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We present a theoretical analysis of trichromatic phase manipulation of electromagnetically induced trans-
parency and show that it is possible to obtain double switching, in which switching from normal to anomalous
dispersion occurs in two separate frequency regimes. In particular, a four-level system in the N configuration
is considered, in which electromagnetically induced transparency is established in the � subsystem and the
additional transition is connected to the probe transition and is coupled by a trichromatic field. It is shown that
the sum of the relative phases of the sideband components compared to that of the central component plays a
crucial role in the absorption and dispersion spectra. Normal dispersion with negligible absorption or anoma-
lous dispersion with small gain can be achieved in multiple-frequency regimes by varying the sum of the
relative phases. When the sum phase is changed from 0 to �, switching from normal to anomalous dispersion
occurs in the two different frequency regimes. On the other hand, so long as we fix the sum of two relative
phases, the absorption and dispersion spectra keep their own features unchanged no matter how we vary the
respective relative phases.
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I. INTRODUCTION

Recently great interest has been directed to the modifica-
tion of dispersion and absorption properties of an absorbing
medium by atomic coherence induced by coherent fields �see
�1–5� for reviews�. The atomic coherence leads to normal
�positive� or anomalous �negative� dispersion, which corre-
sponds to subluminal or superluminal light propagation with
negligible absorption or gain. Harris et al. �6� first suggested
that the group velocity was reduced in a three-level � system
exhibiting electromagnetically induced transparency. Previ-
ously group velocities were reduced to c /13.2 �7�, c /165 �8�,
and c /3000 �9� where c is the light velocity in vacuum. Hau
et al. �10� used a Bose condensate and reduced the group
velocity to 17 m/s. Later, the group velocities in hot gases
were reduced to 90 m/s �11� and 8 m/s �12�, and in a solid
to 45 m/s �13�. Following an earlier proposal of Steinberg
and Chiao �14�, Wang et al. �15� demonstrated superluminal
light propagation which was obtained by using a pair of Ra-
man gain features via bichromatic excitation in the three-
level � system. Agarwal and Dasgupta �16� predicted that
the Raman gain process led to superluminal propagation in
an N-shaped system. Negative dispersion without absorption
was predicted �17–19� and demonstrated �20–22� for driven
two-level systems.

More recently, much attention has been paid to the
switching from positive to negative dispersion at the same
frequency regime simply by parameter control. Several
schemes have been proposed. Agarwal et al. �23� suggested a
scheme in which a microwave field coupled the two lower
states of the three-level � system. Dispersion switching ap-
peared as the intensity of the microwave field was changed.

Wilson-Gordon and Friedmann �24� considered a three-level
� system in which a single pump was used. The dispersion
displayed switching behavior with increasing intensity of the
single driving field. Sahrai et al. �25� proposed to use two
beams of lasers and one beam of microwave field in a
double-� system. It was predicted that the group velocity
could be controlled by changing the relative phases between
different fields. Kang et al. �26� employed an N system and
demonstrated that dispersion switching occurred as the inten-
sity of the additional coupling field was increased. They
measured a slow group velocity of �3�10−4c and a nega-
tive group velocity of �−4�10−4c.

So far, however, the switching from normal to anomalous
dispersion has been limited to a single frequency regime.
Turning to practical applications, one needs to achieve
switching from normal to anomalous dispersion in different
frequency regimes. It is well known that quantum entangle-
ment of radiation fields lies at the heart of quantum-
information processing. Entangled states of photons at differ-
ent frequencies are generated and manipulated via their
nonlinear interaction in an ensemble of atoms �27,28�. The
efficiency of the nonlinear interaction depends crucially on
the interaction time. Only for sufficiently long interaction
time will a very efficient interaction take place �27–29�. It
requires that group velocities of different pulses are equal
whether they are subluminal or superluminal.

In this paper we show that it is possible to obtain double
switching, in which switching from normal to anomalous
dispersion occurs in two separate frequency regimes. The
group velocities are equal whether the light propagation is
subluminal or superluminal, when absorption or gain is neg-
ligibly small. The double switching is established by em-
ploying a trichromatic field to manipulate electromagneti-
cally induced transparency. In particular, the present scheme
is based on an N system, three transitions of which are
coupled in sequence by the coupling field, the probe field,
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and the trichromatic driving field �Fig. 1�a��. By varying the
sum of the relative phases of the sideband components com-
pared to that of the central component we obtain the double
switching from positive to negative dispersion. On the other
hand, when we fix the sum of the relative phases, the pulse
propagation retains its own features though the respective
relative phases change arbitrarily.

