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A detailed theoretical and experimental study of the atom-field interaction starting from first principles was
made possible by the realization of the single-atom micromaser. The situation is very close to the ideal case of
a single two-level atom interacting with a single quantized mode of a superconducting cavity. In spite of the
considerable amount of work devoted to the study of the micromaser, it still remains to be established how the
system behaves under coherent pumping. We present a comprehensive study of the coherently pumped micro-
maser; we develop an analytic method to obtain the steady-state solution of the master equation governing the
time evolution of the cavity field. We illustrate this method with a simple example and present results for the
photon distribution and purity of the steady state of the coherently pumped micromaser.
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I. INTRODUCTION

There are only a handful of systems in physics that can be
studied starting from first principles using exact theoretical
methods and, at the same time, can be investigated under
experimental conditions approaching the idealized theoreti-
cal one. The single-atom maser or micromaser provides such
an example, making a detailed study of the atom-field inter-
action possible. The situation realized in a micromaser is
very close to the ideal case of a single two-level atom inter-
acting with a single quantized mode of a cavity field.

In the early works devoted to the theory of the micro-
scopic maser �Filipowicz et al. �1,2�� the case of incoherent
pumping was investigated where two-level atoms, excited to
their upper level, randomly interact with a single quantized
mode of a superconducting cavity �for a recent review see
�3��. It was found that the field mode evolves toward a steady
state when the average lifetime of a photon in the field mode
is larger than the mean time between the interactions. As the
pump rate increases the steady state goes through thresholds
that resemble first-order phase transitions. This remarkably
simple system, which exhibits a rich structure of phase tran-
sitions, soon found various experimental realizations �4–8�.
State-of-the-art experimental techniques made it possible to
build superconducting high-Q niobium microcavities which
could maintain large photon numbers. In recent experiments,
values of the quality factor as high as 3�1010 have been
achieved for the resonant mode, corresponding to an average
lifetime of a photon in the cavity of 0.2 s. In the experiments
rubidium Rydberg atoms, selectively pumped by laser exci-
tation into the upper level of the maser transition, were used.
A consequence of the high-Q value is that the photon life-
time is much longer than the interaction time of an atom with
the maser field. Therefore, during the time the atom passes
through the cavity the only change in the cavity field is due
to the atom-field interaction which can be adequately treated
then using the Jaynes-Cummings model �9,10�. Remarkable

quantum effects have been predicted and observed such as
the collapse and revival of Rabi oscillations �6�, maser action
without inversion �11�, and the quantum clock �12�. Also,
various uniquely quantum-mechanical states of the field, in-
cluding entangled states �13�, trapping states �2,14,15�, tan-
gent and cotangent states �16,17�, sub-Poissonian photon sta-
tistics �7�, and even the Fock state �18,19�, have been
generated. These findings established the significance of the
micromaser as a testing ground for fundamental principles.

Although considerable work, both theoretical and experi-
mental, has been carried out on this system, with a few ex-
ceptions noted below, most cases involved incoherent pump-
ing. As a result, the density matrix describing the field
remained diagonal for all times if the initial state of the field
was diagonal �an initial condition experimentally realizable,
allowing the system to relax until no transient nondiagonal
entries are left�. Therefore, investigations of phase diffusion
�20,21� and the spectrum �22–28� of the micromaser in-
volved both the creation of nondiagonal density matrix en-
tries and the study of their decay. The creation of nondiago-
nal entries of the density matrix can be achieved in two
ways: either by injecting a preselected phase into the micro-
maser or by post-selecting a phase via the detection of the
exiting atoms �29–34�. In our work we use the preselection
of phase, which is achieved by injecting atoms, initially pre-
pared in a proper form of the atomic coherence, into the
micromaser cavity �coherent pumping�. This line of investi-
gations was started by the work of Krause et al. �29�, de-
scribing how the phase of the atomic coherence is transferred
to the field in the limit of weak atom-field coupling. Slosser
et al. �16,17� found that the field of a coherently pumped
lossless micromaser evolves toward pure states, called tan-
gent and cotangent states. Casagrande et al. �35–37� studied
the dynamics of a coherently driven micromaser �a microma-
ser continuously driven by a resonant coherent field and
pumped by atoms injected in superposition states� using
quantum jump techniques, and recently Lougovski et al. �38�
investigated the dynamics of a strongly driven micromaser �a
micromaser where the pumping atoms are strongly driven by
a resonant classical field during their traverse through the
cavity� and presented a time-dependent analytic solution.
Despite all of this progress, a comprehensive study of the
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“conventional” coherently pumped micromaser is yet to be
given. Especially interesting problems are the relation of the
phase of the steady-state field to that of the driving atoms
under general conditions, including the case of off-resonant
pumping, and developing analytic methods for this highly
nonlinear system. In a series of articles our goal is to provide
a comprehensive study of the coherently pumped microma-
ser focusing on these questions.

