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We discuss the effective interactions between two localized perturbations in one-dimensional quantum
liquids. For noninteracting fermions, the interactions exhibit Friedel oscillations, giving rise to a Ruderman-
Kittel-Kasuya-Yosida-type interaction familiar from impurity spins in metals. In the interacting case, at low
energies, a Luttinger-liquid description applies. In the case of repulsive fermions, the Friedel oscillations of the
interacting system are replaced, at long distances, by a universal Casimir-type interaction which depends only
on the sound velocity and decays inversely with the separation. The Casimir-type interaction between localized
perturbations embedded in a fermionic environment gives rise to a long-range coupling between quantum dots
in ultracold Fermi gases, opening an alternative to couple qubits with neutral atoms. We also briefly discuss the
case of bosonic quantum liquids in which the interaction between weak impurities turns out to be short ranged,
decaying exponentially on the scale of the healing length.
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I. INTRODUCTION

Interactions between localized defects which are mediated
by the continuum they are embedded in play an important
role in many areas of physics. Typical examples are the
Ruderman-Kittel-Kasuya-Yosida �RKKY� interaction be-
tween spins in a Fermi liquid or the interaction between vor-
tices in superfluids. In the present work, we discuss interac-
tions between impurities in one-dimensional �1D� quantum
liquids. This study is motivated by the recent realization of
strongly interacting “atomic quantum wires” with ultracold
gases of both bosonic �1–3� and fermionic atoms �4� and the
proposal �5� that single atoms in optical traps which are em-
bedded in a superfluid reservoir allow one to realize an
atomic analog of a quantum dot with a tunable coupling to
the environment. Such quantum dots may be used to store
qubits, which, under certain conditions, can be completely
decoupled from their environment. Arrays of these dots thus
appear as ideal candidates for quantum-information process-
ing. It is therefore of considerable interest to study the in-
duced interactions of such dots, mediated by the environment
they are embedded in. Similar questions arise also for quan-
tum dots in solid-state realizations—e.g., in carbon nano-
tubes �6�—where the interaction is mediated by electrons in
the intervening wire.

Quite generally, for both bosons and fermions, the low-
energy properties of a gapless 1D quantum liquid are de-
scribed by the so-called Luttinger-liquid �LL� phenomenol-
ogy �7,8�: the effective theory is a hydrodynamic energy
functional characterized by the velocity of sound u and the
Luttinger interaction parameter K. In particular, for fermions,
K=1 corresponds to the noninteracting case, while K�1 for
repulsion. For repulsive bosons, in turn, one has K�1, with
K→� in the limit of weak interactions, where a Gross-
Pitaevskii or Bogoliubov approximation applies. As shown
by Kane and Fisher �9� �see also �10� for a recent discus-
sion�, the interaction of a single impurity with a LL depends

crucially on the value of K: for K�1, the impurity is irrel-
evant for the low-energy properties. A 1D Bose liquid is
therefore effectively superfluid, although there is no true
condensate �9,11�. For K�1 the impurity changes the
ground state of the liquid in a nonperturbative way, effec-
tively cutting it into two disconnected parts. In this case, we
will see that the induced interaction between two impurities
is essentially a Casimir-like effect. Indeed, at low energies,
two impurities at distance r define a box with reflecting
boundary conditions for the phonon modes of the quantum
liquid, which leads to an attractive Casimir interaction en-
ergy proportional to u /r with u the sound velocity. The case
K=1 is marginal and corresponds to a noninteracting Fermi
gas in 1D or, equivalently, a system of hard-core bosons: the
Tonks-Girardeau gas �2,3,12�. In the following we will study
the interactions mediated by the 1D quantum liquid between
two impurities for the various cases, including fermions with
spin. We focus our analysis on the case of static impurities,
while the situation of a slow time dependence, relevant for
atomic quantum dots, where the interactions depend on the
internal states is only discussed qualitatively at the end of the
paper.

II. ONE-DIMENSIONAL FERMIONIC LIQUID

A. Noninteracting fermions

Before considering the generic situation of impurities em-
bedded in a sea of interacting particles, we first address the
marginal case K=1 of noninteracting fermions. For simplic-
ity we start from a gas of N noninteracting spinless fermions
in the presence of two localized impurities separated by a
distance r. Considering cold gases in atomic quantum wires,
the solution of this problem is not just an academic exercise.
Indeed, since fermions in a single hyperfine state have no
s-wave interactions due to the Pauli principle, they realize an
ideal Fermi gas at sufficiently low temperatures. We assume
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that the particles are contained in a periodic box of length L
with average density �0�N /L. The �grand canonical� parti-
tion function of the liquid at a given temperature T may be
expressed in terms of a functional integral over the Grassman

fields ��̄ ,�� representing the fermions:

Z =� D�̄D� exp�− SFL − Si� . �1�

The corresponding action of an ideal gas is

SFL = �
0

�

dxd���̄��� − � 1

2m
� �̄ � � − 	�̄�	
 , �2�

where � is the imaginary time running from 0 to 1/T=� and
	 is the chemical potential �we use units such that 
=kB
=1�. The fields are antiperiodic in imaginary time. For short-
range interactions, appropriate for cold atoms, the interaction
of the impurities with the liquid can be described by an ad-
ditional contribution

Si = �
0

�

d� �
�=1,2

g��̄�x����x�� , �3�

proportional to the local density at the impurity positions x�.
Here, the index �=1,2 labels the impurities, while the cou-
pling constants g� describe the strength of collisions between
the atoms in the liquid and impurities. The expression for Si
is based on assuming an effective pseudopotential for the
interaction between the impurity and quantum liquid. More
precisely, the interaction should be replaced by a spatial in-
tegral of the detailed impurity potential with the microscopic
density operator of the liquid. In the present section dealing
with noninteracting fermions, there is no need of a high-
energy cutoff, as one can directly work with the well-
behaved microscopic theory. However, in order to discuss
the low-energy behavior and to make contact with the fol-
lowing sections dealing with interacting fermions using the
Luttinger-liquid phenomenology, we introduce a high-energy
cutoff �c. Its value can be estimated as �c�Minu / l0 ,	�,
where u is the characteristic velocity of excitations �u=vF in
an ideal Fermi gas�, l0 is the impurity size, and 	= pF

2 /2m is
the chemical potential �at zero temperature� with pF=mvF
��0, the Fermi momentum. As will become clear from our
results below, the coupling constants g� are then—up to a
factor vF—identical with the dimensionless backscattering
amplitudes f1,2�� for fermions at the impurities. Micro-
scopically, they are thus determined by a solution of the
single-particle scattering problem off a single impurity. In
practice, an appreciable value of the backscattering ampli-
tude requires the impurity size to be smaller or of the order
of the interparticle spacing, since otherwise the Fourier com-
ponent of the potential at 2pF is close to zero, and hence the
dimensionless coupling constants ���g� /vF vanish. There-
fore, in the following, we will take �c�	.

