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We study phase-conjugate degenerate four-wave mixing (DFWM) in an optically pumped, two-level atomic
system (the 3s 28 v F=2, mp=2—-13p 2P3,2, F=3, mp=3 transition in a diffuse, collision-free, thermal beam
of sodium) using phase-modulated laser beams. In this investigation, we study the detailed line shape of the
four-wave mixing signal as a function of the temporal delay between the probe field and the pump fields at
different intensities of the cw pump waves and modulation frequencies. We show that phase modulation of the
pump and probe beams leads to strong amplitude modulation of the phase-conjugate beam and report excellent
agreement between our experimental observations of the DFWM spectra and the results of numerical calcula-
tions. Our numerical results suggest an enhancement of the “local” DFWM signal when the sidebands of the
phase-modulated laser are resonant with dressed-state transitions, but that this resonance is less obvious in the
total signal generated. We also show that the complex line shapes depend sensitively upon the delay of the
probe beam, with the peak DFWM signal occurring when the probe beam is advanced compared to the pump

beam.
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I. INTRODUCTION

In recent studies [1-3] of phase-conjugate degenerate
four-wave mixing (DFWM), we have investigated the de-
tailed line shape and signal strength of this important inter-
action in a closed two-level atomic system. In these works,
we drive the atoms with a tunable, narrow-band laser field
and reduce the effects of Doppler broadening by carrying out
our measurements with an atomic beam. The goal of these
studies is to provide measurements that can be used in direct
comparison with the fundamental theory of the interaction
[4,5] or computational results, and through this to gain a
better understanding of its properties. A series of observa-
tions [6-24] of this interaction by several groups over the
past 25 years has shed a great deal of light on the subject, but
the interpretation of these works has, in many cases, been
limited by inhomogeneous (Doppler) broadening of the tran-
sition, multilevel energy structure of the nonlinear medium,
or the use of pulsed lasers that may have operated on mul-
tiple modes. In our work, we eliminate or reduce the influ-
ence of these factors.

In our previous studies [1,3], we measured the line shapes
and signal strengths for phase-conjugate DFWM with a
narrow-band laser source and showed excellent quantitative
agreement with results we derived from numerical integra-
tion of the optical Bloch equations. We also showed that
atomic velocity effects were surprisingly strong, even though
we used a well-collimated atomic beam in our measure-
ments. Atoms traveling through the standing-wave pattern
formed by the counterpropagating pump fields experience a
sinusoidally varying field amplitude, and the Bloch vector
representing the atomic population and dipole transition am-
plitude varies in synchronization with this modulation. We
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have also examined DFWM using randomly-phase-
modulated laser fields (known as the phase diffusion field)
and observed the influence that these fluctuations can exert
on the magnitude and spectrum of the DFWM interaction, as
well as the strong dependence of the signal on the temporal
delay of the probe with respect to the pump beam [2]. As
expected, the DFWM signal decreased with increasing delay,
as the correlation between the probe and pump phase de-
creased. Curiously, the greatest signal occurs when the probe
delay is slightly negative—i.e., when the phase fluctuation of
the probe beam precedes that of the pump beam.

In the present work, we study a related problem of an
atom driven by a set of sinusoidally-phase-modulated laser
beams. Similar to the case for the Doppler-shifted atoms dis-
cussed above, the Bloch vector of the atomic system re-
sponds to the sinusoidally varying field, and the dynamics of
this interaction can lead to interesting results. The atomic
response, as revealed through the time-dependent DFWM
signal, depends sensitively upon the temporal delay between
the pump and probe beams. Our experimental observations
of this interaction are in excellent agreement with accompa-
nying numerical simulations. An additional manifestation of
these dynamics, which we observe in our computational re-
sults of the interaction only, is that the maximum DFWM
signal occurs for slightly negative probe delays, similar to
the randomly-phase-modulated case. In this paper, we de-
scribe our measurements, as well as the numerical simula-
tions that help us to understand this complex interaction.

II. EXPERIMENT

In this section we briefly discuss the experimental tech-
niques that we use for measurements of phase-conjugate
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FIG. 1. Wave-vector diagram for the four-wave mixing interac-
tion in the phase-conjugate geometry. Counterpropagating pump
beams (propagating in directions Igf and Igb=—lgf) and a probe beam
(Ep) interact with the nonlinear medium to produce the phase-
conjugate beam (1?[:—12,,).

four-wave mixing spectra. We show a schematic representa-
tion of the geometry of the input and output beams in Fig. 1.
Three input beams intersect one another in a nonlinear me-
dium (atomic sodium), producing the phase-conjugate beam
through their interaction with the medium. The forward and
backward pump beams propagate in directions counter to
one another (i.e. kb——kf, where kf and kb are the propaga-
tion vectors for the forward and backward pump beams) and
cross the atomic beam at a right angle. A weak probe beam
also crosses the atomic beam at a right angle and propagates
at a small angle 6 with respect to the forward pump beam.
All input laser beams are derived from the same laser source
and are at the same frequency. The phase-conjugate beam
produced through the DFWM interaction propagates in the
direction opposite to that of the input probe beam with
P=%,

