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We propose an optical parametric down-conversion �PDC� scheme that does not suffer a trade-off between
the state purity of single-photon wave packets and the rate of packet production. This is accomplished by
modifying the PDC process by using a microcavity to engineer the density of states of the optical field at the
PDC frequencies. The high-finesse cavity mode occupies a spectral interval much narrower than the bandwidth
of the pulsed pump laser field, suppressing the spectral correlation, or entanglement, between signal and idler
photons. Spectral filtering of the field occurs prior to photon creation rather than afterward as in most other
schemes. Operator-Maxwell equations are solved to find the Schmidt-mode decomposition of the two-photon
states produced. Greater than 99% pure-state packet production is predicted to be achievable.
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I. INTRODUCTION

Quantum-information processing and quantum communi-
cation can, in principle, be implemented by the use of linear
optics and single-photon wave packets �1�. Such an imple-
mentation requires the use of many identical, synchronized,
pure-state, single-photon wave packets. In a one-dimensional
description, a pure-state, single-photon wave-packet state
�1�� is a superposition of monochromatic, single-photon
states ���= â†����vac�, weighted by an amplitude ���� �2�,

�1�� =� d� ������� . �1�

The operator â†��� creates a photon at angular frequency �.
Such pure-state packets allow high-visibility interference of
quantum amplitudes when two such photons come together
at a beam splitter. The Bose symmetry of the photon states
�or equivalently the commutator algebra of the field annihi-
lation and creation operators� leads to unique interference
effects, which allow the conditional operation of quantum
logic gates. Note that such interference does not require tight
temporal correlation of photons in the two beams before they
interfere—the important point is that the beams be in identi-
cal pure wave-packet states. On the other hand, if the pho-
tons are created in mixed wave-packet states, described by a
density operator,

�̂ = �
�

P����1�� �	1� , �2�

then the interference of two single-photon wave packets has
low visibility, preventing scaling up of the system to many

photonic qubits. Therefore, it is important to develop tech-
niques for creating pure-state, single-photon wave packets of
the form Eq. �1�.

Two primary techniques are being pursued for creating
pure-state, single-photon wave packets—single-atom �or
quantum dot� �3�, and spontaneous parametric down- conver-
sion �PDC� �4,5�. In PDC—the topic of the present study—a
“blue” pump laser field passes through a second-order
nonlinear-optical crystal �or a third-order optical fiber �6��,
and, with small probability, a blue photon is converted into a
pair of “red” photons. If the blue pump laser field �with
frequency �P� is continuous wave and idealized as mono-
chromatic, then the two red photons are perfectly correlated
in frequency, with frequencies � �“signal”� and �p−�
�“idler”� �7�. In this case, the state of the red, down-
converted field is �8�

��� = �vac� +� d� C������S��p − ��I, �3�

where C��� is the quantum amplitude for creation of the pair.
Multipair creation can be ignored if the pump field is weak.
If an idler photon with frequency precisely equal to �0 is
detected, then the state of the signal field created by this
conditional process is

���S = ��p − �0�S, �4�

that is, an idealized monochromatic field at frequency �p
−�0.

In order to operate a clocked, many-gate information-
processing system, one needs temporally localized and syn-
chronized photon packets. It is necessary to use a pulsed blue
pump field to drive each down-conversion crystal, in order to
synchronize the signal photons. This, however, leads to a
nonzero pump spectral width, and destroys the perfect fre-
quency correlation between signal and idler photons that ex-
ists in the case of a monochromatic pump �Eq. �3��.
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For concreteness, consider the case of type-II PDC, where
the signal and idler fields are spatially separable by their state
of polarization �ordinary or extraordinary�. See Fig. 1. �In the
case of type-I PDC one uses the direction of propagation to
separate the pair.�

A narrowband spectral filter, with linewidth � and center
frequency �0, is placed into the idler beam, in front of a
photon-counting detector, which serves as a trigger. When
the idler trigger fires, one knows that a single photon is
present in the signal beam �assuming that either the detector
resolves photon number or that the probability of two pairs is
vanishingly small�. A strong test of the purity of single-
photon packets would be to create two such packets in inde-
pendent setups, and to interfere the signal photons from each
source at a beam splitter, conditioned on recording idler trig-
ger counts in both setups.

When the pump is pulsed, and therefore nonmonochro-
matic, the state of the PDC field is

��� = �vac� +� d�� d��C��,������S����I, �5�

where C�� ,��� is the quantum amplitude for creation of a
photon pair with frequencies � ,��. Its form is determined by
the pump spectrum and the phase-matching constraints for
PDC �9�. As in �5�, if one detects an idler photon after a filter
having linewidth �, then the signal field is put into a mixed
state of the form1

� = �
i

P���i���S��i��	�S��i�� , �6�

where P���i� is determined by the filter transmission func-
tion, and

��S��i�� =� d� C��,�i����S. �7�

This is one of many possible pure-state wave packets that the
signal may be created in, given a trigger count at the idler
detector. In order to reduce the distribution to a single pure-
state packet, one must reduce the filter line width to zero,
leading, in this limit, to zero efficiency for packet produc-
tion.

The goal of this study is to design a PDC system that does
not suffer this trade-off between wave-packet purity and
packet production rate. This is accomplished by modifying
the PDC process by using a microcavity to engineer the den-
sity of states of the optical field. This is analogous to cavity
engineering for controlling spontaneous emission from at-
oms or quantum dots �10�. A study of PDC in a macroscopic
cavity has been discussed in �11�, but with different goals.
Also, an alternative approach to engineering pure-state pack-
ets by using PDC in dispersion-tailored crystals has been
studied �9,12�.

We propose a system that is based on PDC in a distributed
optical microcavity. The need for a distributed cavity struc-
ture arises from the trade-off between the phase-matching
bandwidth of the PDC process and the free spectral range
�FSR� of a cavity. Typically, in a bulk nonlinear-optical crys-
tal of length L, the phase-matching bandwidth equals ap-
proximately 10c /L �c=speed of light�. A cavity with length
Lcav has FSR equal to c /2Lcav. Therefore, if one simply
places such a crystal inside a cavity made of two mirrors
separated by distance Lcav, then many cavity modes can be
excited in the process, leading to a broadband spectrum, and
the difficulties reviewed above.

In contrast, in our proposal the cavity mirrors are inte-
grated into the nonlinear optical crystal in the form of dis-
tributed Bragg reflectors �DBRs�, created by a small, peri-
odic modulation of the linear refractive index along the
cavity axis �preferably confined by a waveguide�. This is
shown in Fig. 2.

