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In a condensate made of two different atomic molecular species, Onsager’s quantization condition implies
that around a vortex, the velocity field cannot be the same for the two species. We explore some simple
consequences of this observation. Thus, if the two condensates are in slow relative translation one over the
other, the composite vortices are carried at a velocity that is a fraction of the single-species velocity. This
property is valid for attractive interaction and below a critical velocity which corresponds to a saddle-node
bifurcation.
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I. INTRODUCTION

One remarkable result in condensed-matter physics is the
discovery by Onsager �1� that, in a superfluid, the vorticity
can be present along narrow lines with a quantized circula-
tion. Indeed, the integral �u .ds of the fluid velocity u taken
along a circuit enclosing a vortex line must be a positive or
negative integer multiple of h /m, where h is Planck’s con-
stant and m is the mass of the particles making the super-
fluid. This creates a striking analogy between the dynamics
of the quantum vortices of a superfluid and the Kelvin vor-
tices of a classical inviscid fluid, the quantization being
present only to specify the value of the circulation, an arbi-
trary quantity in a classical fluid. This analogy between clas-
sical inviscid fluids and superfluids is at the heart of our
understanding of superfluid mechanics, beginning with the
Landau two-fluid theory �2� when there is no normal fluid.
However, things are not so simple, just because the quanti-
zation of the circulation involves explicitly the mass of the
particles. Therefore, if there is more than one species of par-
ticles with different masses, it is not obvious at all that clas-
sical fluid mechanics remains the right theory to describe the
large-scale motion of this mixture with quantum vortices.
This is because, in such a mixture, one does not know
a priori which mass enters into Onsager’s circulation condi-
tion.

This question seems to be irrelevant for superfluid 4He,
because it has no other stable bosonic isotope, and mixing it
with any other atomic or molecular liquid is not possible at
temperatures low enough to observe superfluidity. Mixtures
of 4He and 3He �a fermion� can remain liquid, although the
spin effects in 3He make the whole picture quite different,
but certainly extremely interesting from the present point of
view �see Ref. �17��. We look at a situation that can be,
presumably, realized in atomic vapors, namely, a mixture of
two bosonic atoms �or eventually molecules� �3–5�. We con-
sider the following general problem: given two species in the
same gas, both condensed, what are the dynamical properties
of the large-scale motion of this mixture? This problem has
been looked at without vortices included �see �6,7��.

II. THE COUPLED GROSS-PITAEVSKI� EQUATIONS

By extrapolating from what is known about single-species
condensates, one can think of many relevant issues such as
the normal modes extending to mixtures in the Bogoliubov
spectrum or the density profiles in harmonic traps. When
looking at the fluid motion itself, one of the most interesting
issues is the behavior of vortices.

We assume that the mixture is at zero temperature and
that each molecular/atomic species of molecular mass mj is
described by a macroscopic wave function � j�r , t�, a com-
plex valued function of the position r and of time t with the
discrete index j being either 1 or 2, to denote the species
under consideration. �One could deal as well with more than
two species.� The equation of evolution of the coupled
� j�r , t�j=1,2 is a priori an extension �6� of the familiar
Gross-Pitaevski� equation �GP�

i�
�� j

�t
= −

�2

2mj
�2� j + aj�� j�2� j + g���j+1��2� j . �1�

The proceding is for two coupled equations, with j=1 and
j=2. In the interaction term, the index �j+1� is computed
mod 2, 1+1=2, 2+1=1. Last, the interaction real parameters
aj and g are such that the mixture is stable against collapse
and against separation into two phases, one rich in 1, the
other in 2. The stability depends on the minimum of the
interaction part of the energy, the volume integral of

�a1

2
��1�4 +

a2

2
��2�4 + g��1�2��2�2� .