In this article, the first in the series, we introduce the
model of the coherently pumped micromaser and provide the
analytic steady-state solution. The work is organized as fol-
lows. Starting in Sec. II we present the master equation gov-
erning the time evolution of the electromagnetic field inside
the micromaser cavity and discuss, in detail, the control pa-
rameters of the model. Then in Sec. III we discuss the large-
scale structure of the field density matrix and present an ana-
lytic method to obtain the steady-state solution of the master
equation. �We illustrate the method with an example in the
Appendix.� In Sec. IV we present results for the photon dis-
tribution and for the purity of the steady state of the coher-
ently pumped micromaser. We conclude with a brief sum-
mary.

II. MODEL AND THE FIELD MASTER EQUATION

A coherently pumped micromaser, illustrated in Fig. 1,
consists of a stream of two-level atoms �upper level a and
lower level b� and a single mode of a high-Q micromaser
cavity. The atoms, initially prepared in a proper form of the
atomic coherence, are randomly injected into the micromaser
cavity at a rate r low enough that at most one atom at a time
is present inside the cavity. The mean time between consecu-
tive atoms is T where T=1/r. In the cavity the atoms interact
with a single mode of the micromaser field for a time period
of ��T where � is the transit time of a single atom through
the micromaser cavity. We assume that the nth atom is in-
jected at time tn, with the initial density matrix

�atom
�n� �tn� = � �aa ��abe−i�tn

��baei�tn �bb
� . �2.1�

Here �aa and �bb=1−�aa are the populations and �ab=�ba
*

= ��ab�ei�ab with �ab=��aa�bb are the maximally allowed co-
herences for a given population. �For a discussion of the

preparation of atoms in such a state see �39�.� Furthermore, �
is the frequency of the classical field used to prepare the
atomic coherence, hereafter referred to as the injected signal
frequency. This frequency is not necessarily the same as the
atomic transition frequency �ab �=�Ea−Eb� /	, where Ea and
Eb are the energies of states �a	 and �b	, respectively�. The
parameter � �0
�
1� determines the degree of the injected
coherence. If �=0, no atomic coherence, and if �=1, the
maximal atomic coherence is injected into the micromaser.
Introducing � allows us to continuously scale our model
from incoherent to fully coherent pumping.

Various methods that take proper account of the arrival
times statistic of the pumping atoms were developed to ob-
tain the master equation for the density operator of the cavity
field �40–43�. For nonresonant pumping and Poissonian ar-
rivals they all lead to the same master equation, which is
given explicitly by Orszag �44�. In the interaction picture—
after transforming the explicitly time-dependent terms away
using

�S�t� = e−ia†a��t+�g−�ab+�/2���t�eia†a��t+�g−�ab+�/2�, �2.2�

where �S�t� ���t�� is the density operator of the field in the
Schrödinger �interaction� picture—the master equation reads
as

d�k,l�t��
dt�

= �Ak,l,−1,−1�k−1,l−1�t�� + Ak,l,−1,0�k−1,l�t��

+ Ak,l,0,−1�k,l−1�t�� − Ak,l,0,0
�1� �k,l�t���

− �Ak,l,0,0
�2� �k,l�t�� + Ak,l,0,1�k,l+1�t��

+ Ak,l,1,0�k+1,l�t�� − Ak,l,1,1�k+1,l+1�t��� . �2.3�

Here �k,l= 
k���l	 are the matrix elements of the density op-
erator of the cavity field in the number state basis, with k, l
non-negative integers, and we introduced the notation

Ak,l,−1,−1 = �Nex

2
�1 + u�SkSl + n̄th

�kl� , �2.4a�

Ak,l,−1,0 = �Nex

2
��1 − u2SkCl� , �2.4b�

Ak,l,0,−1 = �Nex

2
��1 − u2Ck

*Sl� , �2.4c�

Ak,l,0,0
�1� = �Nex

2
�1 − u��1 − Ck

*Cl� + i��k − l� + �n̄th + 1�
k + l

2
� ,

�2.4d�

Ak,l,0,0
�2� = �Nex

2
�1 + u��1 − Ck+1Cl+1

* � + n̄th
�k + 1� + �l + 1�

2
� ,

�2.4e�

Ak,l,0,1 = �Nex

2
��1 − u2Ck+1Sl+1� , �2.4f�

FIG. 1. Micromaser pumped by two-level atoms initially pre-
pared in a coherent superposition of their upper level �a	 and lower
level �b	.
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Ak,l,1,0 = �Nex

2
��1 − u2Sk+1Cl+1

* � , �2.4g�

Ak,l,1,1 = �Nex

2
�1 − u�Sk+1Sl+1 + �n̄th + 1���k + 1��l + 1�� ,

�2.4h�

where

Ck = cos��n0
2 + k� + i

n0

�n0
2 + k

sin��n0
2 + k� , �2.5a�

Sk =
�k

�n0
2 + k

sin��n0
2 + k� , �2.5b�

satisfying Ck
*Ck+Sk

2=1. The frequency we used to go into the
interaction picture, Eq. �2.2�, is the injected signal frequency
� and not the frequency of the empty cavity-field eigenmode
�0. This choice was suggested by the theory of the classical
forced oscillations, where a system is driven by an external
force and the frequency of the resultant steady oscillation
equals that of the driving. �Similar frequency locking was
observed by Carty and Sargent �45,46� using the semiclassi-
cal method to investigate the interaction of a single-mode
electric field with homogeneously broadened two-level me-
dium prepared in a coherent superposition of energy eigen-
states.�

In Eqs. �2.3�–�2.5� we used the following parameters. The
time is scaled to the cavity decay time,

t� = �t , �2.6�

where � is the cavity-damping constant. It arises due to the
coupling of the cavity field to the environment, which is
modeled by a reservoir in thermal equilibrium where the
mean number of thermal photons is n̄th, and

Nex =
r

�
=

1

�T
�2.7�

gives the number of atoms passing through the cavity during
the cavity decay time 1/�. Furthermore,

u = �aa − �bb �2.8�

is the atomic inversion parameter,

� =
�0 − �

�
�2.9�

is the scaled detuning which gives the phase shift accumu-
lated during the cavity decay time between the oscillation of
the empty cavity field and the injected signal,

 = �g�� �2.10�

determines the interaction phase of a single atom and the
cavity field,

n0 =
�0 − �ab

2�g�
�2.11�

describes the effective photon number shift due to the detun-
ing of the empty cavity frequency and the atomic transition
frequency, and �g� is the magnitude of the complex atom-field
coupling constant, g= �g�ei�g, appearing in the Jaynes-
Cummings Hamiltonian.

We want to emphasize that our model contains two pa-
rameters related to detuning. The first one n0 is the conse-
quence of the frequency mismatch between �0 and �ab, the
frequencies of the empty cavity field and the atomic transi-
tion, respectively. The result of n0 is an effective photon
number shift as it can be seen from Eq. �2.5�. The other
detuning related parameter � is due to the difference be-
tween �0 and the frequency of the injected signal �. � and n0
are independent parameters; their value can be chosen sepa-
rately to control different aspects of the model. However, the
preparation of the atomic coherence is most effective when
�ab=�. In this case n0= �� /2�g���, so there is just one inde-
pendent detuning parameter left in the model. Nevertheless,
for the sake of full generality we treat n0 and � as indepen-
dent parameters.

Before we proceed any further, we list all the parameters
used to set up the model: u, �ab, �ab, �, �, �g�, �g, �0, �, r, �,
and n̄th. However, as we can see from Eq. �2.3�, ��t�� does
not depend directly on all of these 12 parameters; some only
appear in combinations with others. Therefore, it is important
to identify the minimal set of parameters which uniquely
determine ��t��. These control parameters, as read out from
Eqs. �2.3� and �2.4�, are Nex, u, �, , n0, �, and n̄th. Neither
�ab nor �g appears in Eq. �2.3�; they only introduce a con-
stant phase shift between the initial values of �S and �, Eq.
�2.2�, and therefore they can be eliminated from our further
investigation �they can simply be set to zero�. In conclusion,
we can say that the solution to Eq. �2.3�, besides time, de-
pends on

� = �Nex,u,�,,n0,�, n̄th� , �2.12�

where � is a vector in the seven-dimensional parameter
space of the model. We can summarize this by writing
��t��=��� , t��. It is important to notice that in � all the pa-
rameters are dimensionless quantities and that we have two
parameters � and �, which are exclusive to the coherent
pumping. Furthermore, in the case when the thermal reser-
voir is at zero temperature the mean number of thermal pho-
tons in the cavity is zero, n̄th=0, and the number of the
independent parameters reduces to 6.

Before we present the steady-state solution we would like
to point out why is it so hard to solve the master equation
�2.3�. In the case of incoherent pumping ��=0�, �k,l�� , t�� is
only coupled to the entries in the same diagonal. In the case
of coherent pumping ���0�, however, �k,l�� , t�� is also
coupled to the entries in the neighboring diagonals, making it
impossible to use the solution techniques of the incoherently
pumped micromaser. For this case, then, we must develop a
method which handles the whole field density matrix simul-
taneously. Therefore, we start the next section with a brief
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discussion of the large-scale structure of the density matrix
for coherent pumping and then introduce the analytic solu-
tion technique.

III. STEADY-STATE, ANALYTIC SOLUTION

A. Field density matrix of the coherently and nonresonantly
pumped lossy micromaser

The steady state formed in a micromaser is the result of
two competing processes: the pumping and the decay due to
the cavity losses. Under general conditions in the absence of
either process a steady state cannot be reached �except, of
course, the vacuum state�. However, if in the absence of a
thermal reservoir �decay process� we restrict the interaction
phase  in such a way that the coupling between given rows
and columns of the field density matrix cancels, a steady
state will be reached. The restriction imposed on  leads to
the appearance of the trapping states which were first intro-
duced for the incoherently pumped micromaser by Filipow-
icz et al. �1� and Meystre et al. �14�. From Eq. �2.3� we see
that trapping states can be generated in the coherently and
nonresonantly pumped micromaser, as well by satisfying