In this configuration, the cavity �a small 
0.1 mm gap in
the center of the DBR� has a much shorter length than does
the nonlinear medium �L�4 mm�. In this case, only a single
cavity mode falls within the phase-matching bandwidth of
the PDC process, leading to a single frequency at which PDC
can take place. This leads to pure-state creation of a unique
pair of packets—one for the signal and one for the idler.

Mathematically, this means that the amplitude function
factors into a product C�� ,���=� �0����0����, where � is a
small parameter. Consequently, the state in Eq. �5� simplifies
to

��� = �vac� + � �1�S0 � �1�I0, �8�

where the normalized single-photon packets are

1Different states in this decomposition are not necessarity or-
thogonal, and therefore Eq. �6� should not be considered as a diago-
nalization of �.

FIG. 1. Conventional scheme, in which a laser pulse pumps a
type-II optical parametric crystal. Signal and idler fields are pro-
duced and spatially separable by their state of polarization using a
polarizing beam splitter. If an idler photon is detected after a narrow
spectral filter, then the corresponding signal photon is in a nearly
pure state of known frequency.

FIG. 2. Microcavity consisting of a nonlinear-optical medium,
with space- and frequency-dependent linear electric susceptibility
��x ,��, creating two DBRs �gratings� and a waveguide.
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�1�S0 =� d� �0������S,

�1�I0 =� d� �0������I. �9�

This state, which displays zero entanglement within the two-
photon subspace, has the benefit that no filter needs to be
placed in front of the idler trigger detector. If any idler pho-
ton is counted at this detector, then it guarantees that the
signal field is in a known, localized, pure-state packet. In
contrast, the state in Eq. �5� typically will not factor as in Eq.
�8�.

To determine the state of the down-conversion field in our
microcavity system, we first solve the operator form of Max-
well’s equations for the electric field, and then use a quantum
scattering formalism to convert the operator solution into a
solution for the Schrödinger-picture quantum state, of the
form Eq. �5�. We then use the method of the Schmidt-mode
decomposition to characterize the degree of entanglement
between signal and idler fields �13�.

II. QUANTUM FIELD IN INHOMOGENEOUS, DISPERSIVE
DIELECTRIC

A rigorous, Lagrangian-based quantum theory of light in a
dispersive, spatially nonuniform, and nonlinear-optical di-
electric is not easily developed �14�. A rigorous theory re-
quires inclusion of medium absorption as well as dispersion
in order to maintain causality �15,16�. Instead of a rigorous
approach, we use a phenomenological approach introduced
by Loudon, which is approximately valid for one-
dimensional light propagation in a frequency range in which
the medium is transparent, and the dispersion is weak and
monotonic �one-to-one relation between frequency and
propagation constant� �17�. In Appendix A we present a gen-
eralization of Loudon’s method to the case of an electric
permittivity that varies spatially along the direction of wave
propagation.

The one-dimensional, quantized-field wave equation, for a
single field polarization in the presence of a space- and
frequency-dependent linear electric susceptibility ��x ,�� and

a source term Ĵ�x , t�, can be written in the frequency domain
as

��x
2 + ��x,���2/c2�Ẽ�x,�� = J̃�x,�� �10�

with �0 being the vacuum permittivity �in SI units�. The or-
thogonality properties of the modes are simplified by assum-
ing that the �dimensionless� dielectric permittivity ��x ,��
factors into a spatial part and a spectral part ��x ,��
=��x�n2���, where the �mean� refractive index is n��� and
the spatial part varies by small amounts ���x� around unity:
��x�=1+���x�. An equation of the type Eq. �10� may be
written for each of the two field polarizations. The Fourier-
transformed field and source operators are

Ẽ�x,�� = �
−	

	

dt ei�tÊ�x,t�, J̃�x,�� = �
−	

	

dt ei�tĴ�x,t� .

�11�

Ê�x , t� is the Hermitian electric-field operator Ê�x , t�
= Ê�+��x , t�+ Ê�−��x , t�, where the positive-frequency part is2

�see Appendix A�

Ê�+��x,t� = i�
0

	

d� l���â���u�x,��e−i�t, �12�

and l���=�
� /2�0S. The effective beam cross-sectional
area is S. The monochromatic mode functions are denoted
u�x ,��. The annihilation operators commute according to

�â���, â†����� = ��� − ��� . �13�

Equations �11� and �12� imply the relation Ẽ�x ,��
= i2�l���â���u�x ,��.

The modes obey the homogeneous equation

��x
2 + ��x,���2/c2�u�x,�� = 0. �14�

The modes are orthogonal according to

n2����
−	

	

dx ��x�u�x,��u*�x,��� = ��� − ��� , �15�

and complete,

��x��
−	

	

d� n2���u�x,��u*�x�,�� = ��x − x�� . �16�

The primary differences between this formulation and the
free-space one are the forms of the mode functions and the
inclusion of the weight factor n2�x ,�� in the orthogonality
integral.

The solution of Eq. �10� can be written �see Appendix B�

Ẽ�x,�� = Ẽfree�x,�� + �
0

L

dx�K̃�x,x�,��J̃�x�,�� , �17�

where L is the length of the source medium, and Ẽfree�x ,��
= i2�l���âfree���u�x ,�� is the homogeneous solution repre-
senting the input fields, which for our purposes will be as-
sumed to be in the vacuum state.

We are concerned with the case that a pump laser pulse is
incident on the cavity, and the outgoing pulse of PDC pho-
tons is detected far outside the cavity, at a much later time.
We show in Appendix B that, for this case, the Green’s func-
tion is well approximated as

2To this field there can be added another term
i0

	d� l���b���v�x ,��e−i�t, where the v�x ,�� are set of modes that
are linearly independent of u�x ,��, and b��� is a boson operator
that commutes with a���.
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K̃�x,x�,�� =
− i�c2

�
u�x,��u*�x�,�� . �18�

Explicit forms for the mode functions are given below, for a
particular cavity geometry. Combining Eqs. �18�, �17�, and
�12� shows that the annihilation operator in the long-time,
far-field limit, is given by

â��� = âfree��� −
c2

2�l����0

L

dx�u*�x�,��J̃�x�,�� . �19�

III. SOLUTIONS FOR SIGNAL AND IDLER FIELD
OPERATORS

The analysis in the previous section must be performed

for both the signal and idler fields ẼS�x ,�� and ẼI�x ,��,
which obey

��x
2 + �S�x,���2/c2�ẼS�x,�� = J̃S�x,�� ,

��x
2 + �I�x,���2/c2�ẼI�x,�� = J̃I�x,�� , �20�

where the relative permittivities �S�x ,�� and �I�x ,�� are in
general different because of birefringence and differing po-
larizations. The field operators are expanded in their own sets
of modes,

ÊS
�+��x,t� = i�

0

	

d� l���âS���uS�x,��e−i�t,

ÊI
�+��x,t� = i�

0

	

d� l���âI���uI�x,��e−i�t. �21�

The signal modes uS�x ,�� and idler modes uI�x ,�� obey,
respectively,

��x
2 + �S�x,���2/c2�uS�x,�� = 0,

��x
2 + �I�x,���2/c2�uI�x,�� = 0. �22�

The signal modes are mutually orthogonal as in Eq. �15�, as
are the idler modes. But signal modes are not necessarily
spatially orthogonal to idler modes.

