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We consider the quantum state of light produced via direct parametric decay of pump photons into photon
triples in a medium with cubic nonlinearity. For this state generated in the near-collinear frequency-degenerate
regime, the third- and second-order Glauber’s correlation functions are calculated and the intensity distribution
over frequency and wave vector is found. It is shown that the number of photons generated into a single mode
via the three-photon down-conversion is proportional to the width of the frequency-angular intensity distribu-
tion for the corresponding two-photon phase matching �spontaneous parametric down-conversion�. The inten-
sity of three-photon parametric down-conversion is shown to have an extremely broad frequency spectrum,
even for a fixed angle of scattering.
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I. INTRODUCTION

The generation of nonclassical states of light is one of the
main directions in quantum optics. At the same time, the
number of such states available at present is very limited.
Within the class of photon-number �Fock� states, only two
types of light can be generated in practice: one-photon light
and two-photon light. Several attempts have been made to
produce higher-order Fock states via the process providing
two-photon light: spontaneous parametric down-conversion
�SPDC� �1�. Light generated via SPDC contains only even
numbers of photons �2�: mostly, pairs of photons, but also
four-photon groups, six-photon groups, etc. Due to the exis-
tence of photon quadruples in this radiation, it was possible
to use it for the production of three-photon polarization
Greenberger-Horne-Zeilinger �GHZ� states �3�. However,
while the polarization part of the state prepared from SPDC
radiation has the required GHZ form, the photon statistics is
still typical for two-photon light. Indeed, from the
asymptotic behavior of the four-photon Glauber’s correlation
function, one can see �4� that the number of photons as well
as photon pairs in SPDC radiation scales linearly in the
pump intensity while the number of photon quadruples
scales quadratically. For a four-photon Fock state generated
in superposition with vacuum, the number of photon qua-
druples should be linear in the photon number. In the case of
pulsed SPDC, there is only a twofold increase in the normal-
ized four-photon correlation function, and hence, the state
remains qualitatively the same as for cw SPDC �5�.

Direct generation of the Fock states of order higher than 2
is quite challenging. For instance, if one considers the gen-
eration of N-photon states via N-photon parametric decay of
pump photons in a nonlinear crystal, then the efficiency is
proportional to the squared Nth-order nonlinear susceptibil-
ity. Usually, the N+first-order nonlinear susceptibility is
smaller than the Nth-order one by a value on the order of the
interatomic field �about five orders of magnitude in esu

units�, so even the three-photon parametric down-conversion
is very difficult to observe.

A possible way to generate three-photon entangled states
was discussed in Ref. �6�, where it was suggested to produce
the third photon by up-converting two idler photons of an
entangled pair. Unfortunately, no experimental evidence for
this effect has been obtained until now. Probably, this is be-
cause of the small efficiency of this process, which is deter-
mined by the sixth power of the quadratic susceptibility and
the squared intensity of the pump.

In this paper we consider in detail three-photon paramet-
ric down-conversion. This process has been much considered
in the literature in connection with so-called generalized
squeezing �see, for instance, �7–9��—i.e., squeezing originat-
ing from not a quadratic but a higher-order interaction
Hamiltonian. However, no third-order squeezing has been
observed in experiment so far, again because of the ex-
tremely small value of the third-order optical nonlinearity. As
a more feasible scheme for observing three-photon down-
conversion and the corresponding squeezing, an intracavity
version was proposed in �10�. The research on the squeezing
properties of three-photon down-conversion was naturally
focused on the continuous variables, such as quadratures and
their noise, as well as various quasiprobability functions like
the Wigner function or the Glauber-Sudarshan function.

In the present paper, we focus not on the continuous-
variable properties of the three-photon parametric down-
conversion but on its photon statistics. On the one hand, this
means that the regime under study will be a spontaneous one,
in which the generated fields are weak while the pump is
strong, nondepleted, and described classically. This regime
should result in the generation of three-photon entangled
states rather than three-photon squeezed states. On the other
hand, the values of interest here will be the photon-number
moments of various order: intensity and the second-order
and third-order Glauber’s correlation functions.

