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Collective motions of a quantum gas confined in a harmonic trap
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Single-component quantum gas confined in a harmonic potential, but otherwise isolated, is considered. From
the invariance of the system of the gas under a displacement-type transformation, it is shown that the center of
mass oscillates along a classical trajectory of a harmonic oscillator. It is also shown that this harmonic motion
of the center has, in fact, been implied by Kohn’s theorem. If there is no interaction between the atoms of the
gas, the system in a time-independent isotropic potential of frequency v, is invariant under a squeeze-type
unitary transformation, which gives collective radial breathing motion of frequency 2v,. to the gas. The
amplitudes of the oscillating and breathing motions from the exact invariances could be arbitrarily large. For a
Fermi system, appearance of 2v, mode of the large breathing motion indicates that there is no interaction
between the atoms, except for a possible long-range interaction through the inverse-square-type potential.
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Experiments at ultracold temperature have stimulated the-
oretical efforts to explore the properties of quantum many-
body systems in harmonic potentials. As the interaction be-
tween the atoms of the quantum gas is controllable [1], the
density profile of N-body noninteracting fermions has been
investigated from the eigenstates of a harmonic oscillator [2].
For a one-dimensional harmonic oscillator, it is known that
the time-dependent Schrodinger equation is invariant under
the displacement-type transformation [3], and squeeze-type
transformation (up to a rescaling of time) [4]. The invariance
under the displacement-type transformation (DTT) gives
wave functions whose probability distributions move along
classical solutions. The invariance under the squeeze-type
transformation (STT) gives breathing motions to the distri-
butions. For a time-independent potential of frequency v,, it
is numerically shown that the breathing motion has fre-
quency 2v, [5].

Harmonic motions of the centers of masses of the quan-
tum gases have been clearly noticed in experiments and used
to accurately measure the potentials (see, e.g., Ref. [6]).
Theoretically, dipole mode in the motion of the center has
been found through various approximations, mainly based on
the Gross-Pitaevskii (GP) mean-field formalism [5,7]. In ad-
dition, for the time-independent potential, Kohn’s theorem
says the existence of exact excited states with excitation en-
ergies 2wlhv,(I=1,2,...) and further “harmonic-potential
theorem™ has been establish [8]. To my knowledge, however,
the harmonic motion of the center has rather been understood
from the insight that “collisions between atoms cannot alter
center-of-mass momentum” [6] in the context of ultracold
temperature physics. The implication of the breathing motion
of the harmonic oscillator to the Bose-Einstein condensates
has also long been studied in literature. In particular, it has
been suggested that the GP equation of a time-dependent
harmonic trap may be transformed to the equation of a time-
independent potential through the unitary transformation of a
harmonic oscillator [9], and a scheme to understand the 2v,
mode is proposed [10]. Recently, a 2v, mode has been found
in an experiment [11].

In this paper, single-component quantum gas confined in a
time-dependent harmonic potential, but otherwise isolated, is
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considered, with an assumption that position-dependent part
of the interaction between the atoms of the gas is written in
terms of the differences of positions of two atoms. From the
exact invariance of the gas system under a DTT, it is shown
that the center of mass oscillates along a classical trajectory
of a harmonic oscillator as it has not been known for the
time-independent potential through a different formalism [8].
It is also shown that this harmonic motion of the center has,
in fact, been implied by Kohn’s theorem. If the interaction
between the atoms is absent, the system in a time-
independent isotropic v, potential is invariant under a STT
up to a rescaling of time, which predicts the collective radial
breathing motion of frequency 2v,. of the gas. The ampli-
tudes of the oscillating and breathing modes from the exact
invariances could be arbitrarily large, as they are determined
purely by the classical solutions. In this respect, the exact
modes may be different from other modes found in the linear
approximations [7]. For a Fermi system, appearance of 2v,
mode of the large breathing motion signals that the gas is in
the region of no interaction between the atoms, except for a
possible long-range interaction through the inverse-square-
type potential. The collective harmonic motions of the fermi-
ons will show that the complete set of the numbered coherent
states [12—14] of a harmonic oscillator can be used in stack-
ing the fermions, with equal validity, as the eigenstates are
used. For simplicity, the nonlinear Schrodinger (generalized
GP) equation will be considered first, and the formalism will
be extended to the many-body systems.