It should be noted that there have been some schemes
only for multiple positive dispersion. Lukin et al. �30� first
showed the appearance of a pair of positive dispersions in
double transparency induced by a new coupling transition.
The experimental demonstration was realized by Chen et al.
�31� and Ye et al. �32�. McGloin et al. �33� and Paspalakis et
al. �34� showed the presence of multiple transparency and
multiple positive dispersion in an n-level ladder system �n
�3� and in an n-level system with an excited state and n
−1 ground states, respectively. Composite transparency me-
dia were also proposed to entangle two photons at different
frequencies �28,29�. Such systems contained two subsystems
in the � configuration. Wang et al. recently realized an ex-
perimental demonstration for bichromatic transparency �35�
in a three-level � system. Trichromatic excitation led to the
phase dependence of the multiple transparency �36�. In con-
trast, to our knowledge, there have been few reports on nega-
tive dispersion in multiple frequency regimes. An exception
is the work of Harshawardhan and Agarwal �37�, who sug-
gested using simultaneously a modulated field on the cou-
pling transition and an incoherent field on the probe transi-
tion in the V system. So far there has been no proposal for
multiple dispersion switching between positive and negative
dispersions. Here we present a scheme for double dispersion
switching.

II. MODEL AND EQUATION

The model system we consider is shown in Fig. 1�a�. The
atom has two metastable states �1� and �2� and two excited
states �3� and �4�. The four transitions between two meta-
stable states and two excited states �1,2�-�3,4� are dipole
allowed, while the transitions �1�-�2� and �3�-�4� are dipole

forbidden. A coupling pump field Ẽc�t�= 1
2Ece

−i�ct+c.c. is ap-

plied to the �2�-�3� transition, and a probe field Ẽp�t�
= 1

2Epe−i�pt+c.c. is coupled to the �1�-�3� transition, where Ec
and Ep are the amplitudes of the pump field and the probe
field, respectively, and �c and �p are the corresponding fre-

quencies. A trichromatic field Ẽt�t�= 1
2 �E0+E1ei�t

+E2e−i�t�e−i�st+c.c. is coupled to the �1�-�4� transition, where
E0 ,E1, and E2 are the amplitudes of the trichromatic pump
components, and �s ,�s−�, and �s+� are the corresponding
frequencies, and � is the frequency difference.

The master equation is derived in an appropriate rotating
frame and in the dipole approximation as �38�

�̇ = −
i

�
�H1 + H2,�� + �

i=1,2;j=3,4
Lij� , �1�

where the system Hamiltonian H1+H2 is written in the form

H1 = − ��	p − 	c�
22 − �	p
33 − �	0
44, �2�

H2 = −
�

2
�p
31 −

�

2
�c
32 −

�

2
��0 + �1ei�t + �2e−i�t�
41

+ H.c. �3�

Here we have defined the atom-field detunings 	p=�p−�31,
	c=�c−�32, and 	0=�s−�41, where �31,�32, and �41 are
the atomic resonance frequencies of the transitions �1�
-�3� , �2�-�3�, and �1�-�4�, respectively. �p=d31·Ep /� and �c
=d32·Ec /� are Rabi frequencies involved in the probe and
coupling fields, respectively, and �i=d41·Ei /� �i=0,1 ,2�
denote the Rabi frequencies associated with three compo-
nents, respectively, of the trichromatic field. 
ij = �i�	j� �i , j
=1–4� are projection operators for i= j and spin-flip opera-
tors for i� j. Lij� represents the atomic decay with rate � ji
from level �j� to level �i�, and takes the form

Lij� =
� ji

2
�2
ij�
 ji − 
 ji
ij� − �
 ji
ij� . �4�

The equations of motion for the density matrix elements are
derived as

�̇11 = �31�33 + �41�44 +
i

2
�p

*�31 −
i

2
�p�13

+
i

2
��0

* + �1
*e−i�t + �2

*ei�t��41

−
i

2
��0 + �1ei�t + �2e−i�t��14, �5�

�̇22 = �32�33 + �42�44 +
i

2
�c

*�32 −
i

2
�c�23, �6�

FIG. 1. �Color online� �a� The four-level N-type atomic system,
in which the coupling field �Rabi frequency �c� induces transpar-
ency in the probe field ��p�; a trichromatic field ��1 ,�0 ,�2� of
frequency difference � is used to manipulate the electromagneti-
cally induced transparency. �b� The splitting of level �3� into �3u,l�
due to the coupling of the medium to the coupling field �c and the
splitting of level �1� into �1u,l� due to the coupling of the medium to
the central component �0 of the trichromatic field. Correspond-
ingly, the probe transition �1�-�3� is split into four with Rabi fre-
quencies �pi