The Grassman fields ��̄ ,�� are free everywhere apart
from the points x=x1,2 and hence can be easily integrated out
by the following standard trick: first we formally introduce
four � functions into the integrand:

Z =� D�̄D� �
�=1,2

D�̄�D������x�,�� − ������

� ���̄�x�,�� − �̄�����e−SFL−Si, �4�

where ��̄� ,��� are the new Grassman variables describing
the fermions at the location of the individual impurities.
Then we introduce a set of auxiliary fields ��̄� ,��� using the
identity ��f���D� exp�i��fd�� to raise the � functions into
the action. Finally, we integrate out the fermionic fields

��̄ ,��, which appear only quadratically, by Fourier transfor-
mation:

Z = ZFL
0 � �

�=1,2
D�̄�D��D�̄�D��e

−S�−Si��̄,��, �5�

where

Si��̄,�� = �
0

�

d� �
�=1,2

g��̄��� �6�

and

S� =
L

�
�

n
� dp

2

��,�
�̄���e

ip�x�−x��

− i�n + �p
− i�

�,n
����� + �̄��̄�� ,

�7�

where �p= p2 /2m−	 and the summation is over the fermi-
onic Matsubara frequencies �n. The trivial prefactor ZFL

0

arises from integration over the fermionic fields in the ab-
sence of impurities, giving the grand partition function of the
homogeneous liquid. The fields ��̄� ,��� depend only on
imaginary time �, or frequency �n in the Fourier representa-
tion, and thus the integral over p can be easily calculated.
Since for a sufficiently large separation �x1−x2�=r�pF

−1 the
interaction energy is small, the relevant frequencies are small
compared to the Fermi energy �c�	�vFpF. An expansion
to leading order in �n�	 then gives

S� = −
iL

�vF
�

n
�
�,��

sn�̄����e
ipF�x�−x���sn� e−��n��1−��,���/�r

− i�
�,n

����� + �̄��̄�� , �8�

where �r�u /r�	 and sn�sgn��n�. The characteristic fre-
quency �r will play an important role in our subsequent dis-
cussions. Physically it represents the inverse flight time for a
characteristic excitation in the liquid between the locations
of the two impurities, which naturally obeys the inequality
�r��c provided the impurities are much farther apart than
the average distance between two fermions in the liquid. It is
also the quantization energy between the two impurities. In
order to obtain the impurity interaction directly from the par-
tition function, we integrate out the auxiliary fields ��̄� ,���.
This results in an action
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S���̄,�� =
�vF

iL
�

n

��̄1,�̄2�� fn − fnen

− fnen fn
	��1

�2
	 , �9�

which only depends on the four time-dependent Grassman
fields ��̄� ,��� which describe the Fermi field at the impurity
positions. The coefficients fn and en are defined by

fn �
sn

1 − en
2 , en � eisnpFr−��n�/�r. �10�

Including the contribution �3� due to the interaction between
the impurities and liquid, the complete expression for the
statistical sum, Eq. �1�, can now be written as

Z = ZFL
0 Z�� �

�=1,2
D�̄�D��e

−S�−Si, �11�

where Z� comes from the integration of the auxiliary fields:

Z� = �
n
� iL

�vF
	2

�1 − en
2� . �12�

The total effective action S�+Si is quadratic in the Grassman
fields ��̄� ,���, and thus the integration can be done exactly
to yield Z=ZFL

0 Z�Z�, with

Z� = �
n
��vF

iL
	2

��fn + i�1��fn + i�2� − �fnen�2� . �13�

Here, the ��=g� /vF are the dimensionless backscattering
amplitudes, characterizing the interaction of the impurities
and liquid. We can now obtain the free energy of the 1D
Fermi gas in the presence of the impurities from F=
−ln Z /� as follows:

F = F0 −
1

�
�

n

ln�1 − en
2�� ��fn + i�1��fn + i�2� − �fnen�2�� ,

�14�

where F0=−ln ZFL
0 /� is the free energy of the undisturbed,

homogeneous liquid. Expression �14� is ill defined as it
stands, since it contains both the energy of zero-point fluc-
tuations in the gas and the formally divergent self-energies of
the separate impurities. The relevant interaction energy asso-
ciated with a change of the separation of the two impurities
is given by

V12 � F���,r� − F�0,r� − �F���,�� − F�0,���

= F���,r� − F���,�� . �15�

The renormalization thus requires subtracting first the free
energy of the liquid without the impurities ���=0, vacuum
energy� and then the free energy of the system when the
impurities are very far apart �r→�, self-energy of the impu-
rities�. While both the vacuum energy and the individual
self-energies are infinite in the absence of a cutoff, the renor-
malized interaction �15� is finite and independent of the cut-
off �see also the discussion below in Sec. III A�.

At low temperature T��r we can switch from summa-
tion to integration according to d�=2Tdn, so that the ef-
fective interaction energy between the impurities can be ex-
pressed as

V12 = − �
0

� d�


ln�1 +

�1�2e−2�/�r+2ipFr

1 + i��1 + �2� − �1�2
� . �16�

The integral can be performed analytically to yield our final
result for the impurity interaction at T=0:

V12 =
vF

2r
Re Li2�−

�1�2e2ipFr

1 + i��1 + �2� − �1�2
	 , �17�

where Li2 is the dilogarithmic function �13� and Re is the
real part. Obviously the interaction quite generally falls off
very slowly like 1/r with an amplitude, which is a strictly
periodic function. Its period  / pF=�0

−1 is equal to the aver-
age interparticle distance. This is a characteristic property of
degenerate fermions, essentially reflecting the well-known
Friedel oscillations of the density �see below�. Trivially, the
interaction vanishes if one of the scattering amplitudes �1,2 is
zero.

A simple expression for the renormalized interaction en-
ergy V12 is obtained in two limiting cases. First, if the inter-
action of the impurities with the liquid is weak, ���1, we
can expand the dilogarithm in Eq. �17� to obtain

V12 = − �1�2
vF

2r
cos�2pFr� . �18�

In the limit of strong impurities, ���1, we find in turn the
result

V12 =
vF

2r
Re Li2�ei2pFr� , �19�

which is completely independent of the scattering ampli-
tudes. In this case, the interaction energy V12 can be repre-
sented as V12= �vF /2r�f�2pFr�, where f�x��Re Li2�eix� is a
periodic function bounded as follows fmin� f� fmax where

fmax,min = Li2�±1� =
2

6
,−
2

12
. �20�

A simple way of understanding the slow 1/r decay and the
oscillations with period  / pF may be obtained in the weak-
scattering limit, Eq. �18�. Indeed, the density perturbation
created by a single impurity of strength �1 at position x1 is
asymptotically given by

�1�x� � �0 −
�1

2

cos�2pF�x − x1��
2�x − x1�

. �21�

This expression for the Friedel oscillations in a spinless 1D
noninteracting Fermi gas is valid in the limit where �1�1
and �x−x1���0

−1 �14�. Since the impurities couple to the local
density, the interaction energy �excluding self-energies� of
the system of two weak impurities is simply obtained from
U12��� ,r�=g2�1�x2�+g1�2�x1� where ���1. When renor-
malized V12=U12��� ,r�−U12��� ,��, this interaction energy
coincides with Eq. �18�. Alternatively, the result may be de-
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rived by using the random-phase approximation �RPA� as
shown in Appendix A.

The analysis in this section is readily generalized to the
case of a Fermi gas with spin. In fact for nonmagnetic im-
purities, such as considered in the current article, the two
spin modes are decoupled and therefore the energy due to the
presence of the two impurities is simply multiplied by a fac-
tor of 2.