Snq+1 = 0, q = 1,2,3, . . . , �3.1�

where nq is the non-negative integer representing the indices
for which the coupling between given rows and columns of
the field density matrix is terminated. In this case the field
density matrix is partitioned into noninteracting blocks, illus-
trated in Fig. 2, which evolve independently. The downward
and upward trapping states known from the theory of the
incoherently pumped micromaser �14� are located at the up-
per left and lower right corners of the partitions along the
main diagonal of the field density matrix. Equivalently, we
can also say that the trapping states create the partitions of
the field density matrix. Using the definition of Sk, Eq.
�2.5b�, the condition imposed on the interaction phase by Eq.
�3.1� is

 =
q�

�n0
2 + �nq + 1�

, q = 1,2,3, . . . . �3.2�

From here we see the role of q introduced in Eq. �3.1�; for
fixed values of  and n0, q is indexing the blocks along the
main diagonal of the field density matrix as shown in Fig. 2.
It is also clear that initial states located in different blocks
must evolve to different steady states. Therefore, correspond-
ing to each partition along the diagonal there must be at least
one steady-state solution. These steady states of the coher-
ently pumped micromaser, using resonant pumping, were
found by Slosser et al. �16,17�. They showed that under the
trapping-state condition, in the absence of cavity losses, in-
side each partition �located on the diagonal of the density
matrix� the field evolves to pure states, which they called
tangent and cotangent states. We note that in this case �
alone does not uniquely determine the steady state of the
micromaser field; different initial conditions lead to different
steady states. Therefore, to produce a selected tangent or
cotangent state of the field one must carefully prepare an
initial state which only extends into the partition where the

desired steady state is located. This also means that thermal
states cannot be used as initial states in order to generate
tangent or cotangent states of the field.

To produce a steady state which is determined uniquely
by setting � we add the decay process �a thermal reservoir�
to the previous system, while we keep the trapping-state con-
dition satisfied. Interaction with the thermal reservoir intro-
duces coupling between the entries of the same diagonal of
the field density matrix. In particular, when the thermal res-
ervoir is at zero temperature, the interaction serves as a de-
cay channel to all but the �0,0�� , t�� entry of the density
matrix. As a consequence all but the entries in the partition
that includes the nondecaying vacuum state decay over time.
Thus, in the presence of the thermal reservoir, setting � un-
ambiguously determines the steady state of the system. Re-
gardless of the initial state of the cavity field, the steady state
is always formed in the first partition along the diagonal of
the field density matrix. Next, we show how to obtain the
analytic solution describing this state of the field. Note that
the steady state is not expected to look like a pure tangent or
cotangent state seen earlier since the decay process transfers
information from the decaying partitions into the nondecay-
ing one. We will discuss the purity of the steady state by
showing examples in Sec. IV.

B. Steady-state solution

After understanding the large-scale structure of the field
density matrix of the coherently and nonresonantly pumped

FIG. 2. �Color online� The partitions formed in the field density
matrix of a coherently pumped micromaser under trapping-state
condition �3.1�. Dashed lines indicate the positions where the inter-
action between neighboring entries is severed. We indicated the
upward trapping states located at the lower right corners of the
partitions along the main diagonal �noted with the dotted line� of
the field density matrix. We also highlighted these partitions along
the main diagonal; they in the case of the coherently and resonantly
pumped lossless micromaser hold the tangent and cotangent states.
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lossy micromaser now we present an analytic method which
generates the steady-state field density matrix. This analytic
method is an extension of the one used in the case of the
incoherently pumped micromaser and easily adaptable to
supply high-speed numerical algorithms.

In the following we assume that  satisfies Eq. �3.2� and
that the thermal reservoir, to which the micromaser is
coupled, is at zero temperature. Under these conditions, as
we discussed earlier, the steady state of the field is localized
in the first partition along the diagonal of the density matrix.
This partition is bounded by downward trapping state �0	 and
upward trapping state �nq	. We note that by limiting our in-
vestigation to only those interaction phases given by Eq.
�3.2�, we do not restrict the generality of the discussion.
From Eq. �3.2� we see that even in the case when  does not
satisfy the condition we can still find, by choosing q and nq
appropriately, a T such that �−T���, which will satisfy
Eq. �3.2�. This means that we can approximate any steady
state of the coherently and nonresonantly pumped lossy mi-
cromaser with a state localized in the nondecaying partition
of the field density matrix bounded by �0,0 and �nq,nq

.
To give the steady state we now calculate the

�k,l��� �k , l=0,1 ,2 , . . . ,nq� entries using the steady-state
condition

d�k,l��,t��
dt�

= 0, k,l = 0,1,2, . . . ,nq. �3.3�

To explain how the method works let us assume, for a mo-
ment, that we know all �k,0=�0,k

* �k=0,1 ,2 , . . . ,nq� entries of
the field density matrix �the boundary values�. If so, by solv-
ing simple linear equations d�k,0 /dt�=0 �k=0,1 ,2 , . . . ,nq

