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Even harmonic molecules display a nonlinear behavior when driven by an inhomogeneous field. We calcu-
late the response of single harmonic molecules to a monochromatic time and space dependent electric field
E�r , t� of frequency � employing exact algebraic methods. We evaluate the responses at the fundamental
frequency � and at successive harmonics 2�, 3�, etc., as a function of the intensity and of the frequency of the
field and compare the results with those of first and second order perturbation theory.
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I. INTRODUCTION

Even though the harmonic oscillator is the prototype of a
linear system, its response to inhomogeneous time dependent
fields contains nonlinear contributions. A first order Taylor
expansion of the forcing electric field close to the center of
the oscillator, when inserted into the classical equation of
motion, yields a time modulation of the restoring force, i.e.,
of the term linear in the displacement from equilibrium.
Thus, the ordinary oscillator becomes a parametric oscillator,
an archetypal nonlinear system �1,2�. The study of the optical
linear and nonlinear responses of harmonic systems to peri-
odic electromagnetic fields has been done both with classical
�3,4� and quantum mechanical treatments �5�. It has been
shown that when perturbation theory is applied both methods
yield the same response at the fundamental frequency � and
at its second harmonic 2�. In this work we employ an alge-
braic approach to study nonperturbatively the time evolution
of a quantum mechanical harmonic system forced by a time
and space dependent electric field in order to learn about the
applicability of the perturbative treatment. Although the al-
gebraic method that we use is applicable to fields with an
arbitrary time dependence, in this paper we will restrict our-
selves to the adiabatically switched monochromatic fields for
which the perturbative treatment has been employed.

The structure of the paper is the following: In Sec. II we
summarize the classical perturbative approach �3� to the re-
sponse of an harmonic system in order to understand the
origin of its nonlinearity, whose results are known to agree
with the quantum mechanical perturbative treatment. In Sec.
III we develop an algebraic approach to the problem and we
take advantage of its group structure to obtain an exact quan-
tum mechanical solution. In Sec. IV we present results for
the time evolution of a system perturbed by fields with dif-
ferent frequencies and field strengths, we analyze the genera-
tion of the first few harmonics and compare them with the
predictions of perturbation theory. Finally, we devote Sec. V
to conclusions.

II. CLASSICAL APPROACH

We calculate the response of a single polar molecule
bound by harmonic forces. In the center of mass system it is
enough to consider the motion of a single dynamic charge q

with mass m corresponding to the reduced mass of the mol-
ecule and displaced a separation x from its equilibrium posi-
tion r0, to which it is bound by a harmonic force with reso-
nant frequency �0 and driven by a classical electric field
E�r , t�. For simplicity, in this paper we assume that the sys-
tem is one-dimensional �both r and E point in the same di-
rection� and consequently we neglect the transverse nature of
the electromagnetic field and any magnetic effects, although
we do expect them to be as large as the nonlinear electric
effects in three-dimensional �3D� systems. The interaction
potential is then given by

V = − qxE�r0,t� −
q

2
x2�rE�r0,t� . �1�

The first term is the usual dipolar interaction while the sec-
ond term is the quadrupolar interaction which is present
whenever the field is inhomogeneous, and we disregarded
higher multipoles. The resulting classical equation of motion
is

m
d2x

dt2 = qE�r0,t� − m�0
2x + qx�rE�r0,t� , �2�

where the electrical forces on the right-hand side �RHS� may
be identified with the electric field

E�r,t� � E�r0,t� + x�rE�r0,t� , �3�

evaluated at the actual position r=r0+x of the charge instead
of its equilibrium position r0. Notice that the restoring force
in Eq. �2�, i.e., the terms linear in the displacement x, depend
on the spatial derivative of the electric field, which are given
functions of time. Thus, the spatial variations of the field
transform the harmonic oscillator, the most linear system we
can conceive, into a forced parametric oscillator, a well-
known nonlinear system �1,2�.

