteration, a set of input
�i�, either from an initial guess or from the output of previ-
ous iterations, is used to construct the conventional KS
Hamiltonian. With an initial value of Vc, Vcwc

��r� is added to
form the full Hamiltonian in Eq. �5�. Then an optimization of
Vc is carried out by repeating these steps, �i� solve Eq. �5�;
�ii� calculate the derivatives according to Eq. �6� and �7�; and
�iii� update Vc with an optimization scheme, such as New-
ton’s method. The optimization of Vc is complete when the
constraint, i.e., Eq. �3�, is satisfied. The �i� corresponding to
the optimal Vc can be used as input for the next SC iteration.
At convergence, this process yields both the ground state of
the constrained system and the necessary potential to main-
tain the constraint.

In addition to the internal energy of the constrained sys-
tem �E�, one can also consider the “free energy,” G=E
+VcNc, which represents the energy of the system in the
presence of the constraint. From the Hellmann-Feynman
theorem, we have the thermodynamic relations

dE�Nc�
dNc

= − Vc and
dG�Vc�

dVc
= Nc, �8�

which reflect the fact that while E is a natural function of Nc,
G is a natural function of Vc. One result of these relations is
d2E /dNc

2=−�d2W /dVc
2�−1, which indicates that the concave-

ness of W�Vc� is equivalent to the convexness of E�Nc�. The
latter can be proven for a broader class of energy functionals
�13�.

Equation �3� can be used to enforce a variety of con-
straints, leading to various interesting applications. Instead of
the total number of electrons in C, one can constrain the
number of d or f electrons, which is important in studies of
metal impurities �2� and superconductivity �6�. One can also
constrain the difference between the number of � and � elec-
trons on the same atom so as to study the change of local
magnetic moments �14�. Alternatively, one can constrain the
charge difference between two separated parts of the system,
and this is useful to study charge transfer �CT� reactions �7�.
In the present work, we focus on charge transfer. Therefore,
there is an electron donor �D� in the system, which should
give up electrons, and there is an electron acceptor �A�,
which should gain electrons. If ND and NA stand for the net
charges on D and A, we then constrain the difference Nc
= �ND−NA� /2. This can be done in Eq. �3� by defining the
weight function wc

��r� to be positive on the donor and nega-
tive on the acceptor.

We have implemented our method in NWChem �15�.
There are, of course, many different ways of defining the
charge on an atom within a molecule, and we have imple-
mented five of them, Mulliken population, Löwdin popula-
tion, atomic-orthogonalized Löwdin population �16�, the real
space weight function as suggested by Becke �17�, and the
Voronoi cell method �18�. We find that Mulliken populations
can be qualitatively incorrect, often giving negative popula-
tions once the constraint is established. The other four meth-
ods all give similar results for systems discussed in this
work. In what follows, we use Löwdin population.

As a first example, consider intermolecular charge trans-
fer in the zincbacteriochlorin-bacteriochlorin �ZnBC-BC�
complex �Fig. 1� �19�. There are two low-lying CT states,
ZnBC+-BC− and ZnBC−-BC+. Linear response TDDFT cal-
culations are known to give too low energies for these states
�20�. Moreover, their potential energy curves as a function of
the intermolecular distance, R, do not exhibit the correct 1 /R
dependence due to the lack of particle-hole interactions in
the excited states �20�. We have used the same structure of
�1,4�-phenylene-linked ZnBC-BC complex and the model
complex as in Ref. �20�.

For the model complex, we use our constraint formalism
to calculate the energies of the lowest CT states at different
distances between the separated subunits, starting from 5.84
Å as in the linked complex up to 9.0Å. Energies are calcu-
lated using the Becke-Lee-Yang-Parr �BLYP� functional �21�
and the 6-31G* basis set. The difference between the energy
of the CT state and that of the ground state of the model
complex at 5.84 Å shows an excellent linear relationship
against the inverse of the distance �Fig. 2�a�� as it should.
The last point of each line represents the CT state excitation
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energy of the model complex at the distance of the linked
complex. These energies are 3.79 eV �ZnBC+-BC−� and 3.94
eV �ZnBC−-BC+�, comparing to 3.75 eV and 3.91 eV, re-
spectively, as calculated by the hybrid method in Ref. �20�.
The corresponding CT state excitation energies for the linked
complex are 3.60 eV and 3.71 eV by the constrained DFT
calculations, comparing to 1.32 eV and 1.46 eV calculated
by TDDFT. Thus by doing only constrained ground-state
DFT calculations, we are able to obtain a good picture of the
lowest energy states of long-range charge transfer, which has
been problematic for TDDFT. Our method can also be used
to calculate states with partial charges, and therefore analyze
the whole process of charge transfer. Examining the relation
between the applied potential and the charge �Fig. 2�b��, we
see two nearly parallel lines separated by a vertical jump at
the zero charge point. As has been noticed previously �22�,
for two well-separated fragments, one expects a jump at zero
charge that is nearly equal to the ionization potential �IP� of
the electron donor minus the electron affinity �EA� of the
acceptor, followed by two essentially horizontal lines. The