−1�, one by one starting with k=0, we can express the
�k+1,1 �k=0,1 ,2 , . . . ,nq−1� entries in terms of the boundary
values. In addition, we also obtain a condition which must be
satisfied by the boundary values from d�nq,0 /dt�=0; cf. Fig.
3. By repeating the same procedure starting on the main
diagonal and moving down along the first column of the field
density matrix, we determine the second column of the den-
sity matrix �using d�k,1 /dt�=0 we calculate the �k+1,2 entries
for k=1,2 , . . . ,nq−1 as functions of the boundary values and
obtain an additional condition for the boundary values from
d�nq,1 /dt�=0�. After successive repetition of this tedious but
simple procedure for the first nq columns, we determined all
entries of the density matrix in terms of the nq+1 boundary
values �k,0 �k=0,1 ,2 , . . . ,nq� and obtained nq conditions
d�nq,l /dt�=0 �l=0,1 ,2 , . . . ,nq−1� for the boundary values.
The d�nq,nq

/dt�=0 equation, which is supposed to deliver the
last condition needed to determine the boundary values
uniquely, provides no new information because of the struc-
ture of Eq. �2.3�, since for the diagonal entries,

d�k,k��,t��
dt�

= Fk − Fk+1, k = 0,1,2, . . . ,nq, �3.4�

where

Fk = �Nex

2
�1 + u�Sk

2 + n̄thk��k−1,k−1��,t��

+ �Nex

2
��1 − u2SkCk��k−1,k��,t��

+ �Nex

2
��1 − u2Ck

*Sk��k,k−1��,t��

− �Nex

2
�1 − u�Sk

2 + �n̄th + 1�k��k,k��,t�� . �3.5�

Therefore in steady state Fk=0 for k=1,2 , . . . ,nq because
F0=0 which in turn immediately follows from the definition
of Fk. Considering that d�nq,nq

/dt�=Fnq
�n̄th=0�, it is clear

that d�nq,nq
/dt�=0 is automatically satisfied and provides no

new information. The last equation needed to determine the
boundary values uniquely, and thus the whole density matrix,
is given by the normalization condition �k=0

nq �k,k=1. By solv-
ing the nq+1 conditions we determine all nq+1 boundary
values which, in turn, we use to compute all �k,l��� entries of
the steady-state field density matrix of the coherently
pumped micromaser.

The analytic method outlined here is quite straightfor-
ward. It involves three steps: First, the generation of each
entry of the field density matrix in terms of the boundary
values, along with the nq+1 conditions which must be satis-
fied by the boundary values; second, solving the nq+1 con-
ditions to obtain the boundary values; third, substituting the
boundary values back to calculate the entries of the steady-
state field density matrix. The first and third steps are very

FIG. 3. In the figure �nq=4�, we show how to generate each
entry in the first column of the field density matrix as a function of
the boundary values, represented by the open circles. Starting on the
main diagonal and moving down along the zeroth column, after
substituting previously generated entries of the field density matrix
into the simple linear equation d�k,0 /dt�=0 and solving it for the
only unknown �k+1,1, we determine this as a function of the bound-
ary values. In addition, after substituting the previously determined
entries of the field density matrix into d�nq,0 /dt�=0 we also gener-
ate a condition which must be satisfied by the boundary values.
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simple; they require only small amount of computational re-
sources even in the case of using symbolic computations.
The second step is the computationally most demanding one,
but still only requires to solve nq+1 linear equations to pro-
vide each entry of the �nq+1�� �nq+1� field density matrix.
�The general method is demonstrated on an example in the
Appendix. There, we work out the general analytic solution
for the case where the coherently pumped micromaser oper-
ates under the trapping-state condition where nq=2.� The
simplification is achieved by exploiting the properties of the
couplings in the field density matrix and allows us to quickly
determine the analytic steady-state field density matrix of the
coherently pumped micromaser even for states with nq�1.
This method is clearly an extension of the one used in the
case of the incoherently pumped micromaser: here we chose
all boundary values, not only �0,0, and generate the condi-
tions to determine them all.

Finally, we point out an important feature of the steady-
state solution. Namely, in the case of resonant pumping,
when �ab=�=�0, in the steady state all �k,l��� entries of the
field density matrix are real. This can be easily seen, since, in
this case, all the linear equations, used to obtain the steady-
state values, contain only real coefficients. This feature of the
steady state of the field density matrix will have an important
implication on the phase of the steady-state field �47�.