Since we are concerned with spontaneous down-
conversion, we can treat the sources using perturbation
theory, in which the source is given by zeroth-order initial
conditions. The source terms are, in the time domain,

ĴS�x,t� = ��x�Ep
�+��x,t�ÊI,free

�−� �x,t� ,

ĴI�x,t� = ��x�Ep
�+��x,t�ÊS,free

�−� �x,t� , �23�

where ÊS,free
�−� and ÊI,free

�−� are zeroth-order perturbative solu-
tions, i.e., the free-field operators in the absence of any in-
teraction with a pump field. The pump field operator has
been replaced by a real function Ep

�+��x , t�, under the assump-
tion that the pump is described by a strong coherent state. We
made the simplifying assumption that ��x�, which is propor-

tional to the second-order nonlinear optical susceptibility, is
frequency independent. The pump is

EP
�+��x,t� = �2��−1� d� EP���e−i�tw�x,�� , �24�

where w�x ,�� is the pump mode and EP��� is the pump
amplitude spectrum. Therefore, in the frequency domain the
source terms are

J̃S�x,�� = − i��x� � d��EP�� + ���w�x,� + ���

l����âI
†����uI

*�x,��� ,

J̃I�x,�� = − i��x� � d��EP�� + ���w�x,� + ���

l����âS
†����uS

*�x,��� . �25�

The signal field operator is then

ẼS�x,�� = ẼS,free�x,�� + �
0

L

dx�K̃S�x,x�,��J̃S�x�,�� ,

�26�

where

K̃S�x,x�,�� =
− i�c2

�
uS�x,��uS

*�x�,�� . �27�

Likewise the idler field is given by

ẼI�x,�� = ẼI,free�x,�� + �
0

L

dx�K̃I�x,x�,��J̃I�x�,�� ,

K̃I�x,x�,�� =
− i�c2

�
uI�x,��uI

*�x�,�� . �28�

The output photon annihilation operator is, from Eq. �19�,

âS��� = âS,free��� −
c2

2�l����0

L

dx�uS
*�x�,��J̃S�x�,�� ,

�29�

which can be written as

âS��� = âS,free��� + �
0

	

d��B��,���â†
I,free���� , �30�

where

B��,��� =
ic2l����
2�l���

EP�� + ����
0

L

dx ��x�w�x,� + ���

uS
*�x�,��uI

*�x,��� . �31�

This amplitude function is a product of the pump spectrum,
evaluated at the sum of the signal and idler frequencies, and
the phase-matching integral involving the modes of the
pump, signal, and idler. We will assume that ��x� is indepen-
dent of x.
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Likewise, the idler annihilation operator is given by

âI��� = âI,free��� + �
0

	

d��B���,��â†
S,free���� , �32�

Notice the interchange of the arguments of B compared to
Eq. �30�. Equations �30� and �32� comprise a multimode
Bogliubov transformation, describing weak-field quadrature
squeezing of the signal and idler fields.

IV. FROM QUANTUM FIELDS TO WAVE FUNCTIONS

The solutions �Eqs. �30� and �32�� are in the Heisenberg
picture, where the operators evolve and the states are con-
stant. To study entanglement in a two-photon quantum state
of the form in Eq. �5�, we need to convert these solutions to
the Schrödinger picture. In order to make a connection be-
tween these pictures, we view the calculation as a scattering
theory, or equivalently, an example of input-output theory
�18�. We are not concerned with the detailed dynamics oc-
curring inside the nonlinear medium, but rather the proper-
ties of the scattered field after it and the pump pulse have
exited the medium. The Green’s function �18� was con-
structed for this case.

To convert between pictures, it is sufficient to note that
the scattering solutions for the operators �Eqs. �30� and �32��
can be generated by a unitary transformation U=e−iH, where
H is a Hermitian operator, which plays a role similar to a
dimensionless interaction Hamiltonian operator. In the weak-
scattering limit �Born approximation� being considered here,
the transformation is approximated by U��1− iH�. In the
Heisenberg picture, an operator O0 evolves under the action
of U as

O = U−1O0U � O0 + i�H,O0� . �33�

It is easy to see that the interaction Hamiltonian that gen-
erates the output �scattered� electric field operators âS��� and
âI��� in Eqs. �30� and �32� has the form

H = i�
0

	

d�1�
0

	

d�2B��1,�2�âS
†��1�âI

†��2� + H.c.

�34�

Using this Hamiltonian in Eq. �33�, and the commutation
relation �âi��� , âj

†�����=�ij���−��� �with i, j=S , I� yields
results identical to those in Eqs. �30� and �32�. This verifies
the correctness of the Hamiltonian in Eq. �34�.

The state evolution in the Schrödinger picture is then
given simply by

��� = e−iH�vac� � �1 − iH��vac�

= �vac� + �
0

	

d�1�
0

	

d�2B��1,�2���1�S��2�I, �35�

where ��1�S��2�I is the state of a pair of photons at frequen-
cies ��1 ,�2�. Comparing this to Eq. �5� shows that the two-
photon amplitude is C�� ,���=B�� ,���, where B�� ,��� is
given in Eq. �31�.

V. QUANTIFYING ENTANGLEMENT USING
THE SCHMIDT-MODE DECOMPOSITION

As pointed out in the context of PDC by Law et al. �13�,
the degree of entanglement present in the two-photon state
�35� can best be understood using a discrete basis comprised
of Schmidt modes. Schmidt modes are a set of perfectly
correlated pairs of pure-state, spatial-temporal wave packets.

The Schmidt-mode decomposition of a bipartite quantum
state allows a continuous double integral over state param-
eters, such as �� ,��� in Eq. �35� or �5�, to be rewritten as a
single summation over discrete mode labels. This is done by
making a diagonal decomposition of the amplitude function
�13�,

B��,��� = �
j=0

	

�� j� j���� j���� , �36�

where the coefficients � j and the mode functions � j���,
� j���� are to be determined. The coefficients obey � j� j =1.
The mode functions are orthonormal and complete �see be-
low�,

� � j
*����k���d� = � jk, � � j

*����k���d� = � jk,

�37�

�
j=0

	

� j
*���� j���� = ��� − ���, �

j=0

	

� j
*���� j���� = ��� − ��� .