The mixture is then stable against collapse if a1 and a2 are
positive and if a1a2�g2. The linear stability against demix-
ing is determined by the Bogoliubov spectrum of excitation.
We obtain it by seeking the dispersion relation between the
frequency � and the wave number k of the linear perturba-
tions around the homogeneous state of densities � j = �� j�2,
respectively,

PHYSICAL REVIEW A 72, 023618 �2005�

1050-2947/2005/72�2�/023618�6�/$23.00 ©2005 The American Physical Society023618-1

http://dx.doi.org/10.1103/PhysRevA.72.023618


	�2 −
k2

m1
�a1�1 +

�2k2

m1
�
	�2 −

k2

m2
�a2�2 +

�2k2

m2
�


=
g2�1�2k4

m1m2
. �2�

For uncoupled condensates g=0, we retrieve the
Bogoliubov spectrum for each condensate. The condition for
linear stability against demixing �� real for all k� leads to the
same criterion a1a2�g2. The coupled equations �1� are Gal-
ilean invariant, and one can thus consider the flow of both
condensates at the same constant velocity through Galilean
boosts of the wave functions. Moreover, notice that for g
=0, the uncoupled equation �1� are Galilean invariant sepa-
rately, so one can consider a relative constant flow between
each species. For weak coupling, one can then generalize this
property and thus consider the relative flow of one species
with respect to the other one. If the condensates are homog-
enous, such flow remains an exact solution of the equations
and the model allows an extra “superfluid” property, that is,
the two species can flow into each other without dissipation.
For inhomogenous condensates, such as those containing
vortices, for instance, the interaction between the two species
generates a friction force, and the vortex dynamics are af-
fected by the presence of the two species. The goal of the
present paper is precisely to exhibit such motion for simple
cases.

From the coupled equations �1�, the vortices bear a
double-integer index, denoting the numbers of the phase
winding of each wave function around the core of the vortex.
The solution of equations �1� for a vortex �n1 ,n2� is of the
form � j =e−iEjteinj�� j�r�, where �r ,�� are the polar coordi-
nates in the plane perpendicular to the vortex axis. The real
functions � j�r� are solutions of two coupled ordinary differ-
ential equations

�Ej� j = −
�2

2mj
�� j� +

1

r
� j� −

nj
2

r2 � j� + aj� j
3 + g��j+1�

2 � j , �3�

where the primes stand for the derivative along the radius
r�� j�=d� j /dr�. The asymptotic conditions are that, at very
large r, � j tends to � j

0, the uniform density of the species j, so
that �Ej =aj� j

0+g� j+1
0 . Moreover, � j behaves like r�nj� at small

r. We later restrict our study to the two-dimensional �2D�
case, although three-dimensional �3D� dynamics should re-
veal interesting behavior �unzipping, Kelvin waves, etc.� and
is postponed to further work. We assume that the multiply
charged vortices �at least one of the nj �1� are unstable and
decompose into separated single-charged vortices, as is the
case in general for uncoupled condensates �8,9�. Moreover,
because of the coupling via the term proportional to g in the
original equations, the vortices of the composite index �both
nj = ±1� can be either stable, with a joint zero at the same
location, or unstable, when such a composite vortex can de-
compose into one single-charged vortex in each condensate,
not located at the same position. The interaction between
vortices belonging to different species, like vortices �0, 1�
and �1, 0�, is short ranged, because it depends on the density
distribution near the vortex core �the interaction between
vortices of the same species is long-ranged, because of the

velocity field decaying as 1/r at large distances from the
core� �10�. A reasonable guess is to assume that for negative
g, the vortices of different species attract each other �what-
ever their relative sign�, although their interaction is repul-
sive for positive g. This is based on the fact that the “inter-
action energy” is, in a first approximation �that is for small
g�, represented by the integral of g��1−�1

0���2−�2
0�, positive

�repulsive� for positive g and negative �attracting� for nega-
tive g. Because of the Hamiltonian structure of the dynamics,
this instability is very slow, since it manifests through radia-
tion coming from the vortex acceleration �11�. Our numeri-
cas analysis is in complete agreement with this point: we
observe that the two vortices stand at the same position for
negative g while they describe a slow, outward-spiraling
relative motion for positive g.

We introduce here a convenient dimensionless version of
the model. Rescaling space and time by the factors
�m1m2a1a2�1/4 /�, and �a1a2�1/2 /�, respectively, we obtain the
following set of two coupled equations:

i
�� j

�t
= −

	 j

2
�2� j + 
 j�� j�2� j + g���j+1��2� j , �4�

with 	1=1/	2=�m2 /m1 and 
1=1/
2=�a1 /a2. Figures 1
and 2, will illustrate the case 	1=
1=1, since no new effects
appear when considering different 	 and 
 �but staying in
the domain where the mixture remains thermodynamically
stable�. For uncoupled condensates �g=0�, we note that the
vortex solution � j

0�r� for each condensate is determined by a
single function f

� j
0�r� = �� j

0f��
 j� j
0

	 j
r�ei��j�−
j�j

0t�, �5�

where � j = ±1 describes the sign of the circulation of each
vortex, and with f the real solution for the equation �see Ref.
�12��

−
1

2
	 f��r� +

f��r�
r

−
f�r�
r2 
 + �f2�r� − 1�f�r� = 0.