The paper is organized as follows. In Sec. II, we discuss
the main feature of the phase matching conditions for the
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three-photon parametric down-conversion �PDC�: namely,
the fact that the number of constraints is less than the number
of “free parameters.” This leads to the main idea of the pa-
per: namely, that the efficiency of three-photon PDC is de-
termined not by the brightness of zero-point vacuum fluctua-
tions, as the efficiency of the two-photon PDC, but by the
integral of this brightness over all modes involved. In the
next sections, the three-photon quantum state is calculated
�Sec. III� and the correlation functions and intensity spec-
trum for this state are found �Sec. IV�. Finally, in Sec. V, we
discuss the applicability of the collinear frequency-
degenerate approximation used in the previous sections and
extend the approach to a more general case.

II. THREE-PHOTON PARAMETRIC DOWN-CONVERSION
AND THE ZERO-POINT VACUUM FLUCTUATIONS

The most important feature distinguishing the three-
photon PDC from the well-known two-photon PDC “SPDC”
is a more ‘‘loose’’ phase matching. Indeed, for SPDC, there
are two participating modes �two photons�, each described
by three free parameters, and two constraints, one of them of
scalar form �frequency phase matching condition� and the
other of vector form �wave vector phase matching condi-
tion�. For the three-photon PDC, there is one more mode
involved but the number of constraints is the same. As a
result, if one is interested in the efficiency of the three-
photon PDC, in which one of the three photons is scattered
into a given mode k, � �Fig. 1�, there are still infinitely many
ways to satisfy the phase matching conditions.

This can be demonstrated by introducing the frequency

�̃��p−� and the wave vector k̃�kp−k, where �p and kp
are the pump frequency and wave vector for the three-photon
PDC. Then, the possibility of having one of the photons scat-
tered into a mode k, � corresponds to all possible two-
photon PDC processes that can be realized with the pump

having the wave vector k̃ and the frequency �̃ �shown in Fig.
1�. In this connection, it is useful to employ the concept of
zero-point vacuum fluctuations, which is very helpful in in-
terpreting the spectra and calculating the efficiency of SPDC
�1�. In the case of SPDC, when one looks for the number of
photons �say, signal photons� scattered into a given mode,
the conjugated idler mode is found in a unique way. Hence,
the number of signal photons is proportional to the number
of photons in the idler mode, the so-called “brightness of the
vacuum” �1�. One can say that the intensity of two-photon

PDC at some frequency and wave vector is “seeded” by
zero-point vacuum fluctuations at the conjugate frequency
and wave vector.

The same reasoning, in the case of the three-photon PDC,
leads us to the conclusion that the number of photons scat-
tered into the mode k, � via a three-photon PDC is propor-
tional to the product of the “brightnesses of the vacuum” for
the two conjugate modes integrated over all possible fre-
quencies and wave vectors for one of them. In other words,
the intensity of three-photon PDC at a certain frequency �
and wave vector k is “seeded” by zero-point vacuum fluc-
tuations at a continuum of frequencies and wave vectors,
corresponding to all possible ways for two-photon PDC with

pump frequency �̃ and wave vector k̃. Hence, unlike in the
case of SPDC, where the spectral width of phase matching
matters only for the integral intensity of the scattered pho-
tons, in the case of the three-photon PDC it also matters for
the “differential” intensity. This means that by choosing a
medium with broad frequency-angular spectrum �for the cor-
responding two-photon process� one can considerably en-
hance the efficiency of the three-photon PDC.

These rather qualitative considerations will be further de-
veloped in the next section.