Now assume that the driving field is monochromatic with
frequency �, E�r , t�=Re�E��r�e−i�t�. Using a perturbative
treatment �3�, we obtain the stationary induced electric di-
pole moment p�1��t�=Re�p�e−i�t� with

p� = qx� = ����E��r0� �4�

to first order in the driving field, where the linear polarizabil-
ity ���� is given by
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���� =
q2/m

�0
2 − �2 . �5�

The second order equation of motion at 2� becomes

− m�2��2x2� = − m�0
2x2� + qx��rE��r0� , �6�

whose solution is

x2� =
1

2q2������2����rE�
2 �r0�� . �7�

The second order dipole moment at 2� is, therefore,

p2� =
1

2q
������2����rE�

2 �r0�� . �8�

As mentioned above, the nonlinear response �8� of a har-
monic oscillator derived above classically using a perturba-
tive solution, coincides with the corresponding expressions
derived from a quantum mechanical perturbative treatment.
It is interesting to note that for the harmonic oscillator
model, the response at 2� due to the spatial variation of the
field is proportional to the product of the linear responses at
� and 2�.

Similarly, we also obtain a second order response at zero
frequency, given by

p0 =
1

q
Re ��0������E��r0��rE�

* �r0�� . �9�

III. ALGEBRAIC APPROACH

The purpose of this work is to develop an algebraic ap-
proach �6� which yields an exact solution to the problem of
the forced oscillator and to explore the validity of the pertur-
bative calculation. The system’s Hamiltonian is given by

H = H0 + V , �10�

where H0 is the unperturbed harmonic oscillator Hamiltonian
and V is the interaction �1�. In order to obtain the temporal
evolution of a given observable O under this Hamiltonian,
we write the evolution operator as U�t�=U0�t�UI�t�, with

U0�t� = e−iH0�t−t0�/� �11�

the unperturbed Schrödinger evolution and UI�t� the evolu-
tion operator in the interaction picture, obeying

i��tUI�t� = HI�t�UI�t� , �12�

with

HI�t� = U0
†�t�V�t�U0�t� �13�

the interaction Hamiltonian, and subject to the initial condi-
tion

UI�t0� = 1, �14�

where we choose t= t0 as a reference time. We assume that
the interaction is null or insignificant for times t� t0. Any
operator O at time t is then given by

O�t� = UI
†�t�U0

†�t�OU0�t�UI�t� , �15�

with the convention that the explicit time dependence of an
operator O�t� indicates that the operator is evaluated within
the Heisenberg picture at time t, while an unadorned O de-
notes the operator at t� t0 before the interaction has acted, or
equivalently, it denotes the operator in the Schrödinger pic-
ture. The time dependent potential V�t� and the electromag-
netic field components will be taken as exceptions to this
convention. We will use appropriate subscripts to indicate the
precise meaning of the different evolution operators.

We consider first a system forced by a homogeneous field,
so that only the linear term of Eq. �1� is present. The inter-
action Hamiltonian is then

HI�t� = − q��/2m�0�ae−i�0�t−t0� + a†ei�0�t−t0��E�r0,t�

� f1�t�a + f2�t�a†, �16�

where the position operator x has been written in terms of
creation and annihilation operators a†, a, as

x = ��/2m�0�a† + a� . �17�

The time evolution operator in the interaction picture may
then be written in a product form �7�

UI�t� = e−�+�t�a†
e−�−�t�ae−�0�t� �18�

with complex, time dependent functions �i�t�, i=+, −, 0.
These functions obey first order differential equations which
may be determined by substituting Eq. �18� into �12�, subject
to the initial conditions �i�t0�=0 as required by Eq. �14�.
Assuming an adiabatically switched monochromatic field of
the form

E�r0,t� = E��r0�cos��t�e�t, �19�

we obtain

�±�t� =
iqE�

2�
� �

2m�0
e±i�0�t−t0�� ei�t

i�� + �0� + �

−
e−i�t

i�� − �0� − �
	e�t, �20�

where � is a small switching rate and we have chosen an
initial time t0 far enough into the past so that e�t0 �0.

The temporal evolution of any observable can be obtained
from that of the creation and annihilation operators,

a�t� = e−i�0�t−t0��a − �+�t��, a†�t� = ei�0�t−t0��a† + �−�t�� .

�21�

Thus, the average value of the position operator 
x�t��
= 
n�x�t��n� is


x�t�� = ��/2m�0��−�t�ei�0�t−t0� − �+�t�e−i�0�t−t0�� . �22�

Substitution of the above results yields the average value of
the dipole moment p�t�=q
x�t��,
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p�t� =
q2/m

2�0
� � + �0

�2 + �� + �0�2 −
� − �0

�2 + �� − �0�2	E�e�t cos��t�

+
q2/m

2�0
�� 1

�2 + �� − �0�2

−
1

�2 + �� + �0�2	E�e�t sin��t� , �23�

consistent in the limit �→0 with the linear polarizability

��� � 0� =
q2/m

�0
2 − �2 + i	

q2

m�0

�� − �0� , �24�

showing that the response of an harmonic system to a homo-
geneous field is exactly given by the linear perturbative re-
sult. This result has been confirmed recently employing Flo-
quet’s theory �8�.