We strive in these measurements to create a highly con-
trolled experimental geometry that yields measurements that
are susceptible to direct quantitative comparison with the
results of numerical models or analytical expressions of the
interaction. To this end, we perform our measurements using
(i) a closed, two-level system as the nonlinear medium, (ii) a
system with minimal inhomogeneous broadening, (iii) a
collision-free system, and (iv) a cw narrow-band optical
field. We show a detailed layout of the experiment in Fig. 2.
This setup is similar to what we used in previous studies [3],
with the added capability of phase modulating the input laser
beams. The light source from which all beams are derived
is a traveling-wave (ring), stabilized, tunable, cw dye laser
operating at 589.0 nm. The linewidth of the laser field is
Av; ~200 kHz. Using beam splitters, an acousto-optic
modulator (AOM), and electro-optic modulators, we split the
output laser beam into (1) a preparation beam, which opti-
cally pumps the sodium atoms into a single hyperfine com-
ponent (F=2,mp=2) of the ground state [25] (including
those that were initially in the F=1 ground state) and locks
the laser frequency to a controllable value near the atomic
transition frequency, (2) the forward and backward pump
beams, propagating in directions opposite one another, and
(3) the weak probe beam, propagating at a small angle
0~ 1.8° with respect to the forward pump beam. All beams
are circularly polarized, such that when interacting with the
sodium atoms, the laser beams couple the ground state only
to the (3p 2Py, F=3,mp=3) state, and since the only decay
path for these upper state atoms leads to the F=2, mp=2
ground state, the atoms behave as a true two-level system.
We pass the forward and backward pump beams and the
probe beam through lengths of single-mode optical fiber in
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FIG. 2. Schematic diagram for the phase-conjugate four-wave
mixing experiment. Abbreviations in this diagram are used for the
acousto-optic modulator (AOM), electro-optic modulators (EOM),
a roof prism (RP), a rf switch (r.f. sw.), optical beam splitters (B.S.),
single-mode optical fibers (OF), the photomultiplier (PMT), a per-
sonal computer (PC), polarizers (pol), and quarter-wave retarders
(N/4).

order to improve upon their transverse mode structure. The
forward and backward pump beams are characterized by

Ef,b(t) = EO COS[Ef’b . 7_:— wrl— ¢0 COS(Zmet)], (1)

while the probe beam is

E,(1)=E, cos{l%, T =it — ¢y cos[2mf,,(t— 7)1 (2)
w; is the radial frequency of the laser field, f,, is the modu-
lation frequency, ¢, is the amplitude of the phase modula-
tion, also known as the modulation parameter, and 7, is the
delay time of the probe beam with respect to the pump
beams, which we vary and control by changing the length of
the probe beam optical fiber. For all measurements discussed
in this study, we use ¢y=1.

In order to keep the atoms in the 3s 2S1/2, F=2, mp=2
state as they travel from the preparation region to the inter-
action region, we cancel the Earth’s magnetic field and apply
an additional static field of magnitude ~500 mG, oriented
parallel to the direction of propagation of the preparation
beam. As is standard for interactions with circularly polar-
ized beams, we choose this direction as the quantization axis
of our quantum atomic system and denote this the 7 direc-
tion.

The pump and probe beams are each in a nearly lowest-
order Gaussian mode of radius (defined as the radial distance
at which the intensity drops to 1/e? of the on-axis intensity)
equal to 1.2 mm and 0.28 mm, respectively. We maintain the
ratio of these radii so that the intensity of the pump beam is
relatively constant (less than 10% variation) over the dimen-
sion of the probe beam. The pump beam intensity is either
7.21° or 28.81°, where I is the saturation intensity for the
transition at the resonance frequency,
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Y12 is the transverse relaxation rate (equal to I'y/2 in the
collision-free atomic beam), and u,, is the transition dipole
moment. For the transition used in our work, I? is
6.33 mW cm™2. The powers of the forward and backward
pump beams are matched to within 2% of each other.
The power of the probe beam is fixed at 2 uW and is
actively controlled with an AOM-based amplitude stabilizer.
The probe beam intensity at the center of the beam is
Ipmbe=0.26lg for all measurements. The Rabi frequency
of the interaction of the two-level atom with one of the
pump beams, Q= Eo/h=[y,oI/1°]", is 27X 18 MHz
or 2mX36 MHz, at the powers used in this work of
1.03 mW or 4.12 mW, respectively. The Rabi frequency of
the interaction with the probe beam is (),/27=3.6 MHz.

The phase-conjugate beam propagates backward along the
direction of the input probe beam. We separate the phase-
conjugate and the input probe beams using a nonpolarizing
~30% beam splitter and direct the former onto the photo-
cathode of a photomultiplier tube [PMT gain=1.9 X 10°,
with a 8.5% quantum efficiency].