initial gap of BLYP is too small due to its lack of the deriva-
tive discontinuity in the exchange-correlation potential �22�,
and the ensuing slope of Vc versus Nc is too large because of
the self-interaction error. However, the remarkable fact is
that these two effects approximately cancel, giving an accu-
rate energy at integer Nc.

Next we consider CT in polyenes �CnHn+2� and alkanes
�CnH2n+2�. The constraint is imposed on the end groups
�vCH2 for polyenes and -CH3 for alkanes� and the charge is
transferred from one end �donor� to the other �acceptor� in
the molecule. All geometries are optimized with the B3LYP
functional �23� and the 6-31G* basis set. The nuclear frame-
work is then frozen for the subsequent CT calculations. Fig-
ure 3 shows the potential-charge curves for C6H8 and C6H14,
where we see nearly linear response for C6H8 all the way to
one charge transfered, but a significant deflection for C6H14.

To make sure that the deflection is not an error of DFT,
we seek help from coupled-cluster �CC� methods �24�. For
CC calculations, we do not have the same optimization pro-
cedure as in DFT to calculate Vc. Instead, we apply an ex-
ternal potential Vcwc

��r� explicitly and calculate the free en-
ergy of the perturbed system for various values of Vc. We
then calculate Nc by finite difference according to Eq. �8�.
We have done singles and doubles coupled-cluster �CCSD�
�25� calculations on C4H9F �27,29�, and compared the

FIG. 4. Applied potential vs charge transfer for C4H9F. Dots,
B3LYP. Triangles, CCSD.

FIG. 1. Molecular structures of the linked zincbacteriochlorin-
bacteriochlorin complex and the model complex. R refers to the
distance between the two carbon atoms that are formerly linked.

FIG. 2. �a� The lowest CT-state energies of the ZnBC-BC model
complex at different distances as compared to its ground-state en-
ergy at 5.84 Å. Lower line, ZnBC+-BC−. Upper line, ZnBC−-BC+.
�b� Applied potential vs charge transfer for the model complex at
5.84Å.

FIG. 3. Applied potential vs charge transfer for C6H8 �dots� and
C6H14 �triangles�.
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potential-charge curve to B3LYP results as shown in Fig. 4.
It is clear that the deflection remains, though in a different
position from B3LYP results, and we therefore conclude that
this is not an artifact of DFT. By plotting the density at
various Vc values and monitoring the changes of the density
between consecutive points, one can actually see a sudden
change of the electron density, corresponding to the kink in
the line. Further studies will be reported in later work �26�.

Our method, implemented here with Gaussian basis func-
tions for molecular systems, can also be generalized to ex-
tended systems using plane waves, as well as metallic sys-
tems where ensemble DFT is needed. For those cases, Eq.
�7� is rewritten as

d2W

dVc
2 = �

�
� wc

��r�
����r�

��Vcwc
��r���

wc
��r��drdr�, �9�

and techniques from density functional perturbation theory
�28� can be employed.

In conclusion, we have presented an efficient DFT method
to study constrained systems. This method directly optimizes
the required potential to establish the constraint while solv-
ing the KS equations self-consistently. The charge transfer
studies presented here demonstrate the efficacy of this ap-
proach and the wealth of information it provides. Future
work will include extensions of this method to various as-
pects of charge and magnetization fluctuations, and analytic
evaluation of the extra forces on atoms caused by the con-
strained potential. The forces are relatively easy to derive
because of the variational nature of the method, and will
allow constrained geometry optimizations and molecular dy-
namics.
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