IV. PHOTON DISTRIBUTION AND THE PURITY
OF THE STEADY STATE OF THE COHERENTLY

PUMPED MICROMASER

In this section we present some of the results, Figs. 4–11,
obtained using the analytic method introduced in Sec. III for
investigating the photon distribution of a coherently pumped
micromaser under the trapping-state condition where nq=28.
Alongside the distributions for the coherently pumped micro-
maser we also present the results for the incoherently
pumped micromaser ��=0�. To highlight the differences be-
tween the two pumping regimes we display the purity of
their steady states. The purity of the steady state is charac-
terized by Tr��2� and by the normalized entropy

S/Smax =
− kBTr�� ln ��
kB ln�nq + 1�

, �4.1�

where kB is Boltzmann’s constant and Smax=kB ln�nq+1� is
the maximum possible entropy of any state in the block to
which the steady state is confined. Each result is represented
by two graphs. The first, on top, gives the density plot of the
micromaser’s photon distribution as a function of the atomic
inversion u. �In the density plot the black dots indicate the
maximum of the photon distribution for given values of u.�
The second graph, on the bottom, shows the average photon
number �
n	 in black�, the root-mean-square deviation of the
photon number ��n in gray�, the normalized entropy �S /Smax
in black�, and Tr ��2� �in gray� of the steady states. The
vertical dashed lines across the graphs indicate the maxima
of the root-mean-square deviation, and the solid horizontal
gray line denotes the root-mean-square deviation corre-
sponding to the flat distribution. In each graph we have also

given all the parameters which were used to generate the
results.

In Figs. 4 and 5 we compare the analytic photon statistic
of the coherently and incoherently pumped micromaser as a
function of the atomic inversion parameter for the smallest
possible interaction phase value �q=1 in Eq. �3.2��. In the
case of coherent pumping, Fig. 4, we see that the average
photon number gradually increases as u increases. From the

FIG. 4. Results for the coherently pumped micromaser when the
interaction phase value  is the smallest �q=1 in Eq. �3.2��.
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density plot and the root-mean-square deviation of the pho-
ton number, which is almost a constant, we conclude that the
gradual increase of the average photon number is due to the
gradual shift of the field state toward larger photon numbers;
no sudden jump occurs. Analyzing the purity of the steady
state also reveals that the steady state maintains its high pu-
rity for even large values of u; the purity changes only as u
approaches 1, where the injected coherence disappears. The

incoherently pumped micromaser, Fig. 5, shows a truly dif-
ferent behavior, as u increases the photon number goes
through a threshold around u=0. From the density plot and
the root-mean-square deviation of the photon number we
conclude that below the threshold increasing atomic inver-

FIG. 5. Results for the incoherently pumped micromaser when
the interaction phase value  is the smallest �q=1 in Eq. �3.2��.

FIG. 6. Results for the nonresonantly and coherently pumped
micromaser. We used the same parameters as in Fig. 4 except for
the detuning. We assumed that the preparation of the atomic coher-
ence is the most effective and therefore n0= �� /2�g���, with
� /2�g�= 5

8 �10−4.
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sion does not shift the state of the field toward larger photon
numbers, but decreases significantly the purity of the state.
Around the threshold a sudden jump in the average photon
number occurs which is accompanied by an increase in the
root-mean-square deviation of the photon number, indicating

a “wide spread” steady state at the threshold, which is also
visible on the density plot. Note that the root-mean-square
deviation of the photon number and the normalized entropy
of the steady state both reach their maxima around the same
point near the threshold. Above the threshold, by increasing
u, we gradually shift the field state toward larger photon
numbers as well as decrease the root-mean-square deviation
of the photon number and increase the purity of the steady

FIG. 7. Results for the nonresonantly and incoherently pumped
micromaser. We used the same parameters as in Fig. 4 except for
the detuning. We assumed that the preparation of the atomic coher-
ence is the most effective and therefore n0= �� /2�g���, with
� /2�g�= 5

8 �10−4.

FIG. 8. Results for the coherently pumped micromaser when q
=3 in Eq. �3.2�.
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state. In conclusion of this example we can say that by in-
jecting coherence we made the pumping more efficient; even
in the case of no inversion �u
0� the field evolved toward a
steady state with 
n	�0. Also the injected coherence helped
the system to maintain a high-purity steady state over a wide
interval of the atomic inversion parameter.

Next we show how the previous result is affected by de-
tuning. In Figs. 6 and 7 we compare the analytic photon

statistic of the nonresonantly and coherently and the non-
resonantly and incoherently pumped micromasers. Detuning
in the model is controlled by two parameters � and n0. As
per our discussion earlier, these are independent parameters.
However, the preparation of the atomic coherence is most
effective when n0= �� /2�g���, which we assumed here. In
Figs. 6 and 7 we show an example where �=10; assuming a
cavity decay time of 0.2 s translates into a very small �com-

FIG. 9. Results for the incoherently pumped micromaser when
q=3 in Eq. �3.2�.

FIG. 10. Results for the coherently pumped micromaser when
the interaction phase value  is large �q=49 in Eq. �3.2��.
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pared to the operational frequency of the micromaser�,
50 Hz, difference between the frequency of the empty
cavity-field eigenmode and the frequency of the injected sig-
nal. The presence of such a small detuning does not notice-
ably effect the steady state of the incoherently pumped
micromaser—this we can see by comparing Figs. 5 and
7—but changes significantly the steady state of the coher-
ently pumped micromaser. Examining Figs. 4 and 6 side by

side we conclude that even the presence of a small detuning
decreases the effect of the injected coherence significantly;
this makes any experimental realizations truly difficult.