It should be emphasized that the calculation above can be
immediately extended to the case of noninteracting fermions
in two or three dimensions d=2,3, giving rise to an interac-
tion energy for weak coupling of the form

V12 � f1��f2��
pFvF

�pFr�d cos�2pFr� , �22�

where f��� are the dimensionless backscattering amplitudes
of the impurities. This result follows most simply by consid-
ering the density fluctuations ��1�x�� induced by a single im-
purity at position x�1. As discussed, e.g., in Ref. �15� they
exhibit Friedel oscillations proportional to the dimensionless
backscattering amplitude f1�� at the Fermi energy. The re-
sulting interaction energy is then simply given by V12
� f2����1�x�2�. In fact, this is a special case of a general
result �16� that the asymptotic interaction between two im-
purities is determined by the product of their backscattering
amplitudes. In the presence of short-range repulsive interac-
tions between the fermions, we expect that the result �22�
remains qualitatively correct in the case of two and three
dimensions. This is based on the existence of a Fermi-liquid
description in d=2,3, which guarantees that the low-energy
properties are qualitatively unchanged from those of a Fermi
gas. For example, assuming that the static density response
function at 2pF is given by the particle-hole bubble �17�, the
renormalization factor Z�1 in the single-particle Green
function will give rise to a Fermi-liquid correction factor Z2

in V12. This argument, however, neglects possible vertex cor-
rections in the density response which may lead to an en-
hancement rather than a suppression of the amplitude of the
Friedel oscillations. In fact this effectively happens in the
one-dimensional case, where the vanishing Z factor gives
rise to Friedel oscillations, which decay more slowly than in
the noninteracting case �see below�. While we are not aware
of a quantitative calculation of the 2pF-density response in
Fermi liquids, it is very likely that they will give rise only to
finite, multiplicative corrections to Eq. �22�. As we will see
below, however, the situation in one dimension is quite dif-
ferent from that in d=2,3 in the sense that even qualitatively
the asymptotic form of the interaction is not given by the
Friedel oscillation picture, even for very weak impurities.

Finally, we mention a recent work dealing with neutron
matter. Bulgac et al. �18� consider a neutron star crust, which
is modeled as a degenerate noninteracting neutron gas �i.e.,
an ideal 3D Fermi gas� containing various kinds of defects or
inhomogeneities �such as nuclei or bubbles� immersed in it.
These authors compute the interaction energy between two
defects resulting from the quantum fluctuations of the Fermi
sea of neutrons. They obtain expressions similar to Eq. �22�,
which can be interpreted as RKKY-like interactions between

defects. In addition, they discuss the influence of the shape
of the defects and consider situations with more than two
defects.

B. Spinless Fermi Luttinger liquid

Realistic Fermi systems consist of interacting particles. In
three and also in two dimensions, it is possible to describe
even strong interactions by Landau’s Fermi-liquid theory. As
is well known, however, this concept fails in one dimension.
Here we consider fermions with repulsive short-range inter-
action. At low energy such a system exhibits a gapless exci-
tation spectrum with a linear dispersion, characteristic of the
universality class of Luttinger liquids �7,8,19�.

For simplicity, we start by considering spinless fermions,
for which the low-energy description is given by the follow-
ing hydrodynamic action:

SLL =
1

2K
� dxd��u��x��2 +

1

u
�����2
 . �23�

Here u is the sound velocity and K the Luttinger parameter.
In a translationally invariant system, they obey the relation
uK=vF �8�, with vF= pF /m=�0 /m the Fermi velocity of the
associated noninteracting spinless Fermi gas. We consider
repulsive interactions for which K�1. Since the Luttinger-
liquid description only applies at low energies, the fields
have to be cut off at energy �c�	, where 	 is the chemical
potential. The associated cutoff length a�u /�c is of order
1 /�0. Of course, for a quantitative calculation of the scale at
which the low-energy description applies, a microscopic
model is needed, which allows one to determine nonuniver-
sal properties. For single impurities in Luttinger liquids this
problem has only recently been discussed; see �20�. Since we
are concerned with the interaction at distances much longer
that the average interparticle separation, only the low-energy
properties are relevant, which are well described by the hy-
drodynamic action �23�. The corresponding field � is related
to the density of the liquid by

��x� � ��0 +
�x�


	�1 + 2 cos�2� + 2pFx�� , �24�

where �0 is the equilibrium density and only the first har-
monics are taken into account �8,9�.

The interaction between the impurities and Luttinger liq-
uid is taken to be of the form

Si = �
0

�

d� �
�=1,2

g̃���x�� , �25�

i.e., a coupling to the local density with phenomenological
scattering amplitudes g̃�. Inserting the expansion �24� into
this interaction, gives rise to four different terms. The first
term is just the constant Hartree self-energy of the impurities,
which, of course, does not contribute to the renormalized
interaction energy V12. In addition, there are terms containing
�x� due to forward scattering. They describe quantum correc-
tions to the self-energies but again are irrelevant for the in-
teraction V12 between two widely separated impurities. The
dominant term for this interaction is the contribution propor-
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tional to cos�2�+2pFx�, which is due to backward scattering.
In addition there are higher-order terms like �x� cos�2�
+2pFx�; however, these are less relevant in the renormaliza-
tion group �RG� sense �21�. Taking only the most relevant
part of the interaction, the coupling between the impurities
and LL leads to the following nonlinear contribution to the
action:

Si��� � �
0

�

d� �
�=1,2

2g̃��0 cos�2�K��x�� + 2pFx�� ,

�26�

where we introduced the renormalized field � by �
=��K. The complete statistical sum of the system can
again be represented by a functional integral. To perform the
integration over the field � we use the same approach as for
the ideal Fermi gas: first we introduce the new variables
��x1 ,��=�1��� and ��x2 ,��=�2��� and then insert the two
� functions into the functional integral:

Z =� D� �
�=1,2

D������x�� −���e−SLL−Si. �27�

We then transform the � functions into the functional inte-
grals over auxiliary fields and perform the Gaussian integra-
tion

Z = ZLL
0 Z�� D�1D�2e−Seff−Si����, �28�

where the effective action for the real fields �1,2 is

Seff = �
n

��1,−n,�2,−n�� fn − fnen

− fnen fn
	��1,n

�2,n
	 , �29�

with the summation occurring over the bosonic Matsubara
frequencies �n, where fn����n� / �1−en

2� and en�e−��n�/�r

with �r�u /r. The factor ZLL
0 comes from the integration

over ��x ,�� and is independent of the impurities, describing
the homogeneous Luttinger liquid. By contrast, the factor

Z� = �
n

�1 − en
2�−1/2, �30�

which comes from the integration over the auxiliary fields,
describes the change in the phonon modes due to the con-
straint on the Fermi fields at the positions of the two impu-
rities. Similar to the noninteracting situation, this contribu-
tion depends on the associated characteristic frequency �r
and is crucial in obtaining a finite interaction energy V12
which is independent of the cutoff.

The remaining and now nontrivial functional integral over
the time-dependent fields �� is of the same form as the one
which appears in the context of quantum Brownian motion in
a periodic potential �22�. Indeed the effective action �29�
basically describes two quantum particles subject to Ohmic
dissipation of dimensionless strength 1/K which move in a
periodic potential generated by the backscattering amplitude.
As has been shown in �22� this problem leads to a localized
ground state if 1 /K�1 with small fluctuations in the field �.
For a quantum liquid with sufficiently strong interactions

between the fermions K�1 and strong impurities �̃�
� g̃� /vF�1, the functional integral �28� over the time-
dependent fields �� can thus be calculated using the
stationary-phase approximation �SPA�: expanding the func-
tions cos�2�K��+2pFx�� from Eq. �26� to second order in
the fields around one of its minimum, we approximate the
interaction Lagrangian in the form

S̃i = �
0

�

d� �
�=1,2

E���
2 , �31�

where E�=4Kg̃��0. Physically this means that the interac-
tion between each of the impurities and the liquid is suffi-
ciently strong to pin the local phase � near the value mini-
mizing the potential energy. The quantities E� play the role
of effective frequencies for the evolution of the fields ��.
The approximation of the original Lagrangian �26� by the
quadratic form �31� is equivalent to an adiabatic approxima-
tion which describes physical processes occurring slower
than a time scale given by E�

−1. As the typical frequency of
interest is �r, the stationary-phase approximation is valid
when E���r. It is thus applicable in the case of strong im-
purities or, equivalently, long distances �see below� in a
strongly repulsive liquid: r�0�̃��1/K2�1.