�j�, i , j=1,2. �c� Further level splitting of the levels �1u,l�
into two infinite sets of sublevels A and B. Each of the above four
transitions is split into four infinite sets of transitions.
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�̇33 = − ��31 + �32��33 +
i

2
�p�13 −

i

2
�p

*�31 +
i

2
�c�23

−
i

2
�c

*�32, �7�

�̇12 = − 
12�12 +
i

2
�p

*�32 +
i

2
��0

* + �1
*e−i�t + �2

*ei�t��42

−
i

2
�c�13, �8�

�̇13 = − 
13�13 +
i

2
�p

*��33 − �11� −
i

2
�c

*�12

+
i

2
��0

* + �1
*e−i�t + �2

*ei�t��43, �9�

�̇14 = − 
14�14 +
i

2
��0

* + �1
*e−i�t + �2

*ei�t���44 − �11�

+
i

2
�p

*�34, �10�

�̇23 = − 
23�23 +
i

2
�c

*��33 − �22� −
i

2
�p

*�21, �11�

�̇24 = − 
24�24 −
i

2
��0

* + �1
*e−i�t + �2

*ei�t��21 +
i

2
�c

*�34,

�12�

�̇34 = − 
34�34 +
i

2
�p�14 +

i

2
�c�24

−
i

2
��0

* + �1
*e−i�t + �2

*ei�t��31, �13�

together with the complex conjugates for Eqs. �8�–�13� and
the closure relation �11+�22+�33+�44=1. The parameters
that appear in Eqs. �8�–�13� are


12 = �21 + i�	p − 	c� ,


13 = 1
2 ��3 + �21� + i	p,


14 = 1
2 ��4 + �21� + i	0,


23 = 1
2 ��3 + �21� + i	c,


24 = 1
2 ��4 + �21� − i�	p − 	c − 	0� ,


34 = 1
2 ��3 + �4� + i�	0 − 	p� , �14�

where �3=�31+�32 ��4=�41+�42� is the atomic rate of decay
from �3� ��4�� to both �1� and �2�, and �21 is the dephasing
rate between levels �1� and �2�.

In order to solve the motion equations of the density-
matrix elements, we can apply the harmonic expansion

method and expand the density matrix elements as

� jk = �
l=−�

+�

� jk
�l�eil�t �j,k = 1–4� , �15�

where the � jk
�l�’s represent the slowly varying amplitudes and

are needed to determine the absorption and dispersion prop-
erties of the optical medium. Substitution of Eq. �15� into
Eqs. �5�–�13� and the complex conjugates of Eqs. �8�–�13�
leads to an infinite set of equations where l is an integer that
varies from −� to �. The steady-state solutions can be
solved by the method of matrix inversion. To do so, we con-
struct a column vector X as

X = �X1
�−N�,…,X15

�−N�;…;X1
�0�,…,X15

�0�;…;X1
�N�,…,X15

�N��T,

�16�

X1–15
�l� = ��21

�l�,�12
�l�,�31

�l�,�13
�l�,�41

�l�,�14
�l�,�32

�l�,�23
�l�,�42

�l�,�24
�l�,

�43
�l�,�34

�l�,�11
�l�,�22

�l�,�33
�l��T, �17�

where the value of the integer N is chosen appropriately to
determine the dimension of the vector X and the accuracy of
our matrix inversion method. For a given value of N, the
dimension of the vector X is 15� �2N+1�. The set of equa-
tions for slowly varying amplitudes can be written in the
form

Ẋ + QX = R , �18�

where Q is a �15� �2N+1��� �15� �2N+1�� matrix and R
is a 15� �2N+1� column vector, whose elements can be de-
termined from the above equations. The steady-state solution
to the vector X is obtained by setting the time derivatives to
zero and using matrix inversion as

X = Q−1R . �19�

The complex polarization of the medium is written in the
present rotating frame as

P�t� = nad13�31 = nad13 �
l=−�

+�

�31
�l�eil�t, �20�

where na is the atomic number density. Using the complex
polarization components p��p�=nad13�31