Finally, we show what happens to the analytic photon
statistic of the coherently and incoherently pumped micro-
masers as we increase the interaction phase value by increas-
ing q in Eq. �3.2�. In Figs. 8 and 9 we show the example
where q=3. Both in the case of coherent and incoherent
pumping as u increases the field goes through q−1=2 tran-
sitions. Around the transition points in both cases the root-
mean-square deviation of the photon number and the normal-
ized entropy of the state increases and between them
decreases, indicating where the transitions take place. Even
though the basic structures of the transitions look similar, a
closer examination of the root-mean-square deviation of the
photon number and the normalized entropy of the state re-
veals that the coherently pumped micromaser “jumps” much
quicker between different states �the maxima of the root-
mean-square deviation are much narrower� and maintains
significantly higher purity between the jumps. Exploiting this
feature of the coherently pumped micromaser one can design
a “quantum switch:” the u-parameter-induced sudden change
between two distinctively different states of the field. In Figs.
10 and 11 we show the photon statistic of a “quantum
switch” in the example q=49. In this case the field goes
through q−1=48 transitions as u increases. These transitions
in the case of the incoherently pumped micromaser occur
over a wide range of u, changing the state of the field gradu-
ally. However, as expected, in the case of the coherently
pumped micromaser the transitions take place over a much
narrower interval of u which makes the field switch suddenly
between two distinctively different states. Note that the root-
mean-square deviation of the photon number at the transition
point increases above the root-mean-square deviation of the
flat distribution while the normalized entropy is less than one
indicating that the state of the field is composed of number
states with high and low photon numbers.

V. SUMMARY

We have presented a comprehensive model of the single-
atom micromaser which includes both coherent and incoher-
ent, as well as resonant and off-resonant, pumping. We in-
vestigated the large-scale structure of the field density matrix
of the coherently pumped micromaser under general condi-
tions; we showed the connections between the trapping
states, the tangent and cotangent states, and the steady state
of the coherently pumped lossy micromaser formed in the
nondecaying partition of the field density matrix. We pre-
sented an analytic method to obtain the steady state of the
micromaser field, which we demonstrated with an example,
and presented results provided by the method.

In upcoming articles, we will give a comprehensive ana-
lytic study of the phase of the micromaser, the semiclassical
treatment of the coherently pumped micromaser, and finally
the time-dependent analytic solution of the master equation
�2.3�, which we use to generate the spectrum and g�2����
without applying perturbation theory.

FIG. 11. Results for the incoherently pumped micromaser when
the interaction phase value  is large �q=49 in Eq. �3.2��.
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APPENDIX: STEADY STATE UNDER
THE TRAPPING-STATE CONDITION

WHERE nq=2

This simple, but important example illustrates the method.
According to our discussion, we assume that the thermal
reservoir to which the micromaser is coupled to is at zero
temperature �n̄th=0� and that  is such that the micromaser
operates under the trapping-state condition where nq=2. This
means the maximum number of photons the cavity can hold
now is 2.

To give the steady-state solution we find all elements of
the 3�3 partition of the field density matrix, bounded by
�0,0 and �2,2, where the steady state is localized. The existing
methods call for constructing a complex vector with �nq

+1�2=9 entries from the density matrix and solving the ma-
trix equation obtained from d� /dt�=0 for the components.
This is a brute force method which does not take into ac-
count the special coupling of the elements of the field density
matrix. Therefore, the method fails to generate an analytic
solution even in the case of steady states localized in small
nondecaying partitions. Contrary to that, the method pro-
posed in Sec. III exploits the symmetries of the density ma-
trix, reducing the number of equations needed to determine it
from �nq+1�2 to the minimum which is nq+1. This reduction
allows us to find not only the numerical but also the analytic
solutions representing the steady states localized even in
large nondecaying partitions. �Examples are given in Sec.
IV.�

According to the first step described in Sec. III, we gen-
erate each entry of the field density matrix in terms of the
boundary values and specify the conditions which must be
satisfied by the boundary values. Using �0,0 /dt�=0,
�1,0 /dt�=0, and �1,1 /dt�=0 we find that