Within the quadratic approximation �31�, the full effective
action in Eq. �28� is quadratic in �� and hence can be evalu-
ated exactly Z=ZLL

0 Z�Z�, where

Z� = �
n

��fn + �E1��fn + �E2� − �fnen�2�−1/2. �32�

The associated free energy F=−ln Z /� is given by

F = F0 +
1

2��
n

ln�1 − en
2�� ��fn + �E1��fn + �E2�

− �fnen�2�� , �33�

where F0=−ln ZLL
0 /� again describes the undisturbed, homo-

geneous liquid. From the free energy we obtain the renormal-
ized interaction energy between the two impurities V12 in
precisely the same manner as in Eq. �15�:

V12 =
1

�
�
n�0

ln�1 −
E1E2e−2�n/�r

�n
2 + �n�E1 + E2� + E1E2

	 . �34�

At sufficiently low temperatures T��r, the summation may
be replaced by an integral over the real frequency �:

V12 =
1

2
�

0

�

d� ln�1 −
E1E2e−2�/�r

�2 + ��E1 + E2� + E1E2
	 . �35�

In the limit of long distances �or strong impurities�—i.e.,
E���r—the integral converges at ���r and hence �2

��E��E�
2 . For sufficiently large separations, we thus ob-

tain the simple universal interaction

V12 =
u

2r
�

0

�

dy ln�1 − e−2y� = −


24

u

r
, �36�

which decays inversely with distance. The short-distance re-
gime, where E���r, can, however, not be considered within
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the stationary-phase approximation �31�. Indeed, the latter is
only justified if the characteristic energy scale ���r of ex-
citations involved in the interaction does not exceed the ef-
fective frequencies—i.e., if E���r. As a result, for interme-
diate and short distances, the interaction energy V12 does not
follow a simple 1/r behavior. In particular, it is impossible to
describe the limit r→0 without properly including a cutoff
or working in a microscopic model from the beginning. It is
only within such a more complete calculation that the full
energy F��̃� ,r�−F�0,r� of the two impurity problem ap-
proaches the self-energy of the doubled single-impurity case,
as expected on physical grounds. For a single scalar field in
1D, as described by our hydrodynamic action �23�, this cal-
culation has recently been done by Jaffe �23�.

The validity of the quadratic expansion �31� may be ex-
tended to the whole relevant range K�1 of the Luttinger
parameter with the help of the self-consistent harmonic ap-
proximation �SCHA� �22,24�. In the context of Friedel oscil-
lations around a single impurity in a Luttinger liquid, this has
been used by Egger and Grabert �25�. It is based on making
a quadratic approximation �31� for the backscattering term,
however with frequencies E� which are determined from
Feynman’s variational principle. Using Eq. �31� as the trial
action, one has to minimize the free energy

Fvar = −
1

�
ln Z̃ +

1

�
�S − S̃�S̃, �37�

where S=Seff+Si and S̃=Seff+ S̃i. Taking E� as variational
parameters, we obtain

E�
4Kg̃��0

= �1 +
�c

E�
	−K

, �38�

where �c is the high-energy cutoff. Following �25�, we de-
fine the crossover scale r0 by E��u /r0 when both impurities
have approximatively the same strength �̃1� �̃2� �̃. The
SCHA is a good approximation when K�1 and
E���r—i.e., at long distances r�r0.

In the limit of strong impurities, �̃��1, the SCHA fre-
quencies E��4Kg̃��0 are the same as those obtained
within the stationary-phase approximation and the crossover
scale is given by r0�0�1/K2�̃. In the opposite limit �̃��1,
they are given by

E� � 4Kg̃��0�4Kg̃��0

�c
	K/�1−K�

�39�

and the crossover scale is

r0�0 � �K2�̃�−1/�1−K���0a�−K/�1−K�, �40�

where �0a�1 for repulsive fermions. Note the singular be-
havior of the crossover scale r0→� in the limit K→1 of
noninteracting fermions. This implies that the regime of va-
lidity of the SCHA is moved out to extremely long scales r0.
Quite generally, therefore, the long-distance behavior r�r0
of the interaction energy is always given by the Casimir-like
expression �36� whenever K�1. The scale, however, beyond
which this simple result applies, strongly depends on the

strength of the backscattering amplitude and the repulsive
interaction.

In order to study the limit of weak impurities and weak
interactions ��̃��1 and K�1 close to 1� in more detail, we
use perturbation theory. At second order in �̃� and when r
��0

−1, we find

V12 = − �̃1�̃2��0a�2� r

a
	2�1−K� vF

2r
cos�2pFr�h�K� ,

�41�

where

h�K� �
K
�
��K − 1/2�
��K�

and ��z� is the gamma function. The function h�K� diverges
as K→1/2 and approaches 1 at K=1. The above equation
was obtained under the assumption that 1 /2�K�1. When
K=1, it reproduces exactly Eq. �18� obtained for the nonin-
teracting Fermi gas, provided that we choose the following
relation between the microscopic and phenomenological im-
purity strengths: ��= �̃��0a. Perturbation theory breaks
down when, in order of magnitude, the interaction energy
�41� reaches the strong-impurity �or long distances� result
�36�: �V12���r. This occurs for r�0� �̃−1/�1−K���0a�−K/�1−K�,
in agreement with Eq. �40�, because 1/2�K�1. Therefore,
the perturbative result �41� is valid for intermediate distances
�0

−1�r�r0. At long distances r�r0 it is replaced by the
Casimir-type result �36�.

Finally, it is worth mentioning that the presence of two
impurities implies the possibility of a tunneling resonance
�9,26�. The physics of such a resonance is, however, not
captured by the SCHA. This issue will be discussed in more
detail in Appendix B.

C. Spin-1/2 Fermi Luttinger liquid

In this section we generalize the above analysis by includ-
ing the spin degree of freedom, again using a Luttinger-
liquid description.