Now consider the full interaction potential �1� including
the dipolar and the quadrupolar couplings to the field. Be-
sides the terms considered above, it will contain terms of the
form −qx2�rE /2, so that we now have both linear and qua-
dratic terms. We assume an adiabatically switched mono-
chromatic field as in Eq. �19�, so that we write

V�x,t� = − q�xE��r0�cos �t + 1
2x2�rE��r0�cos��t − �0��e�t.

�25�

The phase difference �0 between the dipolar and quadrupolar
contributions, i.e., between the field and its gradient, is ex-
pected to have the values ±	 /2 for running waves. However,
the gradient of the field for a free running wave is usually
very small due to the long wavelength of light. On the other
hand, the interaction among neighboring molecules or be-
tween an adsorbed molecule and its image on its supporting
substrate might produce a local field with a large gradient
�4,9,10�. In these cases, the choice �0=0 would be appropri-
ate. For definitiveness, we make this choice of phase, al-
though the results do not differ essentially from those follow-
ing other choices.

We can write Eq. �25� in terms of creation and annihila-
tion operators as a linear combination of operators from the
set Xn�, where

X1 � a†a, X2 � �a†�2, X3 � a†,

X4 � a, X5 � a2, X6 � 1. �26�

Correspondingly, the interaction Hamiltonia is

HI�t� = �
n=1

6

fn�t�Xn, �27�

where the functions fn�t� are given by

f1�t� = − q� �

2m�0
	�xE� cos��t�e�t, �28�

f2�t� = − q� �

2m�0
	e2i�0t�xE� cos��t�e�t/2, �29�

f3�t� = − q� �

2m�0
ei�0tE� cos��t�e�t, �30�

f4�t� = − q� �

2m�0
e−i�0tE� cos��t�e�t, �31�

f5�t� = − q� �

2m�0
	e−2i�0t�xE� cos��t�e�t/2, �32�

f6�t� = − q� �

2m�0
	�xE� cos��t�e�t/2. �33�

The set Xn� forms a finite Lie algebra and thus the time
evolution operator can be written exactly in a product form
�11,12�

UI�t� = e−�1�t�a†ae−�2�t�a†2

e−�3�t�a†
e−�4�t�ae−�5�t�a2

e−�6�t�,

�34�

where the �n�t� are complex functions to be determined.
Transforming the position operator with the time evolution
operator �34� yields

x�t� = d1�t�a† + d2�t�a + d3�t� , �35�

where

d1�t� =� �

2m�0
�e�1�t�+i�0�t−t0� − 2�2�t�e−�1�t�−i�0�t−t0�� ,

�36�

d2�t� =� �

2m�0
2�5�t�e�1�t�+i�0�t−t0�

+ �1 − 4�2�t��5�t��e−�1�t�−i�0�t−t0�� , �37�

d3�t� =� �

2m�0
�4�t�e�1�t�+i�0�t−t0�

− ��3�t� + 2�2�t��4�t��e−�1�t�−i�0�t−t0�� , �38�

so that its average value taken between number states is


n�x�t��n� = d3�t� . �39�

Substitution of the ansatz given by Eq. �34� into Eq. �12�
yields a set of coupled, first order, nonlinear differential
equations for the complex functions �n�t�,

�t�1 =
i

�
�f1 − 4f5�2e−2�1� , �40�

�t�2 =
i

�
�f2e2�1 − 4�2

2f5e−2�1� , �41�

�t�3 =
i

�
�f3e�1 − 2�2f4e−�1� , �42�

�t�4 =
i

�
�f4e−�1 − 2�3f5e−2�1� , �43�
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�t�5 =
i

�
f5e−2�1, �44�

�t�6 =
i

�
�f6 − �3f4e−�1 + ��3

2 − 2�2�f5e−2�1� , �45�

with the initial conditions

�1�t0� = �2�t0� = �3�t0� = �4�t0� = �5�t0� = �6�t0� = 0.