III. THREE-PHOTON STATE VECTOR

Consider the three-photon PDC in a medium with cubic
susceptibility ��3�. In our consideration we will follow the
approach used in the calculation of the intensity and correla-
tion functions for two-photon light �1,11,12�. In the dipole
approximation, the interaction Hamiltonian has the form

H =� d3r��3��r�E4�r,t� , �1�

where E is the electric field and the integral runs over the
volume of the crystal where PDC takes place. One of the
field modes is occupied by the pump, which is cw laser ra-
diation and hence well described by the classical analytic
signal E0

�+��r , t�=E0 exp�−i�pt+ ikp ·r�. In the other modes,
there is vacuum initially, and hence, the field in these modes
requires a quantum description. The corresponding field op-
erators can be expressed in terms of photon creation and
annihilation operators:

E�−��r,t� = −
i

v
� d3kcka†�k�exp�i��k�t − ik · r� , �2�

where

ck ���v��k�u���
�2��2cn���

, �3�

u��� is the group velocity, v the quantization volume in k
space, c the speed of light, and n��� the refractive index.

Then the Hamiltonian can be written in the form

H =
i

v3E0� d3r��3��r� � � � d3kd3k�d3k�

�ckck�ck�a
†�k�a†�k��a†�k��exp�i�k · r − i��t� + H.c.,

FIG. 1. Phase matching for the three-photon PDC: due to the
“loose” phase matching condition, the process “visualizes” zero-
point vacuum fluctuations integrated over all possible frequencies
and wave vectors for the corresponding two-photon process.
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�k � k��� + k����� + k����� − kp,

�� � � + �� + �� − �p, �4�

where a†�k�, a†�k��, and a†�k�� are photon creation operators
in three field modes with wave vectors k, k�, and k� and
frequencies �, ��, and ��, respectively. It is supposed that
the nonlinear medium is transparent and its dispersion is
given by the dependence k���.

Suppose that the three-photon PDC occurs in a crystal
with length L along the z direction, the pump is a Gaussian
beam with diameter a, and its wave vector kp is directed
along z. Let us denote by k, k�, and k� the absolute values of
the wave vectors, by kz, kz�, and kz� their longitudinal compo-
nents, and by q, q�, and q� their transverse components.
From the dispersion relations, we have k=n���� /c and simi-
larly for k� and k�. In the expressions for ck, the group ve-
locity can be assumed approximately equal to the phase ve-
locity. The three waves corresponding to the generated
photons are supposed to be “ordinary,” while the pump wave
“extraordinary” �one can call it “type-I” or “e-ooo” phase
matching, similarly to the two-photon case�. The distribution
of ��3� over the crystal is assumed to be uniform; hence the
integral over spatial coordinates will be bounded by ±L /2 in
the longitudinal direction and by the factor e−�x2+y2�/a2

in the
transverse directions. It is convenient to denote the vector
�x ;y	 as �.

The state vector calculated to the first order of the pertur-
bation theory will contain an integral of H over time; this
leads to the appearance of the delta function �����. This
delta function is usually interpreted as the frequency phase
matching, or stationarity, condition �+��+��−�p=0.

Following �12�, we will introduce the transverse mis-
match �q�q+q�+q� and the longitudinal mismatch �kz
�kp−kz−kz�−kz�. Let the process be near collinear—i.e., q
	k ,q�	k� ,q�	k�. Then the generated state can be written
as



� = 
vac� +
�1/2��3�E0

�2��2c3v3/2 � � � d2qd2q�d2q�� � d�d��

� ������p − � − ���Fz��kz�F���q�

� a†��,q�a†���,q��a†��p − � − ��,q��
vac� , �5�

where

Fz��kz� � �
−L/2

L/2

dzei�kzz,

F���q� � � d2�ei�q�e−�2/a2
. �6�

Now, let us also accept the approximation of near-
degenerate phase matching, with the central frequencies of
the three photons denoted as �0��p /3. Then, after substi-
tuting ���0+� and ����0+�� and expanding the longi-
tudinal wave vector components to the second order in �
and �� and in q, q�, and q�, we obtain the longitudinal mis-
match in the form

�kz =
1

2k0
�q2 + q�2 + q�2� −

1

2s
��2 + ��2 + �� + ���2� ,

�7�

where k0�k��0� and s is inversely proportional to the group
velocity dispersion of the nonlinear medium: s
��d2k /d�2�−1.