We consider N fermions in an equal mixture of spin-up
and spin-down components—i.e., N↑=N↓=N /2. Here the
�noninteracting� Fermi velocity is vF= pF /m=�0 /2m with
�0=N /L. Taking spin into account the Euclidean action of
the Luttinger liquid is generalized to

SLL��	� = �
	=�,�

1

2K	
� dxd��u	��x�	�2 +

1

u	
����	�2
 ,

�42�

where ��	� is an abbreviation for ��� ,���. This corresponds
to the usual “charge” �� and “spin” �� fields that are linear
combinations of the spin-up and -down fields: ��/�= �1/�2�
���↑±�↓�. The Luttinger-liquid parameters obey the relation
K�u�=vF and in addition

K � K� � 1 and K� = 1, �43�

where the first equation comes from considering repulsive
interactions and the second from the SU�2� symmetry of the
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model with spin-independent interactions �19�. In addition
K�1/2 when considering contact interactions between fer-
mions; see, e.g., �27�. The action term that describes the
interaction with the impurities is still given by Eq. �25�
where the density is now simply the sum of the densities of
the two spin modes that have the same form as Eq. �24�. As
stated in the previous section we only keep the most relevant
term, which corresponds to backscattering by the impurity,
and hence obtain

Si��	� = �
�=1,2

2g̃��0�
0

�

d� cos��2���x�� + 2pFx��

� cos��2���x��� . �44�

Now we follow the same procedure as in previous sec-
tions and obtain

Z = ZLL
0 Z�� �

�=1,2
�
	=�,�

D�	�e
−Seff��	��−Si��	��, �45�

where we have rescaled the fields at the impurity positions
by �	�=�K	�	�. The effective action Seff is given by

Seff��	�� = �
n

�
	,�,�

I��
	 �	�,−n�	�,n, �46�

where the n refers to the Matsubara frequencies �n and I��
	

are the elements of the matrix

I	 = f	n� 1 − e	n

− e	n 1
	 , �47�

with f	n=���n� / �1−e	n
2 �, e	n=e−��n�/�	, and �	=u	 /r.

In order to calculate the partition function, we again use
the stationary-phase approximation, which corresponds to
expanding Si around its minima to second order in the fields,
assuming that the impurities are strong—i.e., �̃�= g̃� /vF�1.
The nonlinear action Si is thus replaced by a quadratic ap-
proximation

S̃i = ��
	�

�
n

E	���	�,n�2, �48�

where E	�=2K	g̃��0.
Since the charge and spin fields are now completely de-

coupled, we have Z̃=Z�Z�, with

Z	 = �
n

��f	n + �E	1��f	n + �E	2� − �f	ne	n�2�−1/2.

�49�

The total free energy F=F�+F� is then simply the sum of
the charge and spin contributions.

After renormalization the free energy is given by

V12 =
1

�
�
	

�
n�0

ln�1 −
E	1E	2e−2�n/�	

��n
2 + E	1���n

2 + E	2�
 . �50�

At low temperature T��	 we can again replace the sum
over Matsubara frequencies by an integral. In the limit of
strong impurities, �	�E	a, we obtain

V12 = �
	

u	�
0

� dy

2
ln�1 − e−2y� = −



24

u� + u�
r

. �51�

This is the straightforward generalization for spin-1 /2 fermi-
ons of the result obtained in the previous section; see Eq.
�36�. As discussed there, the SPA is valid only if �	�E	a.
Hence we are unable to calculate the interaction at shorter
distances, where �	�E	a.

As in the case of spinless fermions, we can go beyond the
SPA regime, using the SCHA. In particular we use S=Seff

+Si and S̃=Seff+ S̃i in Eq. �37�, and then we minimize Fvar
with respect to E	a. In the case of identical impurities—i.e.,
�̃1= �̃2= �̃—the values of E	� that minimize Fvar are such
that E	1=E	2=E	=K	E. For large distances—i.e., for �	
�E	—the SCHA is valid and E is given by

E = 2g̃�0�1 +
�c

KE
	−K/2�1 +

�c

KE
	−1/2

, �52�

where �c is the high-energy cutoff. As in the spinless case,
we can define the crossover scale as r0=max�u	 /E	�
=vF /K2E, since K�1. In the limit of very strong impurity
backscattering E	��c, we recover the SPA result—i.e., E	
=2K	g̃�0—and the crossover scale is r0�0�1/K2�̃. For in-
termediate impurity strength �	�E	��c, we obtain

E� = E�/K = 2g̃�0K1/�1−K��2g̃�0

�c
	�1+K�/�1−K�

, �53�

and the crossover scale in this case is given by

�0r0 � �̃−2/�1−K�K−3/�1−K��a�0�−�1+K�/�1−K�, �54�

where a�vF /K�c is the short-distance cutoff and a�0�1.
Note that, as in the spinless case, the crossover scale diverges
r0→� when K→1. For weak interactions, therefore, the re-
sult �51� is only valid at very large distances.

The regime of weak impurity strength can be studied us-
ing perturbation theory. At second order in �̃�, we find

V12 = − �̃1�̃2��0a�2� r

a
	1−K vF

r
cos�2pFr�h�K� , �55�

where

h�K� � KK ��K/2�

���K + 1

2
	 2F1�K

2
,
K

2
;
K + 1

2
;1 − K2	

and 2F1 is the hypergeometric function �28�. The function
h�K� is a smooth, monotonically decreasing function of K
which diverges like h�K��2/K as K→0 and approaches 1
at K=1. When K=1, the preceding result reproduces exactly
Eq. �18� �with an extra factor of 2 due to the spin degen-
eracy� obtained for the noninteracting �spinless� Fermi gas,
provided that we choose the following relation between the
microscopic and phenomenological impurity coupling con-
stants: ��= �̃��0a. The perturbative result �55� is valid for
r�r0, with r0 given in Eq. �54�. At the crossover scale r
=r0 and for K�1, �V12���r as in Eq. �51�. In conclusion,
therefore, the interaction between two impurities follows the
behavior given by Eq. �55� only for intermediate distances
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and weak interactions. By contrast, for large distances, there
is a crossover to the universal Casimir-type interaction, Eq.
�51�, which depends only on the velocities u� and u�.

D. Discussion

As our main result, we have shown that for separations
much larger than the interparticle spacing, the interaction
energy of two impurities in a Luttinger liquid of repulsive
fermions �K�1� is a Casimir-type interaction, given by a
very simple universal relation, Eq. �36� �Eq. �51�� for spin-
less �spin-1 /2� fermions. In contrast to the result Eq. �19�
obtained for strong impurities in a noninteracting Fermi gas
it does not contain Friedel oscillations and is independent of
both the impurity strengths and the interaction parameter K.
The physical origin of this long-range force is thus quite
different from the K=1 case. In the noninteracting gas, the
long-range force comes from the polarization of the ground
state. In the strongly interacting case, the Friedel oscillations
of the ground-state density around each of the independent
impurity still exist �25� but they are not relevant for the
impurity interaction at long distances. Instead the result, Eq.
�36�, is best understood as being the Casimir interaction en-
ergy of two mirrors—i.e., impenetrable impurities—in a
phononic bath �29�. This interpretation is supported by the
direct calculation of the interaction energy of two mirrors in
the vacuum fluctuations of a 1D scalar field which represents
the density modes of the intervening quantum liquid; see,
e.g., Ref. �30�. In fact, a similar result has previously been
found for the force between two infinite-mass beads on a
string �31�. The Friedel oscillations are relevant for the inter-
action between two impurities only in the noninteracting
case or at intermediate distances in the interacting Luttinger
liquid �K�1�; see Eqs. �41� and �55�.