�38�

Such a decomposition is possible for any well-behaved func-
tion B�� ,���. This leads immediately to a diagonal-
summation form for the state,

��� = �vac� + �
j=0

	

�� j�1�S,j � �1�I,j , �39�

where the orthonormal, single-photon wave-packet states are
given by

�1�Sj = �
0

	

d� � j������S,

�1�Ij =� d� � j������I. �40�

Each j value identifies a pair of perfectly correlated single-

photon states of the signal and idler fields. The operator b̂Sj
†

� b̂Ij
† creates a photon pair in a particular wave-packet pair,

that is, �1�Sj = b̂Sj
† �vac� , �1�Ij = b̂Ij

† �vac�. These creation opera-
tors are

b̂Sj
† =� d� � j

*���âS
†��� ,

b̂Ij
† =� d� � j

*���âI
†��� . �41�
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The electric-field operators �12� can be written, using Eq.
�38�, in terms of the wave-packet annihilation operators and
two sets of wave-packet modes �vSj�x ,���, �vIj�x ,��� as

ÊS
�+��x,t� = i�

j=0

	

b̂SjvSj�x,��, ÊI
�+��x,t� = i�

j=0

	

b̂IjvIj�x,�� .

�42�

The spatial-temporal wave-packet modes of the signal or
idler field are, respectively,

�Sj�x,t� = �
0

	

d� l���� j���uS�x,��exp�− i�t� ,

�Ij�x,t� = �
0

	

d� l���� j���uI�x,��exp�− i�t� . �43�

If not for the l���=�
� /2�0S factor in the integrands, the
signal wave-packet modes would form a spatially orthogonal
set. Likewise for the idler modes. In cases where the spectral
widths of the modes are small compared to the central fre-
quencies, the modes are nearly orthogonal. In free space,
where detection takes place, the signal wave-packet modes
are given more simply by

�Sj�x,t� = �
0

	

d� � j���
exp�− i��t − x/c0��

�D
, �44�

where D is a quantization length. A similar form holds for
the idler.

To determine the forms of the Schmidt states and wave
packets, define the functions �S��1 ,�2� and �I��1 ,�2� as fol-
lows, and use Eqs. �36� and �37� as an ansatz. Then

�S��1,�2� =� d� B��1,��B*��2,�� = �
j

� j� j��1�� j
*��2� ,

�45�

�I��1,�2� =� d� B��,�1�B*��,�2� = �
j

� j� j��1�� j
*��2� .

�46�

Orthogonality then gives two eigenvalue problems,

� �S��,���� j����d�� = � j� j��� ,

� �I��,���� j����d�� = � j� j��� . �47�

Because the functions �S��1 ,�2� and �I��1 ,�2� are Hermit-
ian, the eigenvalues are real and the eigenfunctions are or-
thogonal and complete.

The functions �S��1 ,�2� and �I��1 ,�2� represent the re-
duced density operators for signal and idler fields, if the
other is traced over. This corresponds to, for example, the
state of the signal field after an idler photon is detected in the
absence of any spectral filtering. Since the frequency of the

idler photon is undetermined, the signal photon is put into a
conditional state described by the density operator,

�̂S = TrI����	��� =� d�S	����	����S

=� d��� d���S���,�������	��� , �48�

where �S��� ,��� is given by Eq. �45�. Likewise, for the re-
duced density operator of the idler following a detection of
the signal photon,

�̂I = TrS����	��� =� d�I	����	����I

=� d��� d���I���,�������	��� , �49�

where �I��� ,��� is given by Eq. �46�. Thus, �S��� ,��� and
�I��� ,��� are density matrices in the single-photon-
frequency �energy� basis.

These reduced density operators can also be written as

�̂S = �
j=0

	

� j�1�SjSj	1� ,

�̂I = �
j=0

	

� j�1�IjIj	1� . �50�

This illustrates that our goal must be to engineer the mi-
crocavity mode density such that only a single eigenvalue � j
is nonzero. This will occur if B�� ,���, given by Eq. �31�, is
proportional to a product �0����0���� for some functions
�0��� and �0���. Then, following detection of an idler pho-
ton �without any filters�, the signal field will be known to
contain a single photon in a known spatial-temporal wave-
packet mode.

If more than one eigenvalue is nonzero, then useful char-
acterizations of the state are given by the entropy of en-
tanglement �13�

S = − �
j=1

	

� j log2 � j , �51�

the purity parameter p, and the cooperativity number, K �19�

p = Tr��̂S
2�, K = ��

j=0

	

� j
2�−1

. �52�

K estimates the number of populated Schmidt modes. The
purity and the cooperativity number are related by p=1/K
�12�.

VI. MICROCAVITY MODES

Here we propose and analyze a specific microcavity ge-
ometry that controls the density of electromagnetic modes in
a way that leads to a nearly factorized two-photon state �in
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addition to a vacuum component�. For the calculation, we
use a simplified model, shown in Fig. 3. In the design, one of
the DBRs is replaced by a wideband, planar mirror, separated
from the remaining DBR by an air gap of length d. The
mirror amplitude reflectivity and transmissivity are real and
equal to � and � for light incident from the right �x�−d�,
and −� and � for light incident from the left �x�−d�. These
obey �2+�2=1. We assume that these values are constant
over a frequency interval wider than any being considered
here. The remaining DBR, which is embedded in the second-
order nonlinear medium of length L, has linear reflectivity
and transmissivity coefficients r� , t� for light incident from
the right, and r , t, for light incident from the left. Explicit
expressions for the DBR coefficients are given below. The
labeling of the field amplitudes in the three distinct regions
�1, 2, and 3� follows the notation used below to analyze the
DBR.

The mode functions obey Eq. �14�, with the linear permit-
tivity ��x�n2��� chosen to be appropriate for the signal, idler,
or pump. Within the DBR, the spatial part equals a constant
plus a small periodic part,

��x� = 1 + �� cos�Kx� , �53�

where K=2� /� is the spatial frequency of the grating with
period �. We write the mode as a sum of right- and left-
going waves,

u�x,�� = A�x,��eik���x + B�x,��e−ik���x, �54�

where k���=n���� /c. Using the standard coupled-mode ap-
proximation �20� leads to

�xA�x,�� = i�B�x,��ei����x,

�xB�x,�� = − i�A�x,��e−i����x, �55�

where the coupling constant is ����=���2 / (4k���c2)
= ��n /2�k���, where �n is the modulation of the refractive
index. In the following we will neglect the frequency depen-
dence of ����. The detuning parameter is ����=K−2k���.
The boundary values A�0,�� ,B�L ,�� are fixed by the nor-
malization condition Eq. �15�. This amounts to taking A3 to
be the free-field monochromatic mode function
�2�cn�−1/2eikx at x=−d. Equation �55� is easily solved, and
the solution inside the DBR, given in Appendix C, has the
form

A�x,�� = Q�x,��A�0,�� + i�P�x,��B�L,��ei����L,

B�x,�� = − i�W�x,��A�0,�� + V�x,��B�L,�� , �56�

where the functions Q�x ,��, P�x ,��, W�x ,��, and V�x ,��
are given explicitly in Appendix C.