We have described the vacuum system in detail previ-
ously [1,3]. The sodium beam is generated by heating a
simple stainless-steel effusive oven. The 1.7-mm-diam oven
nozzle and a second 1.7-mm aperture 367 mm away define
the collimated atomic beam in the interaction region. At an
oven temperature of 290 °C(x5 °C), as we use in our
experiment, the beam density in the interaction region is
2% 10% cm™ and the root-mean-square velocity of the atoms
is (U)ms=9 X 10* cm/sec. We measure weak field absorption
spectra daily and observe a typical linewidth of 13—14 MHz,
only slightly greater than the 10-MHz natural linewidth of
the transition. We fit these absorption spectra to a Voight
profile, assuming a Gaussian distribution of atomic velocities

in the direction of the laser propagation vector Igf,

4In2 1 V.~ v\’
Pw.) =1/ — exp| =4 In2| =2 ZO) , (4
v 7 Av exp{ ! ( Av, @)

Z

where v is the (small) average velocity in the Z direction,
which could be nonzero due to imperfect alignment of the
laser beams, and Awv, is the width of the velocity distribution.
v, is typically on the order of +20 cm/s, corresponding to a
laser misalignment of +0.2 mrad, while Av, is typically
500-600 cm/s. The peak attenuation factor 2L is typically
0.07-0.08, where «y, is the field attenuation constant for sta-
tionary atoms,

_ VN ol
cheyyin

N is the atomic beam density and L is the absorption
length—i.e., the diameter of the atomic beam.

In order to eliminate effects due to the velocity of the
atoms changing as they absorb light from the forward and
backward pump beams before they reach the probe beam [3],
we chop the probe and pump beams by controlling the am-
plitude of the rf signal that drives the AOM. This allows us

)
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FIG. 3. The oscilloscope trace of the DFWM signal correspond-
ing to the accumulated signal (5000 wave forms) for (a) 6=0 and
(b) 6=—2mX 18 MHz. The pump and probe beams turn on at about
t=2 us. In each case the Rabi frequency of the interaction with a
single pump beam is 18 MHz and the modulation frequency is
fm=18 MHz.

to observe the DFWM signal before the atomic velocities are
significantly modified. The period of the cycle is 20 us, its
duty cycle is 50%, and we synchronize the time at which the
laser beams turn on with the modulation of the phase. During
the 10-us interval during which the pump and probe beams
are off, the atoms completely traverse the pump beam region.
We then repeat the cycle with a fresh group of atoms.

We amplify, display, and record the photomultiplier cur-
rent with an electronic amplifier (gain=650, input
impedance=50 (), bandwidth=0-50 MHz) and a digitizing
plug-in card (100 MS/s sampling rate, input impedance
=50 (2, bandwidth=0-100 MHz) in a laboratory PC. The
DFWM signal is so weak that we detect only a few DFWM
photons, each appearing as a short (15-20 ns) pulse of mean
amplitude ~—600 mV, during a single cycle of the measure-
ment. By accumulating the signal over 5000 wave forms,
however, we are able to obtain signals such as those shown
in Fig. 3. The pump and probe beams turn on at about
t=2 ws. In Fig. 3(a) the detuning of the pump and probe
beam frequency from the atomic resonance frequency w, is
0=w;—w,=0, while in (b) §=-27X 18 MHz. In each case
the Rabi frequency of the interaction of the atom with a
single pump field is 18 MHz and the modulation frequency
is f,,=18 MHz. In the zero-detuning case, the modulation of
the DFWM signal is relatively weak and the primary fre-
quency is 2f,,. In (b), the amplitude modulation of the signal
is very strong and primarily at the modulation frequency f,,,.
By contrast, the DFWM signal in the absence of phase
modulation of the input field shows no amplitude modula-
tion, as shown in Fig. 3 of Ref. [3].

In our analysis of these data, we limit our attention to the
period starting at about 2.50 us and lasting for about 280 ns,
in order to reduce the influence of the atomic recoil on our
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DFWM spectra. We scan the laser over a +100 MHz range
about the sodium resonant frequency and record the time-
dependent data at ~200 laser detunings over a 20-min scan.
We correct the data to account for spontaneous emission
originating from the excited-state sodium atoms in the inter-
action region by repeating the measurement with the probe
beam blocked. We fit the spontaneous emission spectrum to a
form consisting of three Lorentzian functions (spaced by f,,)
and subtract this function from the measured DFWM spec-
trum. The magnitude of this spontaneous emission signal
was relatively constant for each of the DFWM measurements
reported in this work. For the stronger DFWM signals, the
spontaneous emission background was only about 10% of
the signal. While the spontaneous emission background ac-
tually exceeded the signal for the cases where the DFWM
signal was weaker, the uncertainty in the DFWM data ap-
pears to be satisfactory for all cases.