�1,1 =
A0,0,0,0

�2�

A0,0,1,1
�0,0 +

A0,0,1,0

A0,0,1,1
�1,0 +

A0,0,0,1

A0,0,1,1
�0,1

ª B1,1,0,0�0,0 + B1,1,1,0�1,0 + B1,1,0,1�0,1, �A1a�

�2,1 = �A1,0,0,1

A1,0,1,1
B1,1,0,0 −

A1,0,−1,0

A1,0,1,1
��0,0

+ �A1,0,0,1

A1,0,1,1
B1,1,1,0 +

A1,0,0,0

A1,0,1,1
��1,0

+
A1,0,0,1

A1,0,1,1
B1,1,0,1�0,1 +

A1,0,1,0

A1,0,1,1
�2,0

ª B2,1,0,0�0,0 + B2,1,1,0�1,0 + B2,1,0,1�0,1 + B2,1,2,0�2,0,

�A1b�

�2,2 = �A1,1,0,0
�2�

A1,1,1,1
B1,1,0,0 +

A1,1,0,1

A1,1,1,1
B2,1,0,0

* +
A1,1,1,0

A1,1,1,1
B2,1,0,0��0,0

+ �A1,1,0,0
�2�

A1,1,1,1
B1,1,1,0 +

A1,1,0,1

A1,1,1,1
B2,1,0,1

* +
A1,1,1,0

A1,1,1,1
B2,1,1,0��1,0

+ �A1,1,0,0
�2�

A1,1,1,1
B1,1,0,1 +

A1,1,0,1

A1,1,1,1
B2,1,1,0

* +
A1,1,1,0

A1,1,1,1
B2,1,0,1��0,1

+
A1,1,1,0

A1,1,1,1
B2,1,2,0�2,0 +

A1,1,0,1

A1,1,1,1
B2,1,2,0

* �0,2

ª B2,2,0,0�0,0 + B2,2,1,0�1,0 + B2,2,0,1�0,1 + B2,2,2,0�2,0

+ B2,2,0,2�0,2. �A1c�

Furthermore, using �2,0 /dt�=0 and �2,1 /dt�=0 along with
the normalization condition �0,0+�1,1+�2,2=1 we find the
equations which must be satisfied by the boundary values:

0 = A2,0,0,1B2,1,0,0�0,0 + �A2,0,0,1B2,1,1,0 − A2,0,−1,0��1,0

+ A2,0,0,1B2,1,0,1�0,1 + �A2,0,0,1B2,1,2,0 + A2,0,0,0��2,0

ª D1,0,0�0,0 + D1,1,0�1,0 + D1,0,1�0,1 + D1,2,0�2,0, �A2a�

0 = �A2,1,−1,0B1,1,0,0 − A2,1,0,0B2,1,0,0 − A2,1,0,1B2,2,0,0��0,0

+ �A2,1,−1,−1 + A2,1,−1,0B1,1,1,0 − A2,1,0,0B2,1,1,0

− A2,1,0,1B2,2,1,0��1,0 + �A2,1,−1,0B1,1,0,1 − A2,1,0,0B2,1,0,1

− A2,1,0,1B2,2,0,1��0,1 + �A2,1,0,−1 − A2,1,0,0B2,1,2,0

− A2,1,0,1B2,2,2,0��2,0 − �A2,1,0,1B2,2,0,2��0,2

ª D2,0,0�0,0 + D2,1,0�1,0 + D2,0,1�0,1 + D2,2,0�2,0 + D2,0,2�0,2,

�A2b�

1 = �1 + B1,1,0,0 + B2,2,0,0��0,0 + �B1,1,1,0 + B2,2,1,0��1,0

+ �B1,1,0,1 + B2,2,0,1��0,1 + B2,2,2,0�2,0 + B2,2,0,2�0,2

ª D3,0,0�0,0 + D3,1,0�1,0 + D3,0,1�0,1 + D3,2,0�2,0 + D3,0,2�0,2.

�A2c�

Next, we solve the “boundary conditions,” Eqs. �A2�, for the
boundary values and obtain

�0,0 =

det�
D1,1,0 D1,0,1 D1,2,0 0

D1,0,1
* D1,1,0

* 0 D1,2,0
*

D2,1,0 D2,0,1 D2,2,0 D2,0,2

D2,0,1
* D2,1,0

* D2,0,2
* D2,2,0

*


D
, �A3�
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�1,0 =

− det�
D1,0,0 D1,0,1 D1,2,0 0

D1,0,0
* D1,1,0

* 0 D1,2,0
*

D2,0,0 D2,0,1 D2,2,0 D2,0,2

D2,0,0
* D2,1,0

* D2,0,2
* D2,2,0

*


D
, �A4�

and

�2,0 =

− det�
D1,0,0 D1,1,0 D1,0,1 0

D1,0,0
* D1,0,1

* D1,1,0
* D1,2,0

*

D2,0,0 D2,1,0 D2,0,1 D2,0,2

D2,0,0
* D2,0,1

* D2,1,0
* D2,2,0

*


D
, �A5�

where

D = det�
D1,0,0 D1,1,0 D1,0,1 D1,2,0 0

D1,0,0
* D1,0,1

* D1,1,0
* 0 D1,2,0

*

D2,0,0 D2,1,0 D2,0,1 D2,2,0 D2,0,2

D2,0,0
* D2,0,1

* D2,1,0
* D2,0,2

* D2,2,0
*

D3,0,0 D3,1,0 D3,0,1 D3,2,0 D3,0,2

 . �A6�

Finally, after substituting the proper boundary values, Eqs.
�A3�–�A5�, into Eq. �A1� we find the analytical solution for
the steady state of the coherently and nonresonantly pumped
micromaser’s field density matrix. Note that this example
also demonstrates that the method can be easily transformed
into an analytic algorithm, which, together with symbolic
computational routines, can be used to find the steady-state
solution even if nq is large.
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