III. NUMERICAL RESULTS

Consider now the effect of a flow on a composite vortex,
when g is negative �that is, when this composite vortex is
stable�. Because of the Galilean invariance of the coupled
equations, we have only to study the relative flow of one
species �say, 1� with respect to the other at constant speed
�say, along direction 1, v1=v1e1�. Numerical analysis shows
that at low speed, the single composite vortex splits first into
two vortices, a �0, 1� vortex and a �1, 0� vortex. Then the two
vortices move together almost at a constant speed that is a
fraction �as explained later� of the speed of the moving spe-
cies. Oscillations are observed around this stationary motion,
and the two vortices are also oriented to each other in the
direction orthogonal to the imposed velocity. At higher
speeds, the vortices split apart, one being carried by the fluid
of the same species, the other one remaining immobile, un-
affected by the velocity of the other species. Figure 1 illus-
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trates these major effects. We use a pseudospectral scheme
that allows for simple rotations of the wave function in real
�for the nonlinear part� and Fourier �for the linear terms�
spaces. An efficient fast Fourier transform �FFT� �13� is
used, and the Yoshida scheme for the Hamiltonian system is
employed to improve the efficiency. Initial conditions are
taken as square periodic patterns of alternate-sign vortices �to
allow for periodic boundary conditions�, located at the same
position for both species. An imposed velocity v1 is applied
to the first condensate only.

IV. SOLVABILITY CONDITIONS

To understand this condition, the simplest thing is to solve
the original equations �1� by perturbation, assuming the cou-

pling term to be small and the uniform velocity of species 1
and species 2 as being motionless. The zero-order solution is
a pair of �1, 0� and �0, 1� vortices, the first one being located
at r1�t�, the other at r2�t�. Without flow speed and without
interactions, both vortices remain where they are. As the
speed of species 1 and the interaction is turned on, one finds
by an expansion in powers of a unique small parameter the
velocity and the strength of the interaction, the time-
dependent solution of the equations. The equations of motion
for r1�t� and r2�t� follow from a solvability condition in this
expansion. We in fact seek solutions in the form

� j�r,t� = � j
0�r − r j�t�� + � j�r�e−i
j�j

0
,

where � j�r� is a small correction to the unperturbed vortex
solution. At the first order, one has to solve a linear equation
for the perturbation to the basic solution, with an inhomoge-
neous term coming both from the external speed of species 1
and from the interaction

L1 · �1 = i�v1 −
dr1

dt
� · � �1

0 − g��2
0�2�1

0,

L2 · �2 = − i
dr2

dt
· � �2

0 − g��1
0�2�2

0, �6�

where L j is the linearized operator of Eq. �4� around the
vortex solution � j

0�r−r j�t�� for g=0, and

L j = −
	 j

2
�2 + 
 j�2�� j

0�2 − � j
0 + �� j

0�2T̂� ,

where T̂ is the complex-conjugation operator. The kernel of
these operators is nontrivial, since it contains elements com-
ing from the symmetries of the problem. In particular, �� j

0

belongs to ker�L j�, because the ground solution is invariant
under the translation of the position of each vortex. The lin-
ear equations �6� have, in general, no solution precisely be-
cause the homogeneous piece has a nontrivial kernel. Al-
though the operators L j are not self-adjoint, the solvability
condition in the expansion can be found �14�: the scalar
product of both equations �6� are taken with each component

FIG. 1. Coordinates of the two vortices, one in the moving
condensate and one in the condensate at rest, for a drift velocity �a�
v=0.1 and �b� v=0.14, with 	1=
1=1 and �1

0=�2
0. The bold lines

and dashed lines represent the coordinates parallel to the drift ve-
locity for the vortex in the moving and the static condensate, re-
spectively. Similarly, the dotted and dashed-dotted lines represent
the transversal coordinates. The first vortex moves at the drift ve-
locity until it pulls with it the vortex in the static condensate. Mean-
while, the two vortices move apart in the transversal direction. In
the first case �a�, the two vortices reach a constant drift velocity
which is half of the imposed velocity as predicted by the theory. On
the other hand, for higher velocity �b�, the second vortex cannot
follow the moving one, and they both reach the drift velocity of
their condensate.