�0� we have the sus-
ceptibility ���p�= p��p� /�0Ep. The refraction �the deviation
of the refractive index from unity� and the absorption are
determined by the real and imaginary parts of the suscepti-
bility ��=Re � and ��=Im �, respectively,

����p� =
na�d13�2

�0�
Re
�31

�0�

�p
� , �21�

����p� =
na�d13�2

�0�
Im
�31

�0�

�p
� . �22�

The present method is applicable for the case of arbitrary
intensity of the probe field. Here we focus only on the linear
susceptibility, which is obtained simply by assuming the
probe field to be weak, ��p���3 ,�4 , ��i� �i=0,1 ,2 ,c�.
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The dispersion is the derivative of the refraction with re-
spect to 	p. The group velocity vg of the probe pulse is given
by �2�

vg =
c

nR + �p � nR/��p
, �23�

where nR=1+2�����p� is the real part of the refractive in-
dex. For normal dispersion ���� /��p�0�, the group velocity
is less than the phase velocity �vg�c /nR� while for anoma-
lous dispersion ���� /��p�0�, the group velocity exceeds
the phase velocity �vg�c /nR� or becomes negative �vg�0�.

III. ABSORPTION AND DISPERSION SPECTRA

In what follows we present our numerical results. In gen-
eral we can take �31=�32, �41=�42. The dipole matrix ele-
ment is expressed via experimentally measurable quantities,
the radiative decay rate �31 and the wavelength �p, as �38�

�d13�2

�0�
=

3�p
3�31

8�2 . �24�

In these units Eqs. �21� and �22� read

����p� =
3na�p

3

16�2 Re
 �31
�0�

�p/�3
� , �25�

����p� =
3na�p

3

16�2 Im
 �31
�0�

�p/�3
� , �26�

where we have used the relation �3=�31+�32=2�31. Equa-
tions �25� and �26� show that the susceptibility can be scaled
in units of 3na�p

3 /16�2. For the realistic example we con-
sider a four-level 87Rb system in which the transition rates,
the wavelength, and the density are �3=2��5.3�106 s−1,
�4=2��5.9�106 s−1, �p=794 nm, na=2�1012 cm−3. This
system was used to demonstrate the switching from normal
to anomalous dispersion in a single frequency regime �26�.
In our calculation we scale frequencies, detunings, Rabi fre-
quencies, and decay rates in units of �3=�31+�32. In the
scaled unit, we have �31=�32=0.5, �41=�42=0.557. Without
loss of generality, we assume �c and �0 to be real. We use
� j = �� j�e−i�j �j=1,2� where �1,2 are the relative phases of
the sideband components E1,2 compared to that of the central
component E0, respectively, and define the sum of the rela-
tive phases of the sideband components to that of the central
component �=�1+�2. The real part �dotted line� and imagi-
nary part �solid line� of the susceptibility are plotted in Fig. 2
as functions of the probe detuning 	p for three groups of
different parameters: �a�, �b� �c=�0= ��1�= ��2�=5, �=5;
�c�, �d� �c=�0= ��1�= ��2�=10, �=10; and �e�, �f� �0
= ��1�= ��2�=5, �=5, �c=10. The left column �a�, �c�, �e� is
for �=0 while the right column �b�, �d�, �f� is for �=�. The
other parameters are chosen as �p=0.01, �21=0.001, 	0=0,
and 	c=0. The absorption and dispersion spectra depend not
only on the Rabi frequencies ��c ,�0 , ��1� , ��2�� and the fre-
quency difference ��� but also on the sum phase ���. The
characteristic features are presented as follows.

�i� For �=0 �left column� the system exhibits electro-

magnetically induced transparency with normal dispersion in
a series of frequency regimes. Intervals between adjacent
peaks �or between adjacent transparency windows� are deter-
mined by the frequency difference �. For the cases in Figs.
2�a� and 2�e�, the interval is equal to �=5, while the gap is
�=10 for the case in Fig. 2�c�. Whether the central absorp-
tion spectrum displays an absorption peak or a transparency
window depends on Rabi frequencies. For example, when
we vary the Rabi frequency �c from �c=5 to 10 and keep
unchanged other parameters, the central absorption peak
�Fig. 2�a�� is replaced by the central transparency �Fig. 2�e��.