A D-dimensional nonlinear Schrodinger equation (NLSE)
with a time-dependent harmonic potential is given by

0w (F.1) + g[W ()W (7.1) = 0, (1)
with
0 B2 gl
Otw() == ih s - —+ TS Wxd,  (2)
a 2m 275

where 6:(&/&x1,a/0x2,...,&/&xl)), m is the mass of an
atom, and g,n are constants. When f; satisfies the Hill’s
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equation, the classical equation of motion of a harmonic os-
cillator

fi+w(f;=0, 3)

with the overdot denoting differentiation with respect to ¢,
the displacement-type unitary operator for the D-dimensional
harmonic oscillator can be given as

D
N . - J
vt =11 (e[(”h)(‘sf*’”f'“f”eXp{—f,-a—] ) )
i=1 Xi
where 6; is defined through the relation
| 280
6= Em[wi (t)f, _fi]- (5

Making use of the operator, one can find that

D .
:<Hexp[é(él+mfl'xl):|)\l,(7_fst)’ (6)
i=1

with f:(fl .J2s .. fp). If the unitary operator UAr,1) is ap-
plied on (1), from the relation

UARD Ot w(®) U7, 1) = O(t,w(1)) (7)

and the fact that U/, 0[|W (7,0 (7,0)]=|V (7, 0PV (F,0),
one can find that the transformed equation is the same one
with the replacement of W(7,7) by W(7,7). If U(F,7) is a
solution of (1), W(7,7) is also a solution of the same equa-

tion, and the number density |¥(7,7)|* of the transformed
solution has harmonic motions with respect to the original
one, without changing the shape. If w,(¢) is a constant w_; and
the transformation is applied on a stationary solution of (1),
then the number density of the transformed solution oscil-
lates sinusoidally along the ith direction. For D=1, the in-
variance has been known through a different formalism [15].

The invariance under the DTT can be easily extended for
a N-body system, if the interaction V(#(1),7(2), ...,7(N)) be-
tween the atoms satisfies

V(F(1) + ¢,F(2) + ¢, ... ,F(N) + ¢) = V(r(1),r(2), ... ,F(N)),
(8)

where 7(j) denotes the position of the jth atom and ¢ is a
constant vector. By defining Uy as

N
Uy=11 Ui, )
j=1

one may find the relation
UnON(t.w(1)) Uy = O, w()). (10)

where
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9
ON(it,w(t))=—-ih— +Hy
ot
J . N N
=- iha +V(r(1),7(2), ... ,F(N))

N 202 D
3-S5 w0 |
j=1 2m 255

(1)

For a given time, the operations of Uy and U f(F ,1) amount to

moving the space coordinate along the vector f to find new
solutions, up to the multiplicative phase factors. The prob-
ability distribution of the transformed wave function of the
N-body system will thus have the harmonic motion with re-
spect to the distribution of the original wave function, as the
number density of the transformed solution of the NLSE
does. Equation (10) is valid for both of the Fermi-Dirac and
Bose-Einstein statistics, and is an exact explanation for the
long-standing observation that the center of mass of the
single-component gas confined in a harmonic potential
moves harmonically, while the harmonic motion of the cen-
ter has been known for the time-dependent potential [8].

For the case of constant frequency w;(f)=w(i
=1,2,...,D), one may find that the harmonic motions of the
centers of masses have, in fact, been implied by Kohn’s theo-
rem [8]. For this, by letting

| 24
fi= 2o; COS(W,it + ¢;) (12)
mw,

ci

with real constants z,, ¢;, one can find the relations

it nn]

, P P
=e’¢iexp[émﬁxi(i) _fzw] (13)
=e'Yiexp[z;(t)al (j) — z; (Da(j)], (14)

where
2i(t) = zgie™ et (15)

N L mw.; . h d
adj) = \E( \/ % x;(j) + \ mw,, r?x,»(j))’ (16)

and z;(t) denotes complex conjugate of z;(r). In Egs. (15) and
(16), ¢, is a real constant coming from that &; is defined up to
a constant, and from now on we will set ¢;=0(
=1,2,...,D). One can thus find that Uy is written as

D

Uy=1Texplz:)A] - 7;(DA] (17)
i=1
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D
[T e explz(0ATexpl- (DAL, (18)
-1
where
N
A= a)). (19)
=1

Indeed, in Ref. [16], it has been proven that
[Hy,Al=fiwgA].

If |G> is the many-body ground state of Hy with energy
eigenvalue Eg, a wave function of the system is given as

D
e—(i/ﬁ)EGtUN|G> — e—(i/h)EGtH e_Nz(z)i/z(Z ( Al ) |G>>

i=1 1=0 !!
(20)
while, as suggested by Kohn’s theorem [8], (A])|G) is an
eigenstate of the Hy with the eigenvalue E,+IAw,; [16].