FIG. 2. The potential U�r� �bold line� and its derivative �dashed
line� calculated in the case 	1=
1=1.
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of �� j
0, respectively, and are added with their complex con-

jugate. We then formally retrieve the adjoint operators and
obtain the equation

�L1 · � �1
0��1 + ��1�L1 · � �1

0

= ���1
0*�i�dr1

dt
− v� · � �1

0*�
− 	���1

0�i�dr1

dt
− v� · � �1

0� + g
�

�1
��1

0�2
0�2
 ,

�7a�

�L2 · � �2
0��2 + ��2�L2 · � �2

0

= − ���2
0�i

dr2

dt
� �1

0� + ���1
0*�i

dr2

dt
� �2

0*�
− g

�

�2
��1

0�2
0�2, �7b�

where �a�2= �a �a, and using the usual scalar product �·�·

�a�b =� dra*�r�b�r� =� drT̂�a�r��b�r� .

The expansion can be done by imposing the orthogonality of
the inhomogeneous term with the kernel of the adjoint op-
erator of the homogeneous equation. This yields eventually a
pair of coupled equations for the time derivative of the two
vortex positions. They read

�1
0�1

dr1�t�
dt

= �1
0�1v1 +

g

2
ez �

dV�r12�
dr12

�8�

and

�2
0�2

dr2�t�
dt

= −
g

2
ez �

dV�r12�
dr12

, �9�

where r12=r2−r1, �corresponds to the vector product, ez is
the unit vector perpendicular to the 2D plane and g ·V��r12��
is the potential energy of the interaction between the two
vortices, depending on the norm of r12 only,

V��r12�� =� dr���2
0�r − r12,t��2 − �2

0�

· ���1
0�r,t��2 − �1

0� .

Using the vortex profile �5�, the equation of motion sim-
plifies into the set of equations

dr12

dt
= − v1 −

g�1�2

2
��1�1

0 + �2�2
0�ez �

dU�r12�
dr12

,

�1
0�1

dr1

dt
+ �2

0�2
dr2

dt
= �1

0�1v1, �10�

the first one for the relative motion between the vortices, and

the second one giving the momentum conservation. More-
over, the rescaled potential U is defined through the function
f only

U��r12�� =� dr	 f2��
2�2
0

	2
�r − r12�� − 1


· 	 f2��
1�1
0

	1
r� − 1
 .

The equations of motion keep the Hamiltonian structure
of the coupled G-P equations

� j
0� j

drj�t�
dt

= − ez �
�H
�rj

, �11�

with H=�1
0�1ez · �v1�r1�+ �g�1

0�2
0 /2�U�r12�.

However, wave radiations coming from any accelerated
motion of the vortices have to be added to the dynamics. To
account for these dissipative effects �for the vortex motion
only; the full set of equations are still Hamiltonian�, one
needs to estimate the radiative terms coming from nonuni-
form vortex motions. Such complicated calculations have
been done for a pair of corotating vortices, and they
show that the dynamics slowly deviate from the Hamiltonian
dynamics, with the decreasing value of the energy
�11,14�. The stability of the composite vortex at zero velocity
�stability for negative g only� relies on this argument.
Moreover, this effect disappears for the nonradiating
equilibrium states moving at constant speed. They can
thus be determined by the Hamiltonian dynamics, their
stability being determined using arguments on the radiative
losses. The trajectories of the Hamiltonian system are as
follows:

g�1
0�2

2
U�r12� −

v1

�1�1
0 + �2�2

0 y12 = K , �12�

where K is a motion constant deduced from the Hamil-
tonian dynamics �11�.