As a whole, the DBR acts as a beam splitter, with the
input-output relations,

�A�L�
B�0� � = � t r�

r t�
��A�0�

B�L� � . �57�

The matrix in this transformation is unitary, as required by
the Stokes’ relations �t�= �t�� , �r�= �r��, rt*+r�*t�=0 �8�. Spe-
cifically, the reflectivities and transmissivities are found to be

t = t� = Q�L� ,

r = r�e−i����L = − i�W�0� . �58�

Figure 4 shows the reflectivity �r�2 of the DBR �only� vs
input frequency, measured in k �in units of mm−1�.

This is now a standard input-output calculation for a two-
mirror cavity. Solutions are given in Appendix C. Illustra-
tions of the results are shown in Fig. 4. For an input A3,
incident only from the left, Fig. 4�b� shows the cavity reflec-
tivity �R�2. When the scale is expanded, as in Fig. 4�c�, the
narrow cavity dip is clear. Figure 4�d� shows the intracavity
intensity �A2�2.

We consider here only the case that the DBR is suffi-
ciently long that no light can penetrate through it in the spec-
tral region of interest. We will therefore neglect any
�vacuum� input B�L� from the right side of the cavity. This is
an approximation, which is valid only for the frequencies
inside the DBR stopband. Outside the stopband, light can
penetrate into the DBR from the right. As we will see below,
the mode of interest is concentrated within the stop band.

The mode functions in the DBR are proportional to E1�x�,
with the frequency dependence restored in the notation

FIG. 3. Microcavity with one DBR occupying x= �0,L�, and a
mirror at x=−d, separated by an air gap.

FIG. 4. �a� Reflectivity �r�2 of DBR �only� vs input frequency,
given as wave number k; �b� cavity reflectivity �R�2; �c� cavity re-
flectivity �R�2 zoomed in; �d� intracavity intensity �A2�2. Parameter
values, L=4 mm, d=0.1999 mm, �=1 mm−1, K=4� / �0.8
10−3� mm−1, �=�0.99, center wavelength �=800 nm, back-
ground refractive index=1.
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u�x,k� =
�

f�k�
�Q�x,k�eikx − i�W�x,k�e−ikx� , �59�

where k=k��� and f�k� is given in Eq. �C10�. Normalization
of the modes is dominated by the integral to infinity outside
the cavity. Therefore, A3 is the free-field monochromatic
field operator.

VII. SCHMIDT WAVE-PACKET MODES

The mode functions found in the previous section are
used with �31� to calculate the two-photon amplitude
B�� ,���. In order to control the mode density at both the
idler and signal frequencies, we assume that a DBR grating
is created having two spatial periods—one with spatial fre-
quency KS=4�nS /�S that causes reflection of signal waves
and the other with KI=4�nI /�I that reflects idler waves. That
is, ��x�=1+���cos�KSx�+cos�KIx��. The grating coupling
strength of each grating component is chosen as �
=2 mm−1, corresponding to �n /n=510−4.

We consider a model based on the material parameters of
potassium triphosphate �KTP� crystal, with optical axis at an
angle 0.739 095 rad to the k vector of the e wave, for type-II
bulk phase matching. The signal and idler fields are phase
matched at the degenerate center wavelength �in air� �S=�I
=800 nm. The pump wavelength is 400 nm. Sellmeier for-
mulas are used for the �first-order� dispersion of ordinary
�idler� and extraordinary �pump and signal� waves. The
pump is assumed to propagate only in the +x direction, and
suffer no reflections at the DBR. This is reasonable, as dis-
persion puts the pump k value outside of the second-order
reflection band gaps. We assume a transform-limited pump-
pulse spectrum EP���=EP0 exp�−�2 /�2�, with �=0.3
1012 rad/s. The duration of such a pulse is about 10 ps.
The cavity air gap again has length d=0.1999 mm, in order
to resonate the signal and idler. The crystal length L is 4 mm,
giving �L=8, This means that the modes decay from the

cavity air gap into the crystal, having very weak amplitude at
the other end of the crystal; so the PDC output is almost
entirely from the cavity-mirror end at x=−d. The refractive
indices and derivatives with respect to angular frequency are
nI=1.6605, nS=1.6047, nP=1.6326, kI�=5.614910−9, kS�
=5.421210−9, and kP� =5.694910−9.

The two-photon amplitude for external mirror amplitude
reflectivity �=�0.95 is shown in Fig. 5. The bright cross-
shaped peak at the center is the double-cavity mode at the
center of the two DBR band gaps. The weak, unwanted am-
plitudes are in the lower right and upper left regions; these
are allowed by phase matching and pump spectrum, but are
outside of the cavity-controlled central region. Two questions
arise: how dominant is the central cross-shaped peak, and is
it factorizable? The Schmidt-mode calculation answers these.

For the numerical solution of Eqs. �47� we used a two-
dimensional grid of up to 11911191 points in a finite spec-
tral interval, containing the DBR gap. This leads to eigenval-
ues given in Table I.

Examples of normalized Schmidt-mode functions for the
signal field are shown in Fig. 6, for the case of 0.95 cavity-
mirror reflectivity. The idler modes look quite similar. It is
seen that the cavity mode strongly dominates the first
Schmidt mode �a�, which contains over 95% of the probabil-
ity. Other modes �b�–�d� have spectra that are concentrated
outside of the DBR reflectivity gap.

VIII. RESULTS AND CONCLUSIONS

Our proposal is to engineer the density of states of the
vacuum prior to the creation of idler-signal photon pairs.

TABLE I. Schmidt-mode eigenvalues for different values of
cavity-mirror reflectivity �2.

�2 j=1 j=2 j=3 j=4 j=5

0.95 0.951 0.0196 0.0196 0.0044 0.0044

0.99 0.998 0.0007 0.0007 0.0002 0.0002

FIG. 5. Absolute value of two-photon amplitude �B�� ,����, for
�=�0.95. The horizontal �vertical� axis is signal �idler� frequency.

FIG. 6. First four signal Schmidt-mode spectral eigenfunctions
versus frequency. The horizontal axis is signal frequency, in a range
�2.3552,2.3572�1015 rad/sec. The first Schmidt mode �a� con-
tains over 95% of the probability. Other modes �b�–�d� are concen-
trated outside the DBR reflectivity region.