III. RESULTS AND DISCUSSION

We measured and recorded degenerate four-wave mixing
spectra at three combinations of Rabi frequency and modu-
lation frequency, and determine the amplitude and phase of
the modulated DFWM signal by performing a Fourier de-
composition of time-dependent wave forms like those shown
in Fig. 3. We write the optical power of the DFWM signal as

2
Pprwm(t) =Ag + > A, cos[2mmnf,t —n¢']

n=1
+ B, sin[27nf,,t — nd']. (6)

The phase ¢’ accounts for the difference in turn-on time

between theoretical (to be discussed next) and experimental
DFWM signals.

In Fig. 4, we show DFWM data corresponding to a Rabi
frequency )/27r of 18 MHz and a modulation frequency of
fmn=18 MHz. The data points in this figure correspond to the
average DFWM power and the amplitudes of sinusoidally
varying components. The data points in the plots within col-
umn a represent the average DFWM signal (4,), in columns
b and c the in-phase (A;) and quadrature-phase (B;) ampli-
tudes at frequency f,,, and columns d and e the in-phase (A,)
and quadrature-phase (B,) amplitudes at frequency 2f,,. The
four rows correspond to varying delay of the probe beam
with respect to the pump beam 7. In the top row (1a—1e), the
probe delay is 7,=0. In the second, third, and fourth rows,
the probe beam is advanced (i.e., 7,<0) by T,,/4, T,,/2, and
3T,,/4, respectively, where T,,=1/f,, is the period of the
modulation. (We choose to advance the probe beam to avoid
recoil effects that would occur if the pump beams turn on
before the probe beam.) The mean DFWM signal shows a
series of not-quite-resolved peaks at detunings from reso-
nance of zero and close to integer multiples of f,,. When one
considers the power spectrum of the phase-modulated laser
field, consisting of the carrier at frequency w; /2 and side-
bands to either side spaced by f,,, this result is not surprising,
since we would reasonably expect a peak in the DFWM sig-
nal when the carrier or a sideband is resonant with the atomic
transition frequency.

The variation among these spectra as we delay the probe
beam is striking. At zero delay, the mean DFWM spectrum
shows a large central peak and two smaller sidebands at the
modulation frequency f,,. Advancing the probe beam by a
quarter period (7,=-T,,/4) elevates the sidebands so that
they are stronger than the central peak. An additional ad-
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vance to 7,=-T,,/2 shows evidence of sidebands at 2f,,, and

finally the sidebands at f,, in the —37,,/4 delay are almost
completely absent, while those at 2f,, are strong. The peak
signal at a delay of —37,,/4 is only about 1/5 the zero delay
signal. The amplitude of the oscillating part of the DFWM
spectra undergoes similar rapid variation as a function of
delay. In each case the amplitude of the modulation at fre-
quency f,, goes to zero at detuning 6=0, as expected from
analogous optical interactions with phase modulated light
[26], while the 2f,, component is peaked. The qualitative
picture for this is that as the laser frequency modulates about
the peak of the resonance, the atomic dipole goes through
two cycles for each cycle of the optical phase. (The atomic
response decreases to one side of resonance, returns at the
peak, decreases to the other side of resonance, and returns
again to the peak.) Thus the amplitudes A, and B, are odd
functions of & in each case, while the amplitudes A, and B,
are even functions of detuning.

For comparison with these experimental data, we show in
Fig. 4 numerical results for the average DFWM signal and
the amplitude of the sinusoidal modulation of the DFWM
signal as solid lines. We use the theoretical approach de-
scribed in Ref. [3]. This approach uses the optical Bloch
equations to describe the time evolution of the elements of
the density matrix of the atomic two-level system and is very
similar to that used by Lucht et al. [19]. When the intensity
of the probe beam is much less than the saturation intensity
for the transition, but that of the pump beams is arbitrary, we
can expand the coherence term o, (7,1)=p,,(r,1)e'’L" and the
population probability difference  W(F,t)=py,—p;; in a
power series in the phase term of the probe field,
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The component 0(2_11)(r,t) is the complex amplitude of the
element of the dipole term that radiates the phase conjugate
field. The real (imaginary) component of this amplitude de-
scribes the component of the dipole that is in phase with (in
quadrature to) the oscillating electric field of the pump and
probe beams. This expansion, after being substituted into the
Bloch equations, yields a set of six coupled equations for the
coherence and population difference terms, as given by Egs.
(16) of Ref. [3]. We numerically integrate these equations,
starting with the initial conditions of W®=—1 and all other
terms equal to O (i.e., the entire population is in the ground
state initially). In the present case with phase-modulated
pump and probe fields, the Rabi frequency of the interaction
of the two-level atom with one of the pump beams and the
Rabi frequency for the probe beam interaction include a si-
nusoidally varying phase, with a phase shift of 2#f,, 7, be-
tween them. After a brief transient response of the atomic
Bloch vector due to the fields turning on, each of the coher-
ence amplitudes 0'(2_11), o'g;), and a'(;) and each of the popu-
lation amplitudes W=D, W(©, and WV settles into a steady-
state behavior consisting of a dc term and terms oscillating at
the frequency f,, and its harmonics. To compute the net
phase-conjugate amplitude, we integrate over the standing-
wave pattern of the pump beams to include the contribution
of all the atoms radiating into this beam throughout the in-
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teraction region and average over the complex time-
dependent DFWM field amplitudes computed for different
values of the atomic velocity, weighted by the probability
distribution given in Eq. (4). We calculate the optical power
of the DFWM beam using [1]