�ii� When the sum phase is changed from �=0 �left
column� to �=� �right column�, the absorption features are
turned into gain features in a very wide frequency range and
multiple positive dispersion is transformed into multiple
negative dispersion. The frequencies at which gain peaks ap-
pear for �=� correspond to those at which the transparency
windows are seated for �=0. However, the interval between
adjacent gain peaks is kept unchanged. Regardless of the
change in the sum phase, the interval is determined simply
by the frequency difference �. By comparison it is easily
understood that the appearance of the gain peaks reflects the
role of the sum phase in the absorption spectra. First, varying
the sum phase from �=0 to � leads to the splitting of the
absorption peak into two, which are shifted from the original
position by ±� /2, respectively. The split components from
the adjacent peaks superpose and turn upside down, and lead
to gain features. Correspondingly, the normal dispersion be-
tween two adjacent absorption peaks is transformed into the
anomalous dispersion between two adjacent gain peaks as
the sum phase changes from �=0 to �.

�iii� Comparing the left column ��=0� with the right

FIG. 2. �Color online� The real part �dotted line� and the imagi-
nary part �solid line� of the susceptibility as functions of the probe
detuning 	p for �a�, �b� �0= ��1�= ��2�=�c=5, �=5; �c�, �d� �0

= ��1�= ��2�=�c=10, �=10 ; and �e�, �f� �0= ��1�= ��2�=5, �c

=10, �=5. �=0 is for the left column �a�, �c�, �e� while �=� is for
the right column �b�, �d�, �f�. The other parameters are chosen as
�p=0.01, �31=�32=0.5, �41=�42=0.557, �21=0.001, 	0=0, and
	c=0. Double switching from normal to anomalous dispersion oc-
curs in the regimes indicated by arrows with the letters A and B.

HU et al. PHYSICAL REVIEW A 72, 023803 �2005�

023803-4



column ��=�� it is easy to find the two separate frequency
regimes �indicated by thick lines with the letters A and B�, in
which positive dispersion with vanishing absorption occurs
for �=0 while negative dispersion with negligible gain hap-
pens for �=�. That means that when we vary the sum phase
from �=0 to �, the switching from normal to anomalous
dispersion occurs in two different frequency regimes. In Fig.
3 we plot the group velocity vg for the same parameters as in
Fig. 2. It is seen that the switching from slow group velocity
to negative group velocity occurs in two regimes, which are
also indicated by thick lines with the letters A and B. Since
�p��nR /��p�=�p��nR /�	p��nR except near the frequency at
which the ����’s take their maximum values, the group veloc-
ity spectra are symmetrical with respect to the atomic reso-
nant transition frequency �31 �	p=0�. For the atomic density
considered here, the positive group velocities are reduced to
vg��10−6–10−5�c while the negative group velocities are
vg�−10−4c. Such group velocities are in agreement with
those measured in cold Rb atoms, where dispersion switch-
ing occurs in a single frequency regime �26�. The A and B
regimes cover the detuning range 	p�−4.7 to −2.7 and 	p
�2.7–4.7 for Figs. 3�a� and 3�b�; 	p�−9.7 to −5.3 and 	p
�5.3–9.7 for Figs. 3�c� and 3�d�; 	p�−7.2 to −5.2 and 	p
�5.2–7.2 for Figs. 3�e� and 3�f�. The frequency ranges in
Figs. 3�a�, 3�b�, 3�e�, and 3�f� are about twice as large as the
level width of the excited states �3, while the frequency
range in Figs. 3�c� and 3�d� is about four times as large as the
level width. These frequency ranges are almost the same as
for single dispersion switching �26�. Since the interval be-
tween the adjacent absorption peaks is determined by the
difference frequency �, we can increase the frequency range
for the double switching by increasing the difference fre-
quency �. The price is relatively less reduction of group ve-
locity, as shown in Figs. 2�c� and 2�d�. However, the reduc-
tion of the group velocity can be greatly enhanced in a Bose-
Einstein condensate because of the benefit of a much greater
atomic density.

�iv� On the other hand, the response of the medium
can be independent of the change in the respective relative

phases when the sum of the two relative phases is fixed, i.e.,
�1+�2=C �constant�. When we vary the respective phases
�1= �C /2�−� and �2= �C /2�+� �� is any real number� all
properties of absorption and dispersion are not longer
changed, so long as C stays unchanged. For the cases in Fig.
2, the absorption and dispersion display remarkably different
features for different values C=0 �a�, �c�, �e�, C=� �b�, �d�,
�f�. But for a given value of C, the spectra exactly keep their
features regardless of the respective values of �1 and �2.