From now on, isotropic potentials will only be consid-
ered, so that w;(t)=w(r) for all i. For the STT, the unitary

operator
U _( QO )DM { i mn(t)az}
" \mw, 72(t) 20 n(1)

Xexp[ 2(1 manz(t)) V] (21)

is introduced, with positive constants €} and w. (=27v,). For
the time being, it will be assumed that 7(¢) is an arbitrary
smooth positive function of ¢. If U, is applied on x(7, 7(1)),
the transformed function will be

W(r,1) = Ugx(r,7(1))
_( Q )DM { i mn(t) 92]
=\ 20) 2% )

Q
XX(\/—% T()) (22)

(‘

A NLSE with a time-independent harmonic potential is given
as

Or(1),wx(F, (1) + g x(F, 1)) " x(7, (1) = 0, (23)

where

ﬁzv*z 2
S+ m;VCfZ. (24)
m

O.((t),w.) =— iﬁ%_ -
From the fact
Q -nD/2
U (x(7 D" x(7,7) = (mw—nz(t)> (W (0" (7).

(25)

one may find that the NLSE of Eq. (23) can be transformed,
through the STT, to that of Eq. (1) only when
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dt  mw,. 7
— = 26
dr Q (26)
Further, if 7(z) satisfies
QZ
mij+mwi(t)p- — =0, (27)
may
one can find the relation
N dt
U,0.(7(t),w)U; = o O(t,w(t)) (28)
T

which is well known for the one-dimensional harmonic os-
cillators [4,14]. When 7 satisfies Eq. (26), by applying the
operator U, on Eq. (23), one can find that the NLSE is trans-
formed as

UL0(1(1),w )X (7, 7)) + g x (7, 7)) x(7, 7(1))]

_mwerr(f) O(I’W(t);ql(;’t)l-w/z
- =\ |[2n e
=0. (29)

Through the STT, Eq. (23) is thus transformed to Eq. (1)
when

nD=2. (30)

As far as a NLSE is concerned, this condition is identical to
that given in Ref. [10], found in a different context using a
trial function. For n=1,2, the squeeze-type relation (29) has
been suggested in Ref. [9].

In the harmonic oscillator, it is known that #(z) and a
constant {) are written as (see, for example, Refs. [4,13])

(1) =\ (1) +v*(1),  Q=m[o(r)u() —i(v(1)], (31)
with two linearly independent real solutions u(r) and v(z) of
Ko+ w2 (t)x,=0. (32)

From now on, we only consider 7(z) and 7(r) satisfying Egs.
(26) and (27). When Eq. (30) is satisfied, the unitary rela-
tions can be used to find a solution W(7,f) of Eq. (1) from a
known solution x(7, 7(¢)) of Eq. (23), as

W(r,1) = U{r,n) Usx(r, (1)) (33)

If e7 ™y (7) is a solution of Eq. (23) with a constant u, a
solution of Eq. (1) is given as

Q )Dm(u(t)—iv(t))”/ﬁ
mw (1) (1)

(Hexp{ 5+mf,x)])
im 1) ( /iﬁ)
‘”‘p{ 2h)” f)z} mw, 0))”

21in(1) e
(34)

W(rt) = (

For the case of f:O, one finds that
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2o /&L)D
|\I’(r,t)| _< mw, (1)

c

2
. (35)

(Voo
XAN ()
For a given time with f=0, Eq. (35) shows that the number
density of W(r,7) is given from that of e=“™y,(r) by glo-
bally rescaling the space coordinate along the radial direc-
tion, with a multiplication factor needed to keep the total
number of particles.

The squeeze-type unitary relation can be extended for the
interacting N-body system, if interaction between the atoms
is of homogeneous degree —2, so that

V(ar(1),ar(2), ... ,ar(N)) = a *V(F(1)7(2), ... ,F(N))
(36)
with a constant a. By defining
Oy (1), w.) =— ih%_ +V(r(1),A2), ... ,7(N))

N 202 2
+E[ AV ’"W“zm} (37)

Q NDi4 N ; m77(t) 22 }
Us= (mme(t) ) H eXp[ o Y
Xexp[ 2(1n”’w Q”Z(”) (j)ﬁ(i)} (38)

one may find the relation
dr
dr

If XN(T(f))[=€_iET(l)/ﬁXN,o(’7( 1),7(2), ...
Schrodinger equation

U O (70, W)Uy, = ( )ON(taW(t))- (39)