Y12, (-1
ZaoLQ—<ff(21 )

P

2
Pprwm=C P, (®)

where P, is the power of the probe beam. The only param-
eters that we adjust in order to optimize the agreement of the
computed spectra with the measured spectra are C, a multi-
plicative scaling factor of order unity (actual values range
between 0.6 and 1.8), the reference phase ¢’ introduced in
Eq. (6), and v,y. We adjust the scaling factor to yield good
agreement with the mean DFWM signal (4,) only and find
that this yields good agreement for the amplitudes of the
sinusoidal components as well. In adjusting ¢’, one value is
sufficient to yield good agreement for all four sinusoidal
components. We adjust v, to match the small asymmetry of
the spectra. All adjustments of v,, were within the experi-
mental uncertainty of the absorption measurement, as
DFWM measurements are much more sensitive to this pa-
rameter. The small deviations between our measured values
of A, and B, and the numerical results are likely due to the
limited bandwidth of our detection system.

We also collect data at other Rabi frequencies and/or
modulation frequencies and show these spectra in Figs. 5 and
6. In Fig. 5, the Rabi frequency for a single pump beam is
18 MHz, while in Fig. 6, the Rabi frequency is increased to
36 MHz. The modulation frequency is 36 MHz for both
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FIG. 6. The spectra of the
DFWM signal for the case when
the Rabi frequency of the interac-
tion is 36 MHz and the modula-
tion frequency is f,,=36 MHz. All
spectra are as identified in the cap-
tion to Fig. 4.
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these figures. We do not include data for the amplitudes of
the second-harmonic frequency 2f,, in these figures, since
this frequency is outside the detection bandwidth of our in-
strumentation. Again, these spectra are marked by strong fea-
tures in the mean DFWM signal, the in-phase, and the
quadrature-phase amplitudes of the oscillating term. We ob-
serve very strong variation of these spectra with delay. Again
we attribute the slight difference between experimental and
computational results to the limited bandwidth of our detec-
tion system.

The effects of atomic velocity on the DFWM spectra are
significant even in the atomic beam used in our experiments.
The Doppler shifts tend to obscure many of the fine features
of the phase-modulated spectrum. The degree to which the
atomic velocity alters the overall DFWM spectrum also var-
ies with probe delay. We find this to be particularly evident
in the half-modulation period delay cases, where the spectra
for the zero velocity and Doppler broadened spectra are
vastly different. These experimentally unavoidable effects
complicate the formulation of a simplified picture of the
DFWM interaction, and we are left to explore the interaction
numerically in pursuit of this goal.

In light of the very good agreement between the measured
DFWM spectra and computational results, we have gained
sufficient confidence in the numerical results that we can use
them to examine several fundamental questions concerning
the four-wave mixing interaction. Our goal is to develop a
simple intuitive picture of the interaction that will afford us
better insight into its essential properties and aid in its appli-
cation to other problems of interest. We would also like to
understand (1) if it is possible to identify any range of loca-
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FIG. 7. Trajectories of the components of the Bloch vector at
z=MN/16. The Rabi frequency for these figures is ()/27=18 MHz,
and the detuning of the laser field frequency from the atomic fre-
quency is 6/27r=18 MHz. In (1a)—(1d) the delay of the probe field
with respect to the pump field is 7,=7,,/4=13.9 ns, while for (2a)-
(2d) is 7;=—13.9 ns. In each case, the time required to follow the
trajectory through one cycle is 7.

tions within the standing-wave pattern of the pump beams
from which the contribution to the DFWM signal dominates,
(2) the role of the Rabi frequency, and (3) the value of 7, at
which the DFWM signal is maximum. In the following, we
discuss some of our observations and findings.