V. VORTEX DYNAMICS

An amazing consequence of the equations of motion �8�
and �9� is that there is a possible equilibrium solution at
constant speed of the two vortices, such that the force of
interaction is balanced by a kind of Kutta-Joukovsky force
on each vortex. When this is possible, the joint velocity of
motion is

�1�1
0

�1�1
0 + �2�2

0v1, �13�

a simple looking result. However, this joint drift of the two
vortices cannot happen if the flow speed is too large. From
Eqs. �8� and �9�, we obtain the following relation between v1,
r12 and the potential if the equilibrium solution exists:

v1 = −
g�1�2

2
��1�1

0 + �2�2
0�U��r12�ez �

r12

r12
. �14�
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From this equation, we deduce first that the separation vector
r12 is orthogonal to the imposed velocity v1 and that such a
solution can only be found for low-enough velocity.

Indeed, the interaction potential has a monotonic behavior
with a zero derivative both at zero distance and at infinity, as
shown on Fig. 2, so that the derivative has a maximum be-
tween. It determines in particular the maximum value vm of
the drift velocity for which a vortex couple can travel at the
same speed �13�

vm =
�g��1�1

0 + �2�2
0��

2
max�U�� .

For a velocity smaller than this maximum, two solutions
exist. The two solutions collapse for the maximum velocity,
and no more equilibrium positions exist above that. Figure 3
shows the Hamiltonian structure of the dynamics for differ-
ent cases v1�vm, v1=vm, and v1�vm. The stability of the
equilibrium solutions depends then also on the sign of g. For
g�0, every solution is linearly unstable, and no steady flow
can be obtained. For g�0, we have a classical saddle-node
bifurcation structure: at low speed when we have two equi-
librium positions, one of the solutions is linearly stable �the
one of smaller r12� and the other is unstable. For v1=0, the
trajectories are circular, and depending on the sign of g, the
vortex dynamics correspond to a slow converging �diverg-
ing� spiraling motion toward �away from� the origin.

Moreover, to be able to reach effectively the equilibrium
solution �14�, where the two vortices move together at the
same speed, we need to determine whether the trajectory �12�
initiated by the initial condition r12=0 encloses the equilib-
rium solution instead of approaching infinity. This is the case
only if the velocity v1 is in fact below the critical velocity
vc�vm, which is determined by the value of rc such that

U�rc� − U�0� = U��rc�rc,

which gives, following the calculation of U�r� shown in
Fig. 2,

vc =
�g��1�1

0 + �2�2
0�U��rc��

2
.

Note this surprising effect: if �2=−�1 and �2
0��1

0, then the
constant speed of the two paired vortices is in the opposite
direction of the imposed flow velocity. Such counterflow
vortex dynamics have been observed in the numerical analy-
sis’s as well. Moreover, in the case of �2=−�1 and �2

0=�1
0, the

only equilibrium solution is for v1=0.

VI. CONCLUSIONS

The experimental consequences are simple to state in
atomic vapors, where one can manipulate the condensate by
optical methods in particular. It would be interesting also to
see such behavior in superfluid mixtures of 4He and 3He, if
the two kinds of atoms can move independently. �17� An-
other last remark concerns how the two rotating species con-
densate. With a single species, the equilibrium state is a tri-
angular lattice of like-sign vortices with a mesh size of order
�� /m��1/2, where � is the angular frequency. Therefore, if

the two coupled condensates are subject to the same angular
speed �, each bosonic species should, in the absence of cou-
pling g=0, exhibit a lattice of vortices of mesh �� /mj��1/2.
A nonzero coupling will most probably induce deformations
of the two lattices. Even with the weak coupling limit, no
formal theory seems available for this kind of situation. Dur-
ing the submission process for this paper, a paper has been
published showing experimental evidence of this strong in-
terplay between vortex lattices �15�. The mixture is obtained
by coherently transferring a fraction of the condensate into a
different atomic state, and the interaction between the two
condensates is repulsive. Another instance where coupled
vortices would be present is in nonlinear optical fields in the
classical approximation �16�. There, the role of time in the
G-P equation is represented by the direction parallel to the
beam propagation, and the Laplacian accounts for the 2D
variation perpendicular to it. The equations of propagation of

FIG. 3. Trajectories of the relative vortex motion for different
velocities �a� v1�vc�vm, �b� v1=vc�vm, �c� v1=vm, and �d� v1

�vm, neglecting the radiative effects. These trajectories correspond
to the constant value of the Hamiltonian.
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two parallel light beams of different frequency in the same
nonlinear material are very similar to the coupled G-P equa-
tions. Therefore, we expect in this case the occurence of
phenomena roughly similar to those described here.
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