The resulting picture is consistent with the RG calculation
of Kane and Fisher for a single impurity �9�: when K�1 and
�̃�0, the backscattering amplitude is renormalized to strong
coupling in the low-energy �or long-distance r�r0� limit.
The liquid is thus effectively cut into pieces, with the impu-
rities acting like perfect mirrors for the acoustic modes, re-
sulting in a Casimir force between them. The scale on which
the impurities flow to strong coupling depends on �i� the
initial strength of the impurities �̃ and �ii� the flow velocity
given by 1−K; see below. When the impurities are strong
and the liquid is strongly interacting, the impurities flow
quickly to strong coupling. The associated crossover scale r0
is thus of the order of the interparticle distance. By contrast,
when the impurities are weak and the liquid is almost non-
interacting, it takes very long distances to reach the
asymptotic regime. Qualitatively, the crossover scale r0 for
two weak impurities can already be obtained from the scal-
ing theory for a single impurity. Indeed, the perturbative flow
equation of Kane and Fisher �9� gives as the running impu-
rity strength

�̃eff � �̃�r/a�1−K. �56�

For spin-1 /2 fermions, the preceding equation holds pro-
vided that the exponent 1−K is replaced by �1−K� /2. The
crossover scale r0 then corresponds to the distance at which

the running impurity strength �̃eff becomes of order 1—i.e.,
r0�0� �̃−1/�1−K�—in agreement with Eq. �40�, because �0a
�1 and 1/2�K�1 for repulsive fermions with contact in-
teractions. For longer distances, the impurity reaches strong
coupling and cuts the liquid into disconnected pieces.

III. ONE-DIMENSIONAL BOSE LIQUID

In this section, we discuss the case of two identical impu-
rities g��x�� in a one-dimensional Bose liquid. In particular,
we consider 1D bosons with short-range repulsive interac-
tions gB��x�. As was first shown by Lieb and Liniger �32�,
the dimensionless interaction parameter �B�mgB /�0 in this
problem is inversely proportional to the density. The strong-
coupling, Tonks-Girardeau limit �B�1 is thus reached either
for strong repulsion or at low densities. Within a low-energy
effective Luttinger-liquid description, the Luttinger param-
eter K for interacting bosons is larger than 1. It is related to
the sound velocity u by u=�0 /mK. In the weakly interact-
ing, Gross-Pitaevskii limit �B�1, the Luttinger parameter
diverges like K� /��B→�. For strong coupling �B�1 in
turn, one finds K�1+4/�B→1. The singular case of nonin-
teracting bosons ��B=0� is discussed separately in Appendix
C.

A. Classical ground-state energy and vacuum fluctuations

Before starting the explicit calculation of the renormal-
ized impurity interaction energy V12�r� in the case of bosons,
we discuss a limitation of our quantum hydrodynamic ap-
proach when treating the Bose case. We will shortly see why
this limitation was not discussed in the context of fermions.
In quantum hydrodynamics, the ground-state energy E0 is
obtained as the sum of two terms: the classical ground-state
energy E0

cl and the quantum vacuum fluctuations E0
qfl; see,

e.g., Ref. �33�. The classical ground-state energy E0
cl��0�x�� is

a functional of the density profile �0�x�. Now, the presence of
impurities or boundaries in a quantum liquid modifies the
density profile �0�x� over distances of the order of the heal-
ing length ��1/�m	. This in turns modifies the classical
ground-state energy in addition to the change in the quantum
vacuum fluctuations, which are responsible for the Casimir-
type interaction energy. In the LL approach, the classical
ground-state energy is usually neglected and only the fluc-
tuations above the classical ground state are taken into ac-
count. In a homogeneous system, the classical ground-state
energy is just a constant in the Hamiltonian and can therefore
be safely ignored. Provided that the healing length is much
smaller than the system size, the effect of the boundaries
disappears for bulk properties. In fermionic quantum liquids,
the healing length is of the order of the interparticle distance
1/�0. Therefore, introducing two impurities with a separation
r�1/�0 leaves the classical ground-state energy unchanged.
However, in the case of bosons, the healing length is much
larger than the interparticle spacing, diverging like ��K /�0
for weak interactions �B→0. The condition r�� for neglect-
ing the contribution of the classical ground-state energy in
the calculation of the renormalized interaction energy be-
tween impurities V12 thus becomes increasingly restrictive
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for small �B. As we will see, this leaves us only with an
exponentially small interaction, quite in contrast to the case
of fermions.

B. Weak impurities and weakly interacting bosons

In the case of a weakly interacting Bose gas �B�1 �cor-
responding to high densities� the Bogoliubov approach is
quantitatively applicable, as was shown long ago by Lieb
and Liniger �32�. The physical reason for that is that the
healing length ��1/�0

��B in this limit is much larger than
the average interparticle spacing. The situation is therefore
essentially equivalent to the weak-coupling limit of a 3D
Bose-Einstein condensate at low densities, where interactions
between two impurities have recently been discussed by
Klein and Fleischhauer �34� �the interaction energy V12 is
called the conditional energy shift and denoted by � in this
work�. The explicit calculation is based on the Bogoliubov
approach and assumes that the dimensionless impurity
strength ��mg /�0 is much smaller than one. Adapting the
calculation of Ref. �34� to a one-dimensional gas, we obtain

V12��,r� � − �2�0�
2�0

2

m
exp�− 2r/�� �57�

to lowest order in �. The interaction energy between widely
separated impurities in a weakly interacting Bose gas thus
vanishes exponentially on the scale set by the healing length
�. As discussed above, this calculation assumes that the im-
purities modify the density profile only locally, which is also
the physical reason for the vanishing interaction at r��.

The preceding result can again be qualitatively under-
stood with the help of the scaling theory of Kane and Fisher
�9� for a single weak impurity in a LL. Indeed, when K�1,
the effective coupling of a single impurity is renormalized to
zero in the low-energy limit. The RG flow thus starts at high
energy �c=u /a�	 �corresponding to a short distance cutoff
a��� and ends at a much lower energy �r=u /r which is set
by the separation r of the two impurities. Similar to the case
of fermions, we define a crossover scale r0 by the condition
that the effective dimensionless impurity strength at this
scale is of order 1:

�eff � ��a/r�K−1 � 1 ⇔ r0 � ��1/�K−1�� � . �58�

Since ��1 for weak impurities and K= /��B→� due to
the weak interaction condition, we find r0��. This confirms
that there is no interaction between two weak impurities em-
bedded in a weakly interacting Bose gas when they are far-
ther apart than a distance of the order of the healing length.
More generally, the scaling theory indicates that there is no
long-range interaction between weak impurities even in a
strongly interacting Bose gas, in which K�1. Of course the
limiting case K=1 of hard-core bosons is special as is the
case K=� of no interaction at all. The latter case is treated in
Appendix C and shows that there is no interaction between
the impurities whatever the impurity strength. In strong con-
trast to that, the limit of a Tonks-Girardeau gas of hard-core
bosons is equivalent to the case of noninteracting fermions
for properties depending only on the modulus of the ground-
state wave function like the density distribution. On the basis

of the calculations in Sec. II A, one thus expects a long-range
interaction of the form �17� between impurities in a Tonks-
Girardeau gas which exhibits Friedel-like oscillations. In
view of the fact that the momentum distribution of hard-core
bosons is quite different from that of a free Fermi gas, show-
ing no jump at pF, this is a quite remarkable result �35�.
Another singular limit, where long-range interactions appear
in a Bose liquid, is that of impenetrable impurities �=�. For
arbitrary values ��K�1 of the interactions, the interacting
Bose liquid is then cut into three disconnected pieces. The
impurities thus act as perfect mirrors for the low-energy pho-
non excitations of the intervening Bose liquid, giving rise to
a Casimir interaction energy precisely as in Eq. �36� for spin-
less fermions. It appears, however, that the limit of impen-
etrable impurities at arbitrary energies is nonphysical, impos-
ing strict Dirichlet boundary conditions on a scalar field �23�.
The Casimir force is thus expected to be restricted to �=�,
while for any finite � only short-range interactions should
survive. Describing these crossovers in detail clearly requires
a quantitative theory of impurity interactions in 1D Bose
liquids at arbitrary values of K and �, an interesting problem
for further study.