�46�

Thus, using our algebraic approach, we have reduced the
problem of calculating the quantum mechanical response of
an oscillator nonlinearly driven by a time and space depen-
dent field, to the solution of a small set of coupled nonlinear
differential equations. Although we wrote Eqs. �28�–�33� for
monochromatic fields, it is trivial to modify them for any
time dependence, so that solving Eqs. �40�–�45� we could
calculate the response to finite pulses of arbitrary shape. As
expected, in the absence of a field’s gradient, there are no
nonlinear terms in the interaction, f1= f2= f5= f6=0, and the
average value of the position given by Eqs. �38� and �39�
coincides with the expression obtained previously �Eq. �22��.

IV. RESULTS

In Fig. 1 we show the time-dependent dipole moment
induced in a harmonic molecule by an inhomogeneous field.
The inhomogeneity is characterized through the parameter
���rE��r0� /E��r0� to which we gave the value �=0.05/�,
where �=�� /m�0 is a convenient length scale, of the order
of the amplitude of the molecular vibrations in the ground
state. To produce Fig. 1 we choose a small switching rate
�=210−4 and an initial time �t0��1/� such that e�t0

�10−5. We notice that for a relatively small electric field,
such as E�=0.1E, the response of the system is dominated by

its linear contribution, which we have verified agrees with
Eq. �5� as expected. Here we introduced the convenient field
scale E=��0 /q� which is the field that would produce an
appreciable energy change, of the order of the vibration en-
ergy quantum ��0 when a charge q is displaced a distance of
the order of a typical vibration amplitude �. Nevertheless,
due to the nonlinear character of the set of differential equa-
tions �40�–�45�, the evolution contains contributions from
several harmonics which become clearly discernible in Fig. 1
for large fields E��E. For example, p�t� has a large contri-
bution from the fourth harmonic for �=0.24�0, as 4� is
nearly resonant with the natural frequency �0. Similarly, p�t�
has a large contribution from the third harmonic for �
=0.32, as it is 3� which resonates with the natural frequency
of the oscillator in this case.

In order to analyze the contributions from different har-
monics as a function of the intensity of the field, in Fig. 2 we
show the magnitude �pn�� of the nth harmonic of the induced
polarization as a function of the strength E� of the field,
obtained through a Fourier transform of the time responses
p�t� such as those illustrated by Fig. 1. To calculate the Fou-
rier coefficients we did a fast Fourier transform on the last
period t� �−2	 /� ,0�, multiplying it by e−�t to minimize the
small discontinuity due to the periodic repetition of the adia-
batically switched signal. The dipole moment was normal-
ized to P=�0E and the field was normalized to E. We notice
that for small fields the nth harmonic is proportional to the
nth power of the perturbing field, except for the dc signal
which is proportional to E�

2 and which describes the static
distortion of the molecule due to the nonlinearity. As ex-
pected, in this case the response is dominated by the linear
contribution at the fundamental frequency. Furthermore, the
linear and quadratic responses are well described by the per-
turbative results �4� and �8�. However, as the field increases,
the third harmonic and afterwards the second harmonic ac-
quire more weight and become larger than the response at the
fundamental frequency. In this case, the third harmonic
dominates as its frequency is relatively close to the natural

FIG. 1. Dipole moment p�t� induced in a harmonic molecule by
a inhomogeneous field ��=0.05/�� as a function of time t for dif-
ferent values of the fundamental frequency � and for different am-
plitudes E� of the driving field, �=0.24�0 and E�=0.1E �full line�,
�=0.24�0 and E�=10E �dashed line�, �=0.32�0 and E�=0.1E
�small dashed line�, and �=0.32�0 and E�=10E �dotted line�. The
dipole moment is normalized to �0E� where �0 is the static polar-
izability of the oscillator and the time is normalized by the funda-
mental period �=2	 /�.