For a simple two-level atom interacting with a single,
monochromatic laser field, the trajectory of the Bloch vector
has been known to yield a simple intuitive picture that allows
easy visualization of the temporal response of the atomic
population and oscillating dipole moment as the system is
driven by the field [27]. In an effort to extend this intuitive,
geometrical picture to the DFWM interaction, we have car-
ried out a series of calculations of the trajectories of the
components of the Bloch vector. While such an analysis in
the present system provides us with some insight into the
DFWM interaction, we shall show here that its utility is not
nearly as great as it is for a single-frequency interaction. The
major shortcoming in the present case is that the optical field,
and therefore the Bloch vector of the atomic system, varies
within the interaction region on the scale of the wavelength
of the light. We therefore need to evaluate the temporal de-
pendence of the system at various locations throughout the
interaction region. In addition, the component of the oscillat-
ing dipole moment that is phase matched to radiate into the
backward direction, 0';_11), is small in comparison to the first-
order, non-phase-matched term 0'(201). In Fig. 7 we show two
such sets of trajectories. The Rabi frequency for these figures
is /27=18 MHz, and the detuning of the laser field
frequency from the atomic frequency is 6/27=18 MHz. The
atom is located a distance A/ 16 from a node of the standing-
wave pattern of the pump field. In panels (la)—(1d) of
this figure the delay of the probe field with respect to the
pump field is 7,=T,/4=13.9 ns, while for (2a)—(2d) is
7,=—13.9 ns. There are several observations one can make
by studying trajectories like those pictured here. First, the
trajectories of W vs 0'(201) are relatively independent of the
probe delay time. This is not surprising in that the evolution
of these components is controlled largely by the forward and
backward pump fields, and depends very little on the probe
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&/2rn (MHz)
FIG. 8. The mean value of |¢r(2_11)|2 as a function of & at five
locations within the standing-wave pattern: z=\/32 (solid line),
N\/16 (dotted line), 3N/32 (dot-dashed line), /8 (dashed line), and
N/4 (solid line with circles), where the node of the standing-wave
pattern is at z=0.

beam. These components, however, have only an indirect
effect on the phase conjugate field. The 0'(2_11) term, which
radiates the phase-conjugate field, shows a strong depen-
dence on the delay time and shows a very different behavior
for positive or negative delay. Note the very different trajec-
tory in Figs. 7(1¢) and 7(1d) from that in Figs. 7(2¢) and
7(2d). The trajectories at different locations within the
standing-wave pattern are also revealing in that they vary
greatly as we move through the standing-wave pattern
formed by the pump beams. The trajectories show a left-right
symmetry only for the case 6=0. For 6# 0, the trajectories
for Im((r(z(i)) or Im(a(z_ll)) do not change upon 6— —§, while
those for the real part are reversed. Another general trend can
be seen in the average magnitude of W as we move
through the standing-wave pattern. As expected, the average
magnitude of W grows from —1 at the node to a value
approaching zero (i.e., the average population is evenly dis-
tributed between the upper and lower states) at the antinode.
It is interesting that W® can exceed zero (a population in-
version) for short periods of time during its trajectory.
Since the trajectories vary so greatly over the standing-
wave pattern, it would be of great utility if it were possible to
identify a limited range of locations within the standing-
wave pattern that contributes more significantly to the
DFWM signal than others. If valid, this could significantly
simplify our picture of the interaction, in that we could focus
our attention on that location and ignore elsewhere. In Fig. 8
we show the mean value of |05, "|? as a function of & at five
locations within the standing-wave pattern: z=\/32 (solid
line), N/16 (dotted line), 3N/32 (dot-dashed line), \/8
(dashed line), and \/4 (solid line with circles), where the
node of the standing-wave pattern is at z=0 and the antinode
at z=N\/4. For the solid-line curve, for which z=\/32, the
“local” Rabi frequency of this interaction is Qyeq/27
=7.0 MHz, somewhat less than, but still comparable to,
I'y/27r=10 MHz. We define ()., as 2Q) sin(kz). This curve
shows a strong central peak, with well-resolved sidebands at
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FIG. 9. Calculated results for the integrated DFWM signal that
is generated in the region between z=0 (the node of the field pat-
tern) and z=\A/32 (solid line), N\/16 (dotted line), 3\/32 (dot-
dashed line), A/8 (dashed line), and \/4 (solid line with circles).

nearly f,, to either side. Small peaks at ~2f,, can also be
observed. Moving to z=\/16 (dotted line), the local Rabi
frequency has increased to 13.8 MHz, and the line shape has
evolved rapidly to one with strongly overlapping peaks and
barely distinguishable local maxima at 5 MHz, 13 MHz, and
32 MHz. The amplitude of this peak is slightly greater than
the curve at z=N/16. The DFWM curves continue to evolve
rapidly for locations at greater distances from the node, but
now one can see a decrease in amplitude as well. The local
Rabi frequency is 20.0 MHz, 25.5 MHz, and 36.0 MHz, for
the curves at z=3\/32, A/8, and N/4, respectively. This is
consistent with prior works [4] that concluded that the major
contributions to the net DFWM signal are derived from the
region within the standing-wave pattern where the interac-
tion is nearly saturated; i.e., the local Rabi frequency is com-
parable to I'y,. If the intensity of the two pump beams is very
large, this can be a very narrow region. It does not appear,
however, that this is sufficient to simplify the analysis of the
interaction, because of the rapid variation of 0'2_11) as a func-
tion of ... In addition, while |0'(2_11)|2 does, in fact, de-
crease for z>N\/16, the dipoles in the region N/16<z
<N/4 still contribute significantly to the signal due to the
large size of this space. We illustrate this in Fig. 9, where we
plot |4/\[50%, dz|, for z=\/32 (solid line), \/16 (dotted
line), 3\/32 (dot-dashed line), N\/8 (dashed line), and \/4
(solid line with circles). This integral represents the DFWM
signal as we integrate over an increasing fraction of the
standing-wave pattern of the pump beams, and we observe
that the DFWM spectrum continues to grow over this entire
range.