RAYMER et al. PHYSICAL REVIEW A 72, 023825 �2005�

023825-8



Spectral filtering of the field occurs prior to photon creation
rather than afterward as in most other schemes. Our scheme
for doing this is to fabricate a high-finesse distributed cavity
throughout a second-order nonlinear crystal. The high-
finesse cavity mode occupies a spectral interval much nar-
rower than the bandwidth of the pulsed pump laser field,
suppressing the spectral correlation, or entanglement, be-
tween signal and idler photons.

Our simple model explored here treats only a one-
dimensional problem, under the assumption that waveguid-
ing structures can be used to control the transverse degrees of
freedom. We treated a simplified geometry, comprised of a
linear-index distributed Bragg reflector embedded in a 4
-mm-long nonlinear crystal, with a small �
0.2 mm� air gap
and adjacent planar mirror to form a cavity. In practice, the
air gap would be replaced with a waveguiding structure to
prevent losses and multi-spatial-mode emission. Typically,
coupling from a wave guide to free space entails significant
loss, which would degrade the quantum efficiency. In a fu-
ture technology, where all sources, beam splitters, and detec-
tors are integrated onto a substrate, such losses could be
reduced.

For cavity-mirror reflectivity �2=0.99, we find that the
central peak contains over 99% of the probability for photon
pair creation �see Table I�, without any external filtering.
This means that if any idler photon is detected, then the
signal photon will be in the first Schmidt mode with 99%
probability. This does not require spectral filtering before
detection. This result appears to be very promising for high-
rate production of pure-state, controlled single-photon wave
packets.

Other Schmidt modes have spectra that are concentrated
outside of the DBR reflectivity spectral gap. This implies that
spectral filtering outside the cavity, but before detection,
could be used to decrease the false trigger rate �in which an
idler photon would be paired with a signal photon in other
than the first mode�, without degrading the purity of the sig-
nal field state. This would increase the probability of her-
alded pure-state signal photon creation to greater than 99%,
with a negligible decrease of overall photon production rate.

A more realistic model would account for the dispersion
introduced by the confinement of light �waveguide disper-
sion�. Fortunately, the increased dispersion will only serve to
further increase the first Schmidt-mode probability, accord-
ing to preliminary calculations.

Fabricating suitable waveguide microcavity structures re-
quires developing new techniques. The challenges are �1�
creating linear DBRs in a bulk-phase-matched, low-loss non-
linear optical medium, and �2� creating type-II phase match-
ing �in which the signal and idler are orthogonally polarized�
in a suitable waveguide structure. It is possible that quasi-
phase-matching techniques �in which the nonlinearity is
modulated with a long period� will prove superior to bire-
fringent phase matching for this application.

An alternate device geometry may take advantage of the
microcavity control while eliminating the need for type-II
interactions. According to the ideas presented here, a type-I
waveguided microcavity would produce weak quadrature-
squeezed light with high probability to be dominated by a
single controlled spatial-temporal mode. By constructing two

identical such cavities, and allowing their outputs to interfere
in a 50-50 superposition, twin-photon pulses will be created,
having the same number of photons in each pulse �21�. A
photon in one pulse may then serve as the trigger for herald-
ing the occurrence of the other.
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APPENDIX A: QUANTIZATION IN A NONUNIFORM
DISPERSIVE DIELECTRIC

Here we present a generalization of Loudon’s quantiza-
tion method �17� to the case of a dispersive electric permit-
tivity that varies spatially along the direction of wave propa-
gation. The orthogonality properties of the modes are
simplified by assuming that the �dimensionless� dielectric
permittivity ��x ,�� factors into a spatial part and a spectral
part: ��x ,��=��x�n2���, where the �mean� refractive index
is n��� and the spatial part varies by small amounts ���x�
around unity, ��x�=1+���x�. Maxwell’s equations in the ab-
sence of free charges and currents �in S.I. units� are

�  B = �0�tD ,

�  E = − �tB ,

� · B = � · D = 0. �A1�

The fields are given by the vector potential E=−�tA, B= �
A.

Consider the case of a plane wave propagating in the x
direction. The vector potential, electric field, and displace-
ment field are polarized in the y direction, A= ŷAy, E= ŷEy,
D= ŷDy. The magnetic field is polarized in the z direction,
B= ẑBz. Then Bz=�xAy and Ey =−�tAy. Maxwell’s equations
then imply that

− �xBz = �0�tDy, �xEy = − �tBz. �A2�

These imply the wave equation,

− �x
2Ay = �0�tDy . �A3�

We make the usual split between positive and negative-
frequency components,

A�x,t� = A�+��x,t� + A�−��x,t� , �A4�

where A�−��x , t�= �A�+��x , t��†, where the dagger represents
complex �or operator� conjugation. We make the ansatz

Ay
�+��x,t� = �

0

	

d�
l���

�
A��,t�u�x,�� , �A5�

where l���=�
� /2�0S, and S is an effective beam cross-
sectional �quantization� area. The amplitudes obey the addi-
tional ansatz
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�tA��,t� = − i�A��,t� , �A6�

with solution A�� , t�=a���exp�−i�t�. The mode functions
are defined to obey the homogeneous wave equation,

��x
2 + ��x�n2����2/c2�u�x,�� = 0. �A7�

The forms of the other fields follow from Eqs. �A5� and �A6�
and Maxwell’s equations,

Ey
�+��x,t� = i�

0

	

d� l���A��,t�u�x,�� , �A8�

Bz
�+��x,t� = �

0

	

d�
l���

�
A��,t���xu�x,��� , �A9�

Dy
�+��x,t� = i�

0

	

d� l����0��x,��A��,t�u�x,�� .

�A10�

Together Eqs. �A5�–�A10� provide a solution to Maxwell’s
equations. Equations �A8� and �A10� imply the constitutive

relation in the frequency domain, D̃y�x ,��
=�0��x ,��Ẽy�x ,��.

Since Eq. �A7� is a Hermitian eigenvalue problem, with
eigenvalues n2����2 /c2, the modes are orthogonal, and can
be normalized according to �22�

n2����
−	

	

dx ��x�u�x,��u*�x,��� = ��� − ��� . �A11�

The derivatives of the mode functions, which serve as modes
for the B field in Eq. �A9�, are also orthogonal, without any
weight factor,

�
−	

	

dx���xu�x,�����xu
*�x,����� =

�2

c2 ��� − ��� .