With these assumptions, the expression for the state vec-
tor of the generated light �whose three-photon part can be
called the “triphoton” �6�� becomes



� = 
vac� +
�1/2��3�E0�0

3/2a2L

4�c3v3/2

�� � � d2qd2q�d2q�� � d�d��e−a2�q + q� + q��2/4

� sinc
L

4
�q2 + q�2 + q�2

k0
−

�2 + ��2 + �� + ���2

s


� a†��0 + �,q�a†��0 + ��,q��a†��0 − � − ��,q��

�
vac� , �8�

where sinc�x��sin�x� /x.
Further, one can note that the integration in q� can be

eliminated in two cases: when the exponential factor in the
integrand is much narrower in q� than the “sinc” function
�the case of a short crystal� and the opposite case, when the
crystal is very long. For typical parameters L�5 cm and a
=0.1 cm, the first situation is the case, and hence the integral
can be replaced by 1/�a2, with q� fixed at −�q+q��.

As a result, the final expression for the state vector is



� = 
vac� +
�1/2��3�E0�0

3/2L

�2��2c3v3/2 � � d2qd2q�� � d�d��

� sinc
L

4
�q2 + q�2 + �q + q��2

k0

−
�2 + ��2 + �� + ���2

s


� a†��0 + �,q�a†��0 + ��,q��a†
„�0 − � − ��,

− �q + q��…
vac� . �9�

IV. CALCULATION OF CORRELATION FUNCTIONS
AND INTENSITY DISTRIBUTION

Now, having obtained the expression �9� for the three-
photon state, let us calculate some quantities measurable in
experiment. These will be the third-order intensity correla-
tion function, the second-order intensity correlation function,
and the intensity distribution.

A. Third-order correlation function

In the calculation of the third-order correlation function, it
is reasonable to consider the case where triple coincidences
are registered for the radiation emitted collinearly to the
pump beam �Fig. 2�a��, within the whole spectral band al-
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lowed by the phase matching �this spectral band will be cal-
culated in the subsection devoted to the intensity distribu-
tion�. Then, the registration scheme should include an
aperture for the transverse mode selection, an interference
filter for selecting the spectral band corresponding to phase
matching, a 33%-67% beam splitter, a 50%-50% beam split-
ter, and three detectors connected to a triple-coincidence
scheme. Suppose, as the first step, that the system has an
infinitely high time resolution, so that one can measure the
probability that the first detector clicks at a time t, the second
detector at a time t+�, and the third detector at a time t+ �̃.
This probability is defined by the third-order Glauber’s cor-
relation function �13�

G�3��t,�, �̃� = 

�3��
2, �10�


�3�� � E1
�+��t�E2

�+��t + ��E3
�+��t + �̃�

� , �11�

where E1
�+�, E2

�+�, and E3
�+� are positive-frequency field opera-

tors on the detectors, and in the expressions for these fields
�similar to Eq. �2��, the photon annihilation operators are
supposed to relate to the modes with zero transverse wave
vector—for instance,

E1
�+� �� d�1a��1,q1 = 0�exp�i�1t� . �12�

Calculation of the vector 
�3�� from Eq. �11� leads to the
disappearance of the integrals over the transverse wave vec-
tors in expression �9� for 
. When doing the integrals in
� ,��, it is convenient to pass to the new frequency variables

�± �
� ± ��

�2
. �13�

Then, after rather bulky but simple algebra, the result is

G�3���, �̃� � ���3��2Ips2F2�� 2s

3L
�� + �̃�,�2s

L
�� − �̃� ,

�14�

where Ip is the pump intensity and the function F is defined
as

F�x,x�� � ��
0

�

d�J0����x2 + x�2��sinc��� , �15�

J0 being the zeroth-order Bessel function. Note that the ar-
gument t of the correlation function disappears due to the
stationarity of the field.