The above results can be understood by employing
dressed atomic states �39�. As above we consider 	0=	c
=0 and ��0. The dressing transform can be performed
through three steps. In the first step, the coupling field �c
splits the level �3� into two sublevels ��3u� , �3l�� with level
shifts ±��c /2, as shown in Fig. 1�b�. As a consequence, the
probe transition �1�-�3� is split into two subtransitions �1�
-�3u,l�, which have Rabi frequencies �p1 and �p2, respec-
tively, and resonance frequencies �31± ��c /2�, respectively.
In the second step, the coupling of the atom to the central
driving component �0 gives rise to the splitting of the level
�1� into two sublevels ��1u� , �1l��, which move from the level
�1� by ±��0 /2. Thus, the above two subtransitions �1�-�3u,l�
are split into four �1u,l�-�3u,l�, which have Rabi frequencies
�pi

�j�, i , j=1,2, and resonance frequencies �31± ��c±�0� /2.
In the third step, the coupling of the atom to the sideband
components �1 and �2 leads to further splitting �Fig. 1�c��.
Two sublevels �1u� and �1l� split, respectively, into two infi-
nite series of sublevels �indicated by A and B, respectively�,
which have energy levels ���1±�0 /2+n��, n
=0, ±1, ±2,…. The sublevels in the same infinite series are
separated by the modulation frequency �. As a result, each of
the above four probe transitions �1u,l�-�3u,l� becomes an infi-
nite set of transitions. These four infinite sets of transitions
have the central resonance frequencies �p

�c�

=�31± ��c±�0� /2 and the sideband resonance frequencies
�p

�s�=�31± ��c±�0� /2+n�, n= ±1, ±2,….
The absorption and dispersion spectra are the result of the

coherent superposition of all probe transitions. The gain is
due to the optical pumping that is obtained by the spontane-
ous decay �4�� �2�. In the dressed picture, the spontaneous
emission �4�� �2� gives rise to the incoherent population
transfer from two infinite sets of sublevels A and B to the two
dressed states ��3u� , �3l��. It is clear that the gain depends on
atomic coherence at the same time. The dressed coherence
occurs not only between the transitions in each group but
also between any two different groups. The probe transitions
from different groups superpose in a complicated way be-
cause the coherence depends not only strongly on all Rabi
frequencies ��0 , ��1� , ��2�� and modulation frequency �, but
also crucially on the phases ��1 ,�2�. Note that no phase
dependence is existent for bichromatic case. Jakob and
Kryuchkyan �40� showed that phase-dependent squeezed-
reservoir effects occur for the lower-level coupling case but
are absent for the upper-level coupling case. The phase de-
pendence vanishes for the lower-level coupling case when
the electromagnetic reservoir is reduced to the usual vacuum
as considered here. Phase dependence does not appear in the
bichromatically driven three-level system in � configuration
�35�. It is true for the present system when one of the trichro-

FIG. 3. The group velocity versus the probe detuning 	p for the
same parameters as in Fig. 2. Double switching from slow group
velocity to negative group velocity occurs in the regimes indicated
by the letters A and B.
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matic components is absent ��i=0, i=0,1 ,2�. The present
system can be viewed as the combination of two bichromati-
cally driven subsystems, each of which involves one infinite
set of sublevels A or B. If the two subsystems are indepen-
dent of each other, there is no phase dependence, as in the
bichromatic case. It is due to the introduction of the central
field component �0 that two subsystems are correlated to
each other. It is such a correlation that leads to phase depen-
dence. It is obvious that the relative phases of the central
component E0 to those of the sideband components E1,2 play
their role through the phase sum �−��1+�2��. Compared
with the bichromatic case, however, phase independence is
kept under an additional condition. The condition is found
that the phase sum �1+�2 is kept constant. That is to say, the
final spectrum is independent of the phase difference ��1

−�2� when the sum phase � is fixed.

IV. CONCLUSION

In summary, we have shown that when a trichromatic
field is used to manipulate the electromagnetically induced
transparency in a four-level N-type system, the absorption
and dispersion spectra depend crucially on the sum of the
relative phases of the sideband components compared to that
of the central component. When we vary the sum phase, we
can have switching from normal dispersion with negligible
absorption to anomalous dispersion with negligible gain in
two different frequency regimes. We have also shown that
when the sum phase is fixed, the dispersion and absorption
spectra are independent of the respective relative phases.
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