In addition to variations in the magnitude of |0§_11)|2 with
location, the frequency at which the peaks occur can also be
seen to vary. This appears to be due to a resonance enhance-
ment effect as the laser sidebands come into resonance with
transitions between dressed states of the atom. Resonant en-
hancement in four-wave mixing has been discussed in sev-
eral contexts previously. In a series of papers, Grynberg, Pi-
nard, and Verkerk [8,10,11] studied nondegenerate four-wave
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FIG. 10. The frequencies of the peaks in the calculated spectra
of the mean value of |0(2_]l)\2 vs the local value of the Rabi fre-
quency. The solid line is a plot of D’fn—(lel/Zﬂ')z]l/z, and
[2f,0)% = (Q1oca/27)?]'72 is shown as a dashed line. These data cor-
respond to calculated DFWM spectra for (}/27=18 MHz and
f,=36 MHz.

mixing interactions in neon for the case when only one pump
beam was intense. The measured and calculated spectra in
this case showed peaks separated by the Rabi frequency of
the interaction of the atom with the intense pump beam. Lin,
Rubiera, and Zhu [12] observed nondegenerate four-wave
mixing in rubidium and reported structure in their spectra at
the Rabi frequency as well. While the intensities of both of
their pump beams exceeded the saturation intensity for the
transition, one beam was much more intense than the other,
decreasing the variation of the local Rabi frequency across
the standing-wave pattern of the pump beams. In the case of
degenerate four-wave mixing in the phase-conjugate geom-
etry with equal-intensity pump beams, however, the situation
is quite different, and one should not expect to observe any
strong signatures of the Rabi frequency in the four-wave
mixing spectra. As we illustrate here, local enhancement is
possible, but these features do not survive in the net signal.
In Fig. 10 we plot the frequencies ¢ at which peaks occur in
the local DFWM spectra, similar to the one shown in Fig. 8§,
as a function of the local Rabi frequency. The peak frequen-
cies in this figure, corresponding to /27=18 MHz and
fimn=36 MHz, appear as three series: one that starts as a cen-
tral peak for small €, one that starts at f,,, and one
that starts at 2f,,. The former is also present in calculated
spectra for a monochromatic laser field (i.e., ¢y=0) and
therefore is unrelated to the optical sidebands. For the other
two series, the frequencies of the local maxima in the
DFWM signal can be seen to decrease as ()., increases.
This is consistent with a picture of the interaction in which
one of the optical sidebands at frequency w; +2n7f,, is reso-
nant with a transition between dressed-state levels of the
atom at frequency w;+{)’, where n is an integer and )’ is
the generalized Rabi frequency of the interaction, equal to
[8+0Q2 .12 We have plotted [f2—(Qca/2m)?]"? (solid
line) and [(2f,,)% = (Qoca/27)?]"? (dashed line) in the figure,
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FIG. 11. The normalized DFWM signal at zero detuning as a
function of the delay between the pump and probe beams, 7, The
Rabi frequency of the interaction is 18 MHz and the modulation
frequency is f,,=18 MHz, and all atoms are considered to be at rest.

corresponding to the dressed levels of the atom-field system,
valid for an interaction with a single-frequency pump field.
While the dressed-state resonances for an atom in a trichro-
matic field will be somewhat different from these curves, the
correspondence at low values of ()., indicates that the
peaks in the DFWM signal occur when the sidebands of the
phase-modulated input fields are resonant with transitions
between dressed atom levels. This picture is complicated for
larger ()., because the laser sidebands can also saturate the
transition. These features appear in plots of the local values
of |0'(2_11)|2 only. The net signal includes contributions from
atoms distributed throughout the interaction region, and sig-
natures of local Rabi frequencies become difficult to identify.

Finally, we have examined the dependence of the four-
wave mixing signal on the temporal delay between the pump
and probe fields. In previous studies of phase-conjugate
DFWM with randomly-phase-modulated fields, the phase
diffusion field [2], we showed that the maximum signal re-
sulted when the probe beam was slightly advanced with re-
spect to the pump beam—i.e., when 7, was slightly negative.
Our numerical studies show similarly that the DFWM signal
in the present case is greatest for negative 7, We show this
dependence in Fig. 11. Unlike the phase diffusion field, the
DFWM signal is periodic in 7, We generated this curve
assuming all the atoms are stationary, so we do not show
experimental data in this figure. Still, we note reasonable
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qualitative agreement with the relative magnitudes of the
DFWM signals in Figs. 4(1a)-4(4a), especially considering
the variations in the laser beam alignment and atom beam
density that must invariably be present between measure-
ments. We did not attempt to tune the delay time to the
optimal value.