The third-order correlation function G�3� or the number of
triple coincidences registered by a setup shown in Fig. 2�a�,
as we see from Eqs. �14� and �15�, is symmetric with respect
to its time arguments or to the delays between the “clicks” of
any two detectors. �One can show that if we introduce the
third time delay ����− �̃ in the coordinates � and �̃, G�3� will
have the same shape.� The typical shape of G�3��� , �̃� is
shown in Fig. 3�a�.

The width of the correlation function G�3��� , �̃� in both
coordinates is �3L /8s. As one could expect, it gets broader
in a long crystal with large GVD. For typical values of L on
the order of several centimeters and s on the order of
1027 cm/s2, the width of the correlation function is on the
order of tens of femtoseconds, as in the case of SPDC �14�.

Since in a real experimental setup time resolution is al-
ways worse than that, it is reasonable to calculate the total
counting rate of triple coincidences by integrating G�3� over
its both arguments. The resulting value, whose physical
meaning is the number of coincidences registered with a
low-resolution coincidence circuit, is

R�3� �� � d�d�̃G�3���, �̃� � ���3��2IpsL . �16�

Hence, the total number of triple coincidences scales as
the product of the pump power, the squared cubic suscepti-

FIG. 2. Setups for the measurement of the third-order Glauber’s
correlation function �a� and the second-order Glauber’s correlation
function �b�. For the three-photon radiation generated in the crystal
C, collinear direction is selected by aperture A. The interference
filter IF serves for parasite light suppression. BS are beam splitters
and D1, D2, and D3 photon-counting detectors.

FIG. 3. �Color online� A typical shape of the third-order corre-
lation function for the three-photon light.
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bility, the length of the nonlinear medium, and the inverse
group velocity dispersion.

B. Second-order correlation function

Our calculation of the second-order correlation function
will also relate to the case where the registered radiation is
emitted collinearly to the pump beam �Fig. 2�b��. This time,
the setup includes only two detectors, a 50% beam splitter
and a pair coincidence circuit. The correlation function is
calculated as

G�2��t,�� = 

�2��
2, �17�

where


�2�� � E1
�+��t�E2

�+��t + ��

� �18�

and E1
�+� and E2

�+� are positive-frequency field operators on
the detectors. Like in the previous subsection, the corre-
sponding photon annihilation operators are supposed to re-
late to the modes with zero transverse wave vector. Because
of this, the integrals in the transverse wave vectors vanish.

Passing, as in the previous case, to the sum and difference
frequencies �13�, we obtain the second-order correlation
function in the form

G�2���� � ���3��2Ips3/2L1/2� dxF2��2s

L
�,x , �19�

with the function F defined in Eq. �15�.
From Eqs. �19� and �14� one can see that the shape of the

second-order correlation function for three-photon light is
given by the integral of the third-order correlation function
with respect to one of its two time arguments. The typical
width of the second-order correlation function is �L /2s. In-
tegrating the correlation function over the time delay �, we
obtain the counting rate of pair coincidences,

R�2� �� � d�G�2���� � ���3��2IpsL . �20�

The numbers of triple and pair coincidences, which differ
by only a numerical factor, both scale as the product of the
pump intensity, the crystal length, the squared cubic suscep-
tibility, and the inverse group velocity dispersion. This
agrees with the requirement that the numbers of “photon
triples” and “photon pairs” in three-photon light should both
scale as the number of photons.