�A12�

This can be seen by integrating Eq. �A12� by parts, and using
Eq. �A7�. The modes are also complete,

��x��
−	

	

d� n2���u�x,��u*�x�,�� = ��x − x�� . �A13�

The equation of motion Eq. �A10� can be generated by a
total Hamiltonian operator H, but a subtlety arises when dis-
persion is present in that H cannot be interpreted as an inte-
gral over a local energy density. This is because when dis-
persion is present, 2E ·�tD��t�E ·D� �23�. We generalize
and simplify Loudon’s treatment �17�, including the spatial
dependence of ��x�. Using the divergence theorem as usual,
Maxwell’s equation imply that the rate of change of the total
energy in a volume V is given by

�tUV = �
V

�E · �tD + �0
−1B · �tB�d3x . �A14�

We cannot time-integrate the integrand in Eq. �A14� to
obtain a spatially local energy density, but we can define V to

equal the whole quantization volume, and time-integrate the
total energy expresssion. Consider the one-dimensional prob-
lem, where we replace d3x→S d2x. Substitute Eqs.
�A8�–�A10�, use the orthognality relations Eqs. �A11� and
�A12�, and perform a local time average, giving

�tUV = S�0�
0

	

d� l2����A†��,t��tA��,t� + �tA
†��,t�A��,t�� .

�A15�

The integrand here is an exact differential, so we can inte-
grate to find

UV = �
0

	

d� 
�A†��,t�A��,t� = �
0

	

d� 
�a†���a��� .

�A16�

Equation �A16� shows that �tUV=0, which simply means
that without interactions, energy is conserved.

We now follow the standard procedure, setting A�� , t�
=2−1/2�Q�� , t�+ iP�� , t��, where Q�� , t� and P�� , t� are real
conjugate variables, obeying Hamilton’s dynamical equa-
tions,

�tP��,t� = −
�H

�Q��,t�
, �tQ��,t� =

�H

�P��,t�
. �A17�

Equation �A17� is equivalent to Eq. �A6�.
To quantize the system, replace the conjugate variables by

operators, obeying �Q�� , t� , P��� , t��=
���−���. This then
leads to the commutator

�A��,t�,A†���,t�� = �â���, â†����� = ��� − ��� ,

�A18�

and the Hamiltonian is

H = �
0

	

d� 
�â†���â��� . �A19�

Then the Heisenberg-picture equation of motion for A is

�tA��,t� = − �i/
��A��,t�,H� = − i�A��,t� , �A20�

again equivalent to Eq. �A6�.
The subtlety in this derivation is the fact that we have not

identified a local energy density for the system composed of
light and medium. The presence of dispersion implies the
presence of absorption at some frequency, and this requires a
different procedure than followed here. For a review of rig-
orous approaches, see Knoll �16�, whose approach leads to
results similar to our final results. Following Loudon, we
expect that the approximate form here will be correct if the
medium is transparent and weakly dispersive in the fre-
quency range of interest.

APPENDIX B: GREEN’S FUNCTION IN A STRUCTURED
DIELECTRIC

To find the causal, outgoing-wave solution of Eq. �10�,
with ��x ,��=��x�n2���, we add a damping term �:
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��x
2 + ��x,����2 + i���/c2�Ẽ�x,�� = J̃�x,�� . �B1�

The spatial dependence of the damping term is somewhat
unrealistic; it will be taken to zero later. To solve �B1�, ex-
pand the inhomogeneous part of the solution in terms of the
complete normal modes �solutions to �A7��:

Ẽ�x,�� = �
−	

	

C��,���u�x,���d��. �B2�

Plug into �B1�, operate by dx u*�x ,���, and rearrange to

�− ��2 + �2 + i���C��,���

−� dx� d��C��,���u*�x,�����2 + i���

���x,�� − ��x,����u�x,���

= c2� dx u*�x,���J̃�x,�� . �B3�

The integrand C�� ,������x ,��−��x ,���� is small if disper-
sion is weak. This can be seen by first assuming that there is
no dispersion. Then the integral is zero, and we have

C��,��� = c2
� dx�u*�x�,���J̃�x�,��

��2 − ��2 + i���
. �B4�

As � goes to zero, C�� ,��� becomes a � function. This
localizes the integrand in �B3� to near �=��, where
���x ,��−��x ,���� is small, implying that when � goes to
zero, the integral term in Eq. �B3� can indeed be dropped.

Using Eq. �B4� to represent C�� ,���, Eq. �B2� can be
written in the form

Ẽ�x,�� =� dx�K̃�x,x�,��J̃�x�,�� , �B5�

where

K̃�x,x�,�� = c2�
−	

	

d��
u�x,���u*�x�,���
��2 − ��2 + i���

. �B6�

To find the form of the solution in the long-time, far-field
limit, plug Eq. �B6� into Eq. �B5�, and Fourier transform to
the time domain via a contour integral, to give �after taking �
to zero at the end�

E�x,t� = �
−	

	

dx��
−	

	

dt�J�x�,t��K�x,x�,t − t�� , �B7�

where the Green’s function is

K�x,x�,�� = c2�
−	

	

d� u�x,��u*�x�,��f���� , �B8�

with

f���� = − ����
sin ��

�
� ����

exp�− i���
2i�

, �B9�

where ��� is a unit step function. The last step is a rotating-
wave approximation, valid for fields whose bandwidth is
much smaller than the optical carrier frequency. We consider
the results in the physically relevant case that ��0 and the
observation point x is outside the medium. Plug Eqs. �B8�
and �B9� into Eq. �B7�, which can then be written as

E�x,t → 	� = �2��−1�
−	

	

d� e−i�tẼ+�x,�� , �B10�

where

Ẽ+�x,�� = �
−	

	

dx�K̃+�x,x�,��J̃�x�,�� , �B11�

and

K̃+�x,x�,�� =
− i�c2

�
u�x,��u*�x�,�� . �B12�

This is the result given in Eq. �18�.

APPENDIX C: DISTRIBUTED MICROCAVITY MODES

Write Eq. �55� as �suppressing the frequency label�

A��x� = i�B�x�ei�x,

B��x� = − i�A�x�e−i�x. �C1�

At the boundaries, A��L�= i�B�L�ei�L , B��0�=−i�A�0�.
Equation �C1� is separated into two equations,

A��x� = i�A��x� + �2A�x� ,

B��x� = − i�B��x� + �2B�x� . �C2�

The derivative boundary conditions are, from Eq. �C1�,

A��L� = i�B�L�ei�L, B��0� = − i�A�0� . �C3�

The solutions are

A�x� = Q�x�A�0� + i�P�x�B�L�ei�L,

B�x� = − i�W�x�A�0� + V�x�B�L� , �C4�

where

Q�x� = eSL+�i�−S�x/2�S�eS�x−L� + 1� − i��eS�x−L� − 1��/D ,

P�x� = 2e�i�−S��x−L�/2�eSx − 1�/D ,

V�x� = e−�i�+S��x−L�/2�S�eSx + 1� + i��eSx − 1��/D ,

W�x� = 2eSL−�i�+S�x/2�eS�x−L� − 1�/D , �C5�

with
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D = i��eSL − 1� + S�eSL + 1� ,