IV. CONCLUSIONS

In this work, we have presented our experimental mea-
surements of phase-conjugate four-wave mixing spectra for a
system of two-level atoms interacting with a phase-
modulated laser beam. In general, we observe strong ampli-
tude modulation of the DFWM signal at the phase-
modulation frequency of the pump and probe fields and its
second-harmonic frequency. As we vary the Rabi frequency
of the interaction, the modulation frequency, or the delay
time between the pump and probe beams, we observe very
strong variation of the DFWM spectra. These experimental
measurements are in very good agreement with numerical
results, which we derive through numerical integration of the
optical Bloch equations. As was the case in our previous
measurements of four-wave mixing interactions, the effect of
Doppler shifts due to the velocity of the atoms is critical,
even in our case of an atomic beam with reasonably good
collimation. Throughout this work, one of our outstanding
goals has been to develop a simple picture of the interaction.
There are, of course, a few notable successes to this, as we
have tried to point out in the preceding descriptions. There
have also been some notable challenges to this attempt. The
major roadblock to forming this simple picture stems from
two factors. First, the DFWM signal is generated by only one
component of the coherence term o,,—i.e., the term that is
phase matched to radiate into the conjugate beam. This com-
ponent of o, is only a minor part of the whole coherence
term. In addition, since the Rabi frequency of the interaction
varies sinusoidally over the interaction region, the magnitude
and phase of o,; vary significantly over this range. Because
of these complications to the interaction, our efforts to form
a simple picture have been only partially successful.

ACKNOWLEDGMENTS

We gratefully acknowledge the important suggestions of
P. Berman and the advice and critical technical input of Binh
Do. One of us (A.K.M.) also acknowledges support through
the Graduate Assistance in Areas of National Need program
of the Department of Education.

[1] Binh Do, Jongwhan Cha, D. S. Elliott, and S. J. Smith, Phys.
Rev. A 58, 3089 (1998).

[2] Binh Do, Jongwhan Cha, D. S. Elliott, and S. J. Smith, Phys.
Rev. A 60, 508 (1999).

[3] Binh Do and D. S. Elliott, Phys. Rev. A 67, 063810 (2003).

[4] R. L. Abrams and R. C. Lind, Opt. Lett. 2, 94 (1978); 3, 205
(1978).

[5]R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, and P. F.
Liao, in Optical Phase Conjugation, edited by Robert A.
Fisher (Academic Press, San Diego, 1983), Chap. 8.

[6] P. F. Liao, D. M. Bloom, and N. P. Economou, Appl. Phys.
Lett. 32, 813 (1978).

[7] D. Bloch, R. K. Raj, K. S. Peng, and M. Ducloy, Phys. Rev.
Lett. 49, 719 (1982).

023813-9



A. K. MILLS AND D. S. ELLIOTT

[8] G. Grynberg, M. Pinard, and P. Verkerk, Opt. Commun. 50,
261 (1984).
[9] M. Ducloy, F. A. M. de Oliveira, and D. Bloch, Phys. Rev. A
32, 1614 (1985).
[10] P. Verkerk, M. Pinard, and G. Grynberg, Phys. Rev. A 34,
4008 (1986).
[11] M. Pinard, P. Verkerk, and G. Grynberg, Phys. Rev. A 35,
4679 (1987).
[12]J. Lin, A. L. Rubiera, and Y. Zhu, Phys. Rev. A 52, 4882
(1995).
[13] M. Oria, D. Bloch, M. Fichet, and M. Ducloy, Opt. Lett. 14,
1082 (1989).
[14] S. M. Wandzura, Opt. Lett. 4, 208 (1979).
[15] D. G. Steel, R. C. Lind, J. F. Lam, and C. R. Guiliano, Appl.
Phys. Lett. 35, 376 (1979).
[16] L. M. Humphrey, J. P. Gordon, and P. F. Liao, Opt. Lett. 5, 56
(1980).
[17] D. G. Steel and J. F. Lam, Opt. Commun. 40, 77 (1981).
[18] P. R. Berman, D. G. Steel, G. Khitrova, and J. Liu, Phys. Rev.

PHYSICAL REVIEW A 72, 023813 (2005)

A 38, 252 (1983).

[19] R. P. Lucht, R. L. Farrow, and D. J. Rakestraw, J. Opt. Soc.
Am. B 10, 1508 (1993).

[20] D. S. Glassner, B. Ai, and R. J. Knize, Opt. Lett. 19, 2071
(1994).

[21] D. J. Harter and R. W. Boyd, Phys. Rev. A 29, 739 (1984).

[22] G. C. Cardoso and J. W. R. Tabosa, Opt. Commun. 185, 353
(2000).

[23] A. Lezama, G. C. Cardoso, and J. W. R. Tabosa, Phys. Rev. A
63, 013805 (2000).

[24] S. Barreiro and J. W. R. Tabosa, Opt. Commun. 233, 383
(2004).

[25] R. E. Grove, F. Y. Wu, and S. Ezekiel, Phys. Rev. A 15, 227
(1977).

[26]J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, Appl.
Phys. Lett. 39, 680 (1981).

[27] See, for example, L. Allen and J. H. Eberly, Optical Reso-
nance and Two-level Atoms (Wiley, New York, 1975).

023813-10