C. Intensity distribution

The number of photons emitted in three-photon PDC will
be the subject of the present section. In this case, in contrast
to the way we calculated the correlation functions, we will
study not only the number of photons scattered in the direc-
tion exactly collinear to the pump and into the whole spectral
band. Instead, we will consider the frequency–wave-vector
spectrum of the scattered photons, or intensity, as a function
of the transverse wave vector q1 and the detuning �1��1
−�0 of the observation frequency �1 from degenerate phase
matching. This intensity distribution can be measured by a

setup with frequency- and angular-selective detection �like
the setups used for obtaining frequency-angular spectra of
SPDC; see �15,16�� and can be calculated as

I��1,q1� = 

�
2, �21�

where


� � E�+��t,��

� ,

E�+��t,�� = ick1
a�k1�exp�i�1t − iq1�� ,

the wave vector k1 having the transverse component q1 and
length k��1�.

After substituting Eq. �9� for 

�, the calculation runs as in
the previous cases. Due to the photon annihilation operator
a�k1�, the integrals in �� and q� in the expression for 
�
vanish. Then, after taking the squared norm of 
�, we obtain
the intensity distribution in the form

I��1,q1� � ���3��2IpL2� � d�d2q

� sinc2L

4
�q2 + q1

2 + �q + q1�2

k0

−
�2 + �1

2 + �� + �1�2

s
� . �22�

In the maximum, which corresponds to exactly collinear
frequency-degenerate phase matching, the intensity is

I�0,0� � ���3��2IpL2� � d�d2q � sinc2L

2
�q2

k0
−

�2

s
� .

�23�

It is interesting to calculate the maximal number of pho-
tons per mode generated via three-photon PDC. Taking into
account all factors in the expression for the intensity and
passing to the number of photons per mode, we find that the
expression is similar to the well-known Klyshko result for
SPDC �see, for instance, �1��,

N =
�2��2���2��2E0

2�0
2L2

c2 , �24�

but with the squared quadratic susceptibility ���2��2 replaced
by the product of the squared cubic susceptibility and the
squared effective “vacuum field:”

���2��2 → ���3��2Evac
2 . �25�

The square of the “effective vacuum field” can be found
from the expression for the vacuum brightness �1�,

Evac
2 =

2���0

c
�2q�� , �26�

and �2q���S can be defined as the area in q ,� space
where the “sinc” function under the integral in Eq. �23� is
essentially nonzero. Alternatively, S can be called the inte-
gral spectrum of zero-point vacuum fluctuations “seeding”
the three-photon PDC.
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Calculation of S=�2q�� deserves a separate discussion.
Calculating it in the near-collinear near-degenerate approxi-
mation, which was used above, is not quite correct. Indeed,
the frequency–wave-vector domain where the integrand of
Eq. �23� is nonzero actually coincides with the spectrum of
SPDC that would be obtained from a pump with the fre-

quency �̃ and wave vector k̃ �see Fig. 1�, and the SPDC
spectrum is much broader than its collinear frequency-
degenerate part. The range of two-photon decay phase
matching extends in frequency over all visible and IR ranges
and in angles over tens of degrees. Therefore, the calculation
should be performed without expanding the longitudinal mis-
match, and the result will depend not only on k0 and s, but on
the whole dispersion dependence.

V. MORE GENERAL APPROACH

To understand the validity of the near-collinear near-
degenerate approximation used above, one should pass to a
more general approach, which means avoiding the expansion
�7�. As a result, the state vector �9� will contain an exact
expression for the longitudinal mismatch �kz�� ,q� in the
argument of the “sinc” function. Also, it will be no more
possible to move the frequency factors from under the inte-
gral in Eq. �5�. This will lead to the appearance of the factor
f�� ,�������0+����0+�����0−�−��� under the inte-
gral of �9�.

Then, the intensity distribution �22� will become

I��1,q1� � ���3��2IpL2

�� � d�d2qf2��,�1�sinc2L

2
�kz��,q� ,

�27�

where �kz�� ,q� is calculated directly from the frequencies,
angles, and the dispersion law.