S = �4�2 − �2. �C6�

Energy conservation is represented by ��P�L��2+ �V�0��2=1.
The cavity is modeled as a DBR and an ideal thin mirror,

with field transmission and reflectivity �� ,��, separated by
distance d, as in Fig. 3. If a wave is incident only from the
left, B�L�=0, the solutions in regions 1 and 2 are, respec-
tively,

E1�x� = A1�x�eikx + B1�x�e−ikx,

E2�x� = A2eikx + B2e−ikx, �C7�

with

A1�x� = Q�x�A�0�, B1�x� = − i�W�x�A�0� . �C8�

This is now a standard input-output calculation for a two-
mirror cavity. We can solve it by applying

B3 = − �A3 + �rA2eik2d,

A2 = �A3 + �rA2eik2d. �C9�

Solutions are

A2 =
�

f
A3, B3 = RA3,

f = 1 − �reik2d, R = − � + eik2d r�2

1 − �reik2d . �C10�

B3 is the output field given in terms of the input field A3.
The field in the DBR is found by using

A�0� = A2eikd,

B�0� = rA2eikd, �C11�

where r is again r=−i�W�0�. Putting all together gives in the
DBR

A1�x� = Q�x�eikd�

f
A3,

B1�x� = − i�W�x�eikd�

f
A3. �C12�

An independent solution corresponds to the case of an
input B�L� incident only from the right. In this case the so-
lution is

B�0� =
t

f
B�L�, A�L� = R�B�L� ,

B3 = �eikdB�0�, R� = rei�L + eik2d�t2/f . �C13�

�1� E. Knill, R. LaFlamme, and G. J. Milburn, Nature �London�
409, 46 �2001�; T. C. Ralph, A. G. White, W. J. Munro, and G.
J. Milburn, Phys. Rev. A 65, 012314 �2001�; T. B. Pittman, M.
J. Fitch, B. C. Jacobs, and J. D. Franson, ibid. 68, 032316
�2003�.

�2� U. M. Titulaer and R. J. Glauber, Phys. Rev. 145, 1041 �1966�.
�3� J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A.

Kuzmich, and H. J. Kimble, Science 303, 1992 �2004�; A.
Kuhn, M. Hennrich, and G. Rempe, Phys. Rev. Lett. 89,
067901 �2002�; C. Santori, D. Fattal, J. Vukovic, G. S. So-
lomon, and Y. Yamamoto, Nature �London� 419, 594 �2002�.
For a recent review see I. Walmsley and M. Raymer, Science
307, 1733 �2005�.

�4� A. Sergienko, M. Atature, Z. Walton, G. Jaeger, B. Saleh, and
M. Teich, Phys. Rev. A 60, R2622 �1999�; T. Jennewein, C.
Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, Phys. Rev.
Lett. 84, 4729 �2000�; D. S. Naik, C. G. Peterson, A. G.
White, A. J. Berglund, and P. G. Kwiat, ibid. 84, 4733 �2000�.

�5� A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek,
and S. Schiller, Phys. Rev. Lett. 87, 050402 �2001�.

�6� M. Fiorentino, P. L. Voss, J. E. Sharping, P. Kumar, IEEE
Photon. Technol. Lett. 14, 983 �2002�.

�7� C. K. Hong and L. Mandel, Phys. Rev. Lett. 56, 58 �1986�.
�8� L. Mandel and E. Wolf, Optical Coherence and Quantum Op-

tics �Cambridge University Press, Cambridge, U.K., 1995�,
Chap. 22.

�9� W. P. Grice, and I. A. Walmsley, Phys. Rev. A 56, 1627

�1997�; W. P. Grice, A. B. U’Ren, and I. A. Walmsley, ibid.
64, 063815 �2001�.

�10� H. J. Kimble, in Cavity Quantum Electrodynamics edited by
Paul R. Berman �Academic Press, New York, 1994�.

�11� Z. Y. Ou and Y. J. Lu, Phys. Rev. Lett. 83, 2556 �1999�; Y. J.
Lu and Z. Y. Ou, Phys. Rev. A 62, 033804 �2000�.

�12� A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P.
Grice, I. A. Walmsley, and M. G. Raymer, Laser Phys. 15, 146
�2005�; J. P. Torres, F. Macià, S. Carrasco, and L. Torner, Opt.
Lett. 30, 314 �2995�.

�13� C. K. Law, I. A. Walmsley, and J. H. Eberly, Phys. Rev. Lett.
84, 5304 �2000�; S. Parker, S. Bose, and M. B. Plenio, Phys.
Rev. A 61, 032305 �2000�; Arthur Ekert and Peter L. Knight,
Am. J. Phys. 63, 415 �1995�.

�14� M. Hillery and L. D. Mlodinow, Phys. Rev. A 30, 1860
�1984�.

�15� B. Huttner and S. M. Barnett, Phys. Rev. A 46, 04306 �1992�;
T. Gruner and D.-G. Welsch, ibid. 51, 3246 �1995�; T. Gruner
and D.-G. Welsch, ibid. 53, 1818 �1996�; Ho Trung Dung, L.
Knöoll, and D.-G. Welsch, ibid. 57, 3931 �1998�; S. Scheel, L.
Knöll, and D.-G. Welsch, ibid. 58, 700 �1998�; P. D. Drum-
mond and M. Hillery, ibid. 59, 691 �1999�.

�16� An excellent review is by L. Knöll, S. Scheel, and D.-G.
Welsch, in Coherence and Statistics of Photons and Atoms
edited by J. Perina �Wiley, New York, 2001�, p. 1.

�17� R. Loudon, The Quantum Theory of Light, Oxford Science
Publications, 3rd ed., �Oxford University Press, Oxford 2000�.

RAYMER et al. PHYSICAL REVIEW A 72, 023825 �2005�

023825-12



�18� M. J. Collett and C. W. Gardiner, Phys. Rev. A 30, 1386
�1984�.

�19� H. Huang and J. H. Eberly, J. Mod. Opt. 40, 915 �1993�.
�20� Amnon Yariv, Quantum Electronics �Wiley, New York, 1989�.
�21� M. Belsley, D. T. Smithey, M. G. Raymer, and J. Mostowski,

Phys. Rev. A 46, 414 �1992�.

�22� George B. Arfken, Hans Weber, and Hans-Jurgen Weber,
Mathematical Methods for Physicists �Academic Press, New
York, 2000�.

�23� J. D. Jackson, Classical Electrodynamics 3rd ed. �Wiley, New
York, 1998�.

PURE-STATE SINGLE-PHOTON WAVE-PACKET… PHYSICAL REVIEW A 72, 023825 �2005�

023825-13