FIG. 2. First Fourier coefficients �pn�� of the dipole moment p�t�
induced by an adiabatically switched monochromatic field of fre-
quency �=0.33�0 on a harmonic molecule with resonance fre-
quency �0 as a function of the field amplitude E�=E0. The inho-
mogeneity parameter is �=0.05/�. We show results for n=0, 1, 2,
3, and 4, as well as the predictions of linear response theory �Eq.
�4�, labeled lin� and of the second order perturbative calculation of
second harmonic generation �Eq. �8�, labeled quad�.
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frequency �0 of the oscillator. For fields E��E the second
harmonic response starts to deviate noticeably from the
simple quadratic response, and for slightly larger fields, E�

�4E, all of the harmonics deviate from their simple power
law dependences pn��E�

n . At E��10E, all of the harmonics
display strong oscillations as a function of the field ampli-
tude, most notably, the dc distortion. For E��20E the am-
plitude of the oscillations explodes and the molecule essen-
tially breaks up. The reason for this latter behavior is that the
quadrupolar contribution to the Hamiltonian �1� becomes
larger than the unperturbed Hamiltonian when ���2qE��
���0, being both of them quadratic in the coordinate x. This
condition can be rewritten as E� /E�1/��. For Fig. 2 this
threshold lies at 1 /��=20. Notice that �pn� /P�= �xn� /��
where xn� is the Fourier amplitude of the displacement 
x�t��
corresponding to frequency n� and that � is of order 10−2

-10−1 of an atomic distance, so that it is unlikely that a real
molecule could still be considered harmonic for distortions
larger than �10�, in which case, other nonlinearities may be
expected to become important, as well as higher order mul-
tipolar contributions to the interaction energy �1�.

Besides calculating the dipolar response of the system, the
algebraic method allows a calculation of the occupancy of
the oscillator states for different field strengths. Curiously,
the population is already strongly redistributed for fields that
are still so small that the lowest order perturbative results for
pn� hold. We believe this is a peculiarity of the harmonic
oscillator, with its infinite number of evenly spaced energy
levels. For anharmonic systems with a finite number of un-
evenly spaced levels, we expect that a strong population re-
distribution would necessarily be accompanied by strong
corrections to the perturbative response. Thus, we expect a
lower threshold for nonperturbative behavior in anharmonic
systems �13�.

We have obtained a similar behavior for other frequencies
which are close to subharmonics of the resonance frequency
�0. In Fig. 3 we present the results corresponding to the case
when the fundamental frequency of the perturbing field is
close to resonance. In this case, the response at the funda-
mental frequency is stronger than in the previous case and is
stronger than the response at the different harmonics. How-
ever, for fields E��E the response starts deviating from the

perturbative power law prediction pn��E�
n and all of the

coefficients �pn�� approach one another. In this case their
apparent divergence starts earlier, at E��10E.

The reason for the power law dependence for small fields
may be understood from perturbation theory, as the lowest
order process which can yield an oscillation at frequency n�
is the �virtual� absorption of n photons of frequency �.
Within the semiclassical approach we employed, in which
the field was treated as a classical entity, we can restate this
observation noting that En�E�

n cosn �t is the lowest order
term which contains the frequency n�. However, terms of
the form En+2m, where m is any positive integer, also contain
the frequency n�. They correspond to absorption of n+m
photons intermingled with the stimulated emission of m pho-
tons all of frequency �, leaving the system oscillating with
an energy ��n+m�−m���=n�� which could be emitted as a
single photon of frequency n�. Thus, there are higher order
corrections to pn��E�

n+2m which become important for large
enough fields. Their calculation would require higher order
terms within a perturbative approach. Our exact calculation
includes them automatically.

To verify that the deviation from pn��E�
n in our calcula-

tions above is not an artifact due to lack of numerical accu-
racy, in Fig. 4 we present the results calculated for a complex
external field E�e−i�t instead of a field E�cos �t as in Eq.
�25�. In this case, the field has only a positive frequency �
instead of having both positive and negative frequencies ±�.
Thus, each power of the field En contains only the frequency
n� and we expect there is a one to one mapping between the
nth harmonic and a power dependence E�

n . This is confirmed
by our calculations.

V. CONCLUSIONS

In this work we have developed an algebraic approach
which permits the calculation of the dipole moment nonlin-
early induced by a space and time dependent field acting on
a harmonic molecule. The origin of the nonlinearity is the
quadrupolar coupling between the system and the field,
which involves the space derivatives of the field and which
converts the problem of a forced harmonic oscillator into the

FIG. 3. First Fourier coefficients �pn�� of the dipole moment p�t�
induced by an adiabatically switched monochromatic field, as in
Fig. 2, but for a fundamental frequency �=0.96�0.

FIG. 4. First Fourier coefficients �pn�� of the dipole moment p�t�
induced by an adiabatically switched monochromatic field, as in
Fig. 2, but for a fundamental frequency �=0.96�0 and for a driving
field E�e−i�t instead of E�cos �t.