As an example, in Fig. 4 we present the frequency-
angular spectrum of two-photon PDC calculated as the inte-
grand of Eq. �27� for the case of lithium formate monohy-
drate �HCOOLi·H2O� crystal, the pump having wavelength

�̃=526.5 nm and its wave vector k̃ forming an angle 42°
with the X axis in the XZ plane. The pump polarization is
extraordinary �in the XZ plane�, and the two-photon polariza-
tion is ordinary �along the Y axis�. The longitudinal mis-
match is calculated using the Selmeier formulas �17�. The
length L of the crystal is 0.1 cm. Such a small length is used
to increase the width of the frequency-angular spectrum; oth-
erwise, some parts of it would be not resolved in the figure.
The integral of the spectrum S determines the effective field
of zero-point vacuum fluctuations �26�, which, in its turn,
determines the intensity of collinear frequency-degenerate
three-photon PDC from a pump with the wavelength 351 nm
�Ar laser� and the same wave vector direction as the one of

k̃. The angle of scattering in Fig. 4 is in one-to-one corre-
spondence with the transverse wave vector q from the equa-
tions given above. For simplicity, the factor f2�� ,�1� was
neglected in this calculation. Numerical calculation shows
that the central part of the frequency-angular spectrum in

Fig. 4, which corresponds to near-collinear near-degenerate
SPDC phase matching and for which the expansion �7� is
valid, constitutes not the major part of the spectrum but ap-
proximately one-half.

For estimating the spectral width of the three-photon
PDC, we have performed numerical integration of the spec-
tra similar to the one shown in Fig. 4 at various “effective
pump wavelengths” �̃. The result is shown in Fig. 5. To
calculate each point in the figure, the observation wavelength
�1 �and, hence, the observation frequency �1� was fixed, the
corresponding wave vector k1��1� was calculated, and then

the frequency and wave vector �̃��p−�1 and k̃�kp−k1
were found. Using these parameters as the frequency and
wave vector of the pump for two-photon PDC, the spectrum
was calculated, similar to the one shown in Fig. 4. Then the
spectrum was numerically integrated over the frequency and
the angle, to obtain S, the integral spectrum of zero-point
vacuum fluctuations “seeding” the three-photon PDC at

FIG. 4. Calculated frequency-angular spectrum of zero-point
vacuum fluctuations “seeding” the collinear frequency-degenerate
three-photon PDC in a lithium formate crystal of thickness 0.1 cm.
The pump has the wavelength 351 nm and is directed in the XZ
plane at an angle 42° to the X axis. Polarization of the three-photon
light corresponds to the Y direction.

FIG. 5. �Color online� Integral of the spectrum of zero-point
vacuum fluctuations “seeding” the three-photon PDC in lithium for-
mate crystal calculated numerically as a function of the “observa-
tion wavelength” �1. The pump wavelength is 351 nm, and the
pump wave vector is in the XZ plane at an angle 42° to the X axis.
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wavelength �1. The dependence of S on �1 roughly �18�
determines the intensity spectrum of three-photon PDC.

The spectrum shown in Fig. 4 corresponds to the degen-
erate case of three-photon PDC—i.e., to the situation where
the wavelength of the registered photon �1 is exactly 3 times
the wavelength of the pump �in our example, 1053 nm�.
From Fig. 5 one can see that the integral of the two-photon
spectrum, and hence the intensity of three-photon light, is
indeed close to being maximal in this case. However, the
peak in the center, caused by the contribution from two-
photon phase matching, is accompanied by a broad spectrum
at large wavelengths. Although the intensity of three-photon
PDC at large wavelengths will be reduced by the frequency-
dependent factor f2�� ,�1�, it is still clear that the spectrum
of three-photon PDC in the collinear direction occupies a
broad range from the pump wavelength to the far infrared.