IV. EXPERIMENTAL REALIZATION AND DETECTION
OF THE CASIMIR-LIKE FORCE

The recent realization of one-dimensional ultracold Fermi
gases in a strong 2D optical lattice �4� provides a novel op-
portunity to study Luttinger-liquid effects in a setup with
cold gases—e.g., spin-charge separation �36�. In order to
study whether the Casimir interactions discussed here might
be observed in these systems, we consider an atomic gas of
fermions in two hyperfine states. These two internal states
play the role of �iso�spin-1 /2 states. In principle both the
sign and strength of the interaction can be controlled using
scattering resonances—e.g., a confinement induced reso-
nance as shown by Olshanii �37�. For simplicity, we assume
that the two spin states are equally populated, N↑=N↓=N /2.
We note that in order to have K�1, one needs to consider a
two-component atomic Fermi gas. Indeed, in a single-
component Fermi gas, Pauli’s principle forbids s-wave colli-
sions, implying that K=1 for spinless fermions interacting
via a contact potential.

Following several recent ideas �5,34,38� which involve
trapping single atoms in ultracold gases, we consider an
atomic-quantum-dot- �AQD-� like configuration, which con-
sists of single atoms confined in a tight trap created either
magnetically or optically—e.g., by an additional optical lat-
tice. We assume that the confining potential can be adjusted
in such a way that it does not affect the atoms of the bath.
The impurity atom, which is trapped in a certain internal
state �a�, interacts with the atoms of the bath through s-wave
collisions. In the case where two such AQD’s are embedded
in the bath and both impurity atoms are in state �a�, the
system precisely realizes the situation of two localized im-
purities interacting via a 1D quantum liquid. Provided the
liquid consists of spin-1 /2 repulsive fermions, we expect that
for distance r much larger than the average interparticle
spacing, the interaction is of the Casimir form given in Eq.

CASIMIR FORCES BETWEEN DEFECTS IN ONE-… PHYSICAL REVIEW A 72, 023616 �2005�

023616-9



�51�. In principle, using a scattering resonance may allow
one to reach the strong-impurity regime �̃�1 where the
crossover scale r0 is even smaller than the interparticle dis-
tance 1/�0.

A possible way to detect the interaction energy V12�r� is to
do spectroscopy of a single trapped atom as a function of the
distance r to a neighboring trapped atom. In addition to the
mean-field line shifts modifying the internal levels of the
impurity atom, the Casimir interaction produces a line shift
depending on distance as 1/r. For a quantitative estimate of
this effect, we compute the energy �51� for the experimental
situation realized in Ref. �4�. There, about N�100 40K at-
oms �per tube� form an atomic wire of length L�10 	m.
The temperature can be as low as T�50 nK, which is about
one-tenth of the Fermi temperature. The Fermi velocity is of
order vF�2�10−2 m/s and we take u�+u��2vF. As the
tube length is of the order of 10 	m and the interparticle
distance 1/�0�0.1 	m, we assume the interimpurity dis-
tance to be r�1 	m, which is larger than the crossover
length for strong impurities. This gives a Casimir-related line
shift of the order of 1 kHz, which is in an experimentally
accessible range. With the parameters given above, the char-
acteristic frequency �r is of the order of �3T, which is not
much larger than T as required for the validity of the zero-
temperature limit in which the Casimir force is obtained.

V. CONCLUSION

In conclusion, we studied the long-range interaction be-
tween two impurities mediated by the 1D quantum liquid in
which they are embedded. We found that for repulsive fer-
mions, the impurities interact via a RKKY-like interaction at
intermediate distances and via a Casimir-like force at large
distances. The crossover scale separating these two regimes
depends on the strength of the impurities and on the interac-
tions between fermions. We proposed an experimental real-
ization of such a system with atomic quantum dots in an
ultracold atomic gas and suggested a way to detect the
Casimir-type interaction by spectroscopy of a single atom in
an AQD.

An issue which is still open is to understand the interac-
tion between impurities in a strongly interacting Bose liquid.
In particular, how does the short-range interaction �on the
scale of the healing length� turn into a long-range interaction
featuring Friedel oscillations in the Tonks-Girardeau limit?
Another issue is to assess the validity of the self-consistent
harmonic approximation used to discuss spin-1 /2 fermions
in Sec. II C. Indeed, it is not obvious that the variational
ansatz, which assumes decoupling of the charge and spin
modes in presence of the impurities, is a valid starting point.

In this paper, we studied static impurities. The situation
becomes even more interesting if one has dynamic impuri-
ties, as in an AQD. First, we discuss the possibility of inter-
nal dynamics for the AQD. We have seen that the character-
istic frequencies of vacuum modes �excitations� responsible
for the long-range interactions between AQD’s are limited by
�r. This means that the effective interaction potential be-
tween static impurities can be used �in an adiabatic approxi-
mation� for time-dependent impurity strengths �̃��t� pro-

vided that the interaction properties change slowly compared
with the time scale �r

−1. Consider, for instance, the configu-
ration with two AQD’s described previously; see Fig. 1 �a
similar scheme for two impurities in a 3D Bose-Einstein con-
densate is discussed in Ref. �34��. The two-level impurity
atoms can be described as isospins 1/2 or qubits. A laser can
drive transitions �equivalent to a single-qubit gate� between
the two internal levels �a� and �b�. In the adiabatic approxi-
mation, the AQD variables are slow and can be taken out of
the integrals so that our previous treatment to calculate the
interaction between two impurities applies. Thus one can
easily write an effective Hamiltonian for the two AQD’s in
the form

Heff = �
�=1,2

�−
�

2
�z

��� +��x
���	 + 1

2V12��z
�1� + 1���z

�2� + 1� ,

�59�

where � is the �renormalized� detuning, � is the �effective�
Rabi frequency coming from the laser induced coupling �5�,
and �x

���, �y
���, and �z

��� are the Pauli matrices describing the
isospin 1/2 of each AQD, �=1,2. The long-range potential
V12 depends, as we have seen, strongly on the characteristics
of the bath and on the distance between the AQD’s. In addi-
tion, the case of impurities with internal dynamics embedded
in a spin-1 /2 fermionic liquid is of course also relevant for
discussing the RKKY interaction in Luttinger liquids, as dis-
cussed perturbatively in �39�.

It is also possible to imagine external motion or dynamics
for the impurities. The argument of adiabaticity also holds in
the case where the distance between the impurities changes
sufficiently slowly. This means that the Casimir-like interac-
tion could be used, for example, to create long-range attrac-
tive forces in mixtures of 1D fermionic gases. However,
when the external dynamics of the impurities are taken into
account on the same footing as the bath dynamics other ef-
fects could reduce, if not wash out, the Casimir force �40�.