,A(N))] satisfies the

O (7(1),w) xw(7(1)) =0, (40)
a solution of the Schrodinger equation
On(t,w(@))Wp(1) =0 (41)

is thus given as

~ Q ND/4 ( t) ( t) )E/h
“’N(’)‘(mwcnzm) ( (0

« (Hexp{ o %)D

J=1

X XN,O(F(I)’F(Z)a ’F(N))’ (42)
where 7(j)=VQ/mw [7(j)/ n(¢)]. As in the number density of
the NLSE, for a given time, the probability distribution of
W(2) is found from that of x(7(r)) by globally rescaling the
space coordinate along the radial direction with a multiplica-
tion factor.

When w(t)=w, [and Eq. (30) is satisfied for the NLSE],
the squeeze-type operators in Egs. (21) and (38) transform
(23) and (40) into themselves with a replacement of 7 by ¢
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(up to a rescaling of the time), respectively, and thus the
unitary relations give invariance. If 7(¢) is denoted as 7,.(¢)
in this case, 7.(r) is written without losing generality as

[ Q
7.(t) = —— VAZcos2w, (1 — ty) + A 2sin?w, (t — 1),

(43)

with a constant 7, and a nonzero constant A. 7.() is a peri-
odic function of time with frequency 2v., and thus the prob-
ability distribution of the wave function obtained from a sta-
tionary state of the N-body system through the STT has the
breathing motion of frequency 2v,.

The invariance under the STT is possible only when the
atoms interact each other through the potential satisfying Eq.
(27). Such potentials are the inverse-square-type [17] and the
two-dimensional Dirac delta potentials, including other vari-
ants from the one-dimensional Dirac delta potential. Since
Dirac delta potential cannot be used for the interaction of
fermions due to the exclusion principle, the Fermi system
with the collective 2v, breathing mode should be interpreted
as that of no interaction between the atoms (except for a
possible long-range interaction through the inverse-square-
type potential). In the Tonks-Girardeau limit of the Tonks
gas, interacting bosons behaves as noninteracting quasifermi-
ons, and the mean-field description has been given by Ko-
lomeisky er al. [18]. Since noninteracting particle systems in
one dimension have the invariance, the mean-field equation
should also be invariant under the STT, and the equation of
Kolomeisky ef al. satisfies the requirement of Eq. (30).

In order to realize the large breathing mode from a sta-
tionary state in a time-independent trap of frequency v,, one
may modulate w(r) until 7(¢) determined by Eq. (27) has a
large oscillating behavior. In this case a convenient choice
for the arbitrary constant () is Q=mw,, and the limiting case
of A—0 or A—o of (43) shows the existences of such
modulations. The modulation of frequency has already been
widely used in experiments (see, e.g., Ref. [11]). If the am-
plitude of the center-of-mass oscillation decays in an experi-
ment of a single-component gas using a time-independent
harmonic potential, it indicates that the gas is not completely
isolated. While a 2w, breathing mode is found and a sinu-
soidal curve is used to fit the size of the breathing gas in Ref.
[11], Egs. (35) and (43) imply that the difference between the
radius of the breathing motion from the invariance and the
sinusoidal curve will be clear for A>1 (or A<€1) around the
time the gases are most compressed.

In summary, isolated single-component quantum gas in a
harmonic potential is considered. The invariance under the
DTT shows that the center of mass of the gas moves along a
classical trajectory of a harmonic oscillator. For a time-
independent potential, it is shown that the harmonic motion
of the center has, in fact, been implied by Kohn’s theorem
[8,16]. For a Fermi system, through the invariance under the
STT, it is shown that appearance of the large radial 2v,
breathing mode indicates that the atoms do not interact with
each other (except for a possible long-range interaction).
While some NLSEs and noninteracting Fermi gas in any
dimension are invariant under the STT, the collective breath-

023614-4



COLLECTIVE MOTIONS OF A QUANTUM GAS ...

ing motion of the one-dimensional gas can be understood
from the evolution of an eigenstate of the harmonic oscillator
into a coherent state when modulation is applied to the fre-
quency. Alternatively, in one dimension, the collective
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breathing and oscillating motions in a time-independent po-
tential can be interpreted as the result of using generalized
coherent states [12—14] of a harmonic oscillator in stacking
fermions.
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