NONLINEAR RESPONSE OF A HARMONIC… PHYSICAL REVIEW A 72, 023805 �2005�

023805-5



problem of a forced parametric oscillator. The algebraic
structure of the perturbed Hamiltonian corresponds to a finite
Lie algebra which yields an exact solution in terms of a set
of functions which may be obtained by solving numerically a
small system of coupled nonlinear differential equations. We
obtained the polarization p�t� induced by an adiabatically
switched monochromatic field and analyzed its Fourier com-
ponents pn�. We verified that for a small enough field ampli-
tude E��E, p0�E�

2 , and pn��E�
n , �n=1,2,…� as expected

from perturbation theory. We also verified that the responses
at the fundamental and the second harmonic frequencies
agree with the linear polarizability and the quadratical hyper-
polarizability previously reported �3,5�. However, at high
enough fields, of the order of E, noticeable deviations from
these power laws are observed. Whenever the driving fre-
quency is close to a subharmonic of the resonance frequency
��=�0 /n�, then the high field signal is dominated by its nth
harmonic component. At very high fields E��E /�� the non-
linear coupling to the field may overwhelm the harmonic
restoring force of the molecules which therefore is broken
up.

In this calculation we introduced a length scale � which is
typically of the order of a fraction of an atomic unit. For an
H2 molecule, ��0.2 Å and decreases as the inverse square
root of the reduced mass. We characterized the gradient of
the field by the quantity ���rE��r�� /E0�r0�. Thus, for a free
wave interacting with an isolated molecule we might expect
��, and thus, the nonlinearity, to be a very small quantity.
However, for a molecule adsorbed on a surface or a molecule
interacting with nearby neighbors, the local field that actually
polarizes the molecule might have a longitudinal character
and may be a few orders of magnitude larger than that for a
free wave. Thus, the values ��0.05/� that we employed in
our calculations and even larger values may be attainable.
We also introduced a field scale, namely, E=��0 /q�. Typical
values for this field are between one and two orders of mag-
nitude smaller than the atomic field scale e /aB

2 , with e the
electronic charge and aB Bohr’s radius. Thus, fields of order
E are also attainable with currently available light sources.

There are other nonperturbative approaches for the calcu-
lation of the response of molecular systems to applied fields.
The most common is Floquet theory �14�, which allows cal-
culations for time-periodic fields and to pulses with rela-

tively slowly varying amplitudes and frequencies �15�. Flo-
quet theory has been employed to calculate transition
probabilities for strong fields of different frequencies �14�, to
optimize pulses in order to perform efficient population
transfer �15�, to study Berry phases �16�, field-free orienta-
tion of molecules �17�, conservation of molecular alignment
for cyclic rotational wave packets in periodic pulse trains
�18�, etc. Unfortunately, the mathematical basis of Floquet
theory is most appropriate for the study of systems with a
finite number of states �19�. There has been some progress in
applying Floquet theory to systems with infinite Hilbert
spaces �20�, but only a few to the harmonic oscillator �8,21�.
It would be interesting to interpret our results above in terms
of the behavior of the Floquet dressed states, to follow the
Floquet dressed energies as the frequency, the field intensity,
and the field gradient vary, to identify their avoided crossing
and to ascertain under which conditions is the adiabatic ap-
proximation useful. In principle, a Floquet calculation re-
quires solving a Schrödinger-type equation in an infinitely
extended Hilbert space of time-periodic wave functions. At
this time there are no calculations within the Floquet scheme
for a harmonic system forced both dipolarly by an external
field and quadrupolarly by its gradient �8�. On the other
hand, our algebraic calculation requires only the solution of a
small set of differential equations.

We performed calculations for monochromatic fields in
order to compare our results with previously developed per-
turbative calculations �3,5�. However, our formalism, sum-
marized by Eqs. �36�–�45� is even better suited for pulsed
fields, as the inhomogeneous part of Eqs. �40�–�45� would
then have a finite support. In the present work we focused
our attention in harmonic molecules. Our results display non-
perturbative behavior at fields so large that the harmonic ap-
proximation for describing the oscillation of a molecule may
be questionable. Thus, it will be important to extend our
calculations to anharmonic oscillators. To that end, our for-
malism may be generalized �13� to other potentials which
have proved amenable to an algebraic treatment �22–25�.
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