It might seem that the results of the present section com-
pletely ruin the validity of the near-collinear near-degenerate
approximation used in the previous sections. However, it is
not so. First of all, the “near-collinear approximation” is still
valid: calculation of the correlation functions was performed
for the collinear case, the transverse wave vectors of the
three photons being “filtered” by external apertures. Also, the
angles of the two-photon PDC spectrum do not exceed 10°,
as one can see from Fig. 4. As to the near-degenerate ap-
proximation, it is indeed not valid in general. However, the
approach of Sec. IV can still be used in the case of zero or
negative GVD at the wavelength �0, when the spectrum of
SPDC is finite �19�. A similar approach can be also used if
the three-photon light is partly filtered.

In addition, let us stress that the general approach used in
the present section does not provide a “universal” analytical
expression for the correlation functions or intensity distribu-
tion; it only enables one to perform numerical calculations
for specific cases.

Finally, let us estimate the number of photons per mode
that can be generated via three-photon parametric down-
conversion. Taking the value of cubic susceptibility ��3�

=10−13 esu, which is typical for nonlinear crystals like
lithium niobate or KDP, the pump intensity I0=1 kW/cm2,
the wavelength of the down-converted photons 1 �m, the
crystal length L=10 cm, and the width of the frequency–
wave-vector spectrum of the two-photon phase matching
�2q��=1018 s−1 cm−2, from Eq. �24� we obtain for the
three-photon down-conversion N�10−17. This figure is
rather small; for instance, the typical number of photons per
mode for two-photon SPDC is ten orders of magnitude
higher. To pass from the number of photons per mode, N, to
the counting rate W of a detector, one can use the relation �1�

W = NS��
vac������A , �28�

where S��
vac=0.5955 W/ �Å cm2 sr� is the vacuum brightness

�1�, � is the detector quantum efficiency, and ��, ��, and A

are, respectively, the wavelength range, solid angle, and the
area selected by the detector. Taking �=0.5, ��=40 nm,
��=10−4 sr, and A=10−2 cm2, we obtain the counting rate
W on the order of 10−2 s−1. A reliably detectable counting
rate should be at least two orders of magnitude higher. How-
ever, some hope is given by the possibility to use media with
resonance values of ��3�, optical fibers with large length, or
spatially inhomogeneous media with specially increased
width of two-photon phase matching.

Beside the low efficiency of three-photon PDC, another
problem connected with its experimental observation is the
existence of other nonlinear processes resulting in the emis-
sion of photons in the same spectral range. Among them, the
strongest are two-photon SPDC and four-wave mixing. How-
ever, the first one can be eliminated by choosing a medium
without ��2� and the second one has a different dependence
on the pump intensity �quadratic rather than linear�.

VI. CONCLUSION

The main conclusion of the present paper is that the three-
photon PDC of pump photons with frequency �p and wave
vector kp into a single frequency–wave-vector mode �, k is
“seeded” by the whole spectrum of zero-point vacuum fluc-
tuations corresponding to all possible two-photon processes

with pump frequency �̃��p−� and wave vector k̃�kp−k.
Accordingly, the intensity of three-photon PDC is deter-
mined by the integral spectrum allowed by the phase match-
ing of two-photon PDC �SPDC�. �This does not mean that
the medium should have nonzero quadratic nonlinearity, a
necessary condition for SPDC.� It follows that the efficiency
of three-photon PDC can be increased by choosing a medium
with a broad spectrum of two-photon PDC.

If the ��3� tensor of the medium has several nonzero ele-
ments corresponding to the chosen polarization of one of the
output photons, one should take into account all spectra of
two-photon processes corresponding to the possible polariza-
tions of the other photons.

The frequency width of the three-photon PDC at fixed
angle of scattering is much larger than the SPDC width. It
does not depend on the thickness of the nonlinear medium
and covers all the visible and near-infrared ranges. This gives
additional hopes for observing three-photon parametric
down-conversion and shows that the best way to observe this
process is to use broadband detection.
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