FIG. 1. �Color online� Schematic setup of two AQD’s coupled to
a 1D atomic reservoir. The impurity atoms �see text� in a tightly
confining potential interact with the bath when their internal level is
�a�. Here � is the renormalized detuning and � is the Rabi fre-
quency coming from a laser-induced coupling; see Sec. V.
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APPENDIX A: RPA FOR WEAK IMPURITIES IN AN
IDEAL FERMI GAS

In this Appendix, we give another derivation of the weak
coupling result �18� using the random-phase approximation.
The interaction between the two impurities may be written as
the sum of two contributions: a direct interaction �which is
zero in the present case due to the short-range nature of the
impurities� and an indirect interaction induced via the polar-
ization of the medium. The polarization operator in the Fou-
rier representation  ��n ,q� has a singularity at q=2pF,
which leads to the appearance of the long-range force. Spe-
cifically, we calculate the interaction energy of the two im-
purities using the RPA, which works well whenever only
states with very few particle-hole pairs are excited by the
perturbation—i.e., in the limit ���1. For an ideal �spinless�
Fermi gas the RPA Lagrangian can be represented as �T=0
and here we use the real-time formalism from the start�

SRPA =
1

2
� dt�

k
�

p

�!̇pk
† !̇pk − �pk

2 !pk
† !pk� , �A1�

where �k=�p�2�pk�1/2!pk is the RPA expression for the fer-
mion density, �pk= �p+k�2 /2m− p2 /2m is the energy of the
electron-hole pair, and the summation over the momentum p
is limited by the conditions �p��pF and �p+k��pF. The in-
teraction of the AQD’s with the liquid can be written as

Si
RPA =

1

2�
pk

�2�pk�1/2�!pkVk + !pk
† V−k� , �A2�

where Vk=g1+g2 exp�ikr�. The total RPA action SRPA+Si
RPA

is quadratic, and hence the fields !pk can be integrated out,
so that the effective interaction between the impurities is
given by V12=− 1

2�k�Vk�2 ��=0,k�, where the polarization
operator is

 �0,k� = −
2


�

−pF

pF

dp
1

2pk + k2 = −
1

k
ln� k + 2pF

k − 2pF
� .

�A3�

Substituting Vk, performing the integration by transforming
the integral along the real k axis into the integrals along
the branch cut corresponding to the singularity of the
logarithmic-function, and removing the self-energies of the
separated impurities �renormalizing the interaction�, we find

V12 = − �1�2
vF

2r
cos�2pFr� , �A4�

in agreement with Eq. �18�.

APPENDIX B: COULOMB BLOCKADE AND RESONANT
TUNNELING

The present paper discusses the interaction energy be-
tween two impurities in an atomic quantum wire �i.e., a 1D
quantum liquid made of atoms�. In this Appendix, we wish to
make contact with related subjects in the field of mesoscopic
conductors �or solid-state quantum wires�: namely, Coulomb
blockade and resonant tunneling of electrons in a quantum
wire with two tunnel junctions or barriers �see, e.g.,
�9,10,26��. For simplicity, we only consider the case of spin-
less fermions.

We first consider an atomic quantum wire with two impu-
rities. When the impurities are strong �or very far apart�, the
atomic quantum wire is cut into three disconnected pieces
and we may picture the low-energy behavior of the system as
the following structure: left wire/impurity/island�or central
wire�/impurity/right wire. The Casimir effect occurring in
this system is directly related to the energy cost of transfer-
ring a supplementary particle from one of the wires to the
island. In our case �neutral atoms interacting via a short-
range potential�, this energy cost is a finite-size energy �41�
equal to

vF/2K2r . �B1�

With the help of the approximate relation K−2�1+gf /vF
�9�, this energy cost can be seen as the sum of two contribu-
tions: a kinetic energy cost vF /2r and an interaction energy
cost, resulting from the local interaction with the other par-
ticles on the island, gf /2r, where gf is the forward-scattering
coupling constant �in the standard notation of the g-ology,
gf =g2=g4; see �19�, e.g.�. Note that the finite-size energy is
of the order of the zero-point kinetic energy of a phonon on
the island, vF /2Kr.

In the case of electrons in a solid-state quantum wire with
two tunnel junctions �corresponding to the structure left
electrode/barrier/island/barrier/right electrode�, the Coulomb
blockade is due to the energy cost of transferring a single
electron from an electrode to the island �9,26�. However, this
energy cost is not only due to the finite-size energy
vF /2K2r �with K−2�1+e2 /"vF, where e is the electron
charge and " is an appropriate dielectric constant� but also
gets an additional contribution from the charging energy
e2 /2C of the capacitors �i.e., the two tunnel junctions�, where
C is the sum of the capacitance of each tunnel junction �26�.
The total energy cost is equal to vF /2K2r+e2 /2C. The
charging energy is due to the long-range part of the interac-
tion between electrons and therefore does not arise in the
case of cold atoms interacting via a short-range potential.

Another subject of comparison between the atomic quan-
tum wire and the solid-state quantum wire is the possibility
of tunneling resonances across the double-barrier structure
�9,26� �see �19� for review�. Indeed, in an atomic quantum
wire with two impurities, when cos�pFr�=0 �9,26� a tunnel-
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ing resonance occurs: the energy cost to add a particle on the
island vanishes and particles can therefore tunnel through the
impurities. The liquid is no longer cut into disconnected
pieces, and we do not expect a Casimir effect to occur. Tun-
neling resonances do not appear in our calculations because
they are not captured by the self-consistent harmonic ap-
proximation we used, as discussed in Ref. �25�, for example.
However, such resonances are infinitely sharp at zero tem-
perature �9,26�, and therefore they do not play a major role
and should be easy to avoid experimentally.

APPENDIX C: IMPURITIES IN AN IDEAL BOSE GAS

The ideal Bose gas ��B=0� is a singular case: the healing
length � diverges and boundaries are therefore felt over mac-
roscopic distances. Here using quantum hydrodynamics
makes no sense, but of course one can exactly solve the
problem from first principles �Schrödinger equation�. At zero
temperature, all bosons are in the same single-particle wave
function �0 �the corresponding many-body wave function is
just a product or Hartree state�, which is the ground state of
the single-particle Schrödinger equation

−
1

2m
�x

2�0�x� + g���x − r/2� + ��x + r/2���0�x� = "0�0�x� ,

�C1�

where g is the impurity coupling constant. We assume that
the particles are on a ring of length L. The ground-state en-
ergy E0 for N bosons is given by N"0. For g#0, it is
bounded as follows:

"0�g = 0,r�� "0�g,r�� "0�g = �,r� , �C2�

which is a direct consequence of the Schrödinger equation.
In the following we will show that both bounds are going to

zero in the thermodynamic limit, implying that E0�g ,r�=0
for all g#0. Therefore, the interaction energy V12�g ,r�
�E0�g ,r�−E0�g ,r→�� vanishes whatever the distance be-
tween the impurities.

On the one hand, when the impurity strength is zero g
=0, the ground state of the single-particle Schrödinger equa-
tion with periodic boundary conditions is just the constant
wave function, which has zero energy "0�r ,g=0�=0. On the
other hand, when g=�, the wave function has to vanish on
the location of the impurities, implying some bending of the
wave function and a corresponding cost in kinetic energy.
The ground-state wave function is

�0�x� = �m sin���x� − r/2�
L − r

	 �if �x�� r/2�

= 0 �if �x�� r/2� , �C3�

where �m��0�x= ±L /2� is the maximum value of the wave
function and the energy is

"0�g = �,r� =
1

2m
� 

L − r
	2

. �C4�

This quantity vanishes in the thermodynamic limit �L→� at
fixed density �0=N /L� such that L�r. Therefore "0�g
=� ,r�=0 in the thermodynamic limit for all r such that r
�L. Of course, this conclusion does not hold for an ideal
Fermi gas, because fermions have to occupy different single-
particle states �following the Pauli principle� and therefore
the average energy per particle does not vanish in the ther-
modynamic limit.

In conclusion, there is no interaction energy between two
impurities in an ideal Bose gas, provided that the distance r
is much smaller than the ring size L, which is always satis-
fied in the thermodynamic limit.
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