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The strong-field approximation �SFA� can be and has been applied in both length gauge and velocity gauge
with quantitatively conflicting answers. For ionization of negative ions with a ground state of odd parity, the
predictions of the two gauges differ qualitatively: in the envelope of the angular-resolved energy spectrum, dips
in one gauge correspond to humps in the other. We show that the length-gauge SFA matches the exact
numerical solution of the time-dependent Schrödinger equation.
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Quantum mechanics is gauge invariant: it is easily proven
that a given physical quantity can be evaluated in any gauge
with the same result �1�. In nonrelativistic quantum mechan-
ics, when the dipole �or long-wavelength� approximation is
adopted, the interaction of an atom with a time-dependent
field such as a laser field is usually described in either one of
two gauges: the length gauge �L gauge� or the velocity gauge
�V gauge� �2�. In numerical solutions of the time-dependent
Schrödinger equation �TDSE�, gauge invariance has been
confirmed many times. In analytical work, however, some
approximations almost always have to be adopted. There is
no formal reason of why after such approximations the re-
sulting theory should still be gauge invariant. Indeed, the
lack of gauge invariance after what seems like very-well-
justified approximations has given rise too much debate; see,
e.g., Ref. �3�.

In this paper, we will address one of the most glaring
manifestations of this “gauge problem:” the lack of gauge
invariance of the strong-field approximation �SFA� in
intense-laser-atom physics �4,5�. The SFA underlies almost
any analytical approach to total ionization rates, above-
threshold ionization, high-order harmonic generation, and
nonsequential double ionization, both of atoms and of mol-
ecules. Briefly, it assumes that the initial bound state of the
atom or molecule is unaffected by the laser field while the
final state, which is in the continuum, does not feel the pres-
ence of the binding potential. Of the seminal papers usually
credited for the SFA, those in Ref. �4� have employed L
gauge, while those in Ref. �5� used V gauge. The lack of
gauge invariance of the SFA has been noted many times; see,
e.g., Ref. �6�. Comparisons that have been carried out indeed
have exhibited significant disagreements between the results
obtained from L gauge and V gauge �7�. Different authors
have preferred different gauges. The question of which gauge
is superior for which problem has often been raised, but
never led to any consensus about its answer. Below, we will
give an answer for the case of a short-range binding poten-
tial, where the SFA is expected to be most accurate �8�, by
comparing the SFA in L gauge and V gauge with the numeri-
cal solution of the TDSE.

For a fixed nucleus and in the single-active-electron ap-
proximation, where the effects of all electrons but one are
absorbed into an effective binding potential, the complete

Hamiltonian in the presence of an external electromagnetic
field can be decomposed as

Hx�t� = H0 + HIx�t� , �1�

where the subscript x specifies the gauge �x=L,V� and

H0 =
p̂2

2m
+ V�r� with p̂ = − i � . �2�

This operator contains the binding potential V�r� and is in-
dependent of the gauge. With the dipole approximation,
which neglects the space dependence of the electric field and
the vector potential, so that E�r , t�→E�t� and A�r , t�
→A�t�, respectively, the electron-field interaction operator
has the following forms in length gauge and velocity gauge:

HIx�t� = �− er · E�t� �x = L� ,

−
e

m
p̂ · A�t� +

e2

2m
A2�t� �x = V� . � �3�

A free electron �no binding potential� in the presence of the
laser field is governed by the Hamiltonian

HFx�t� =
p̂2

2m
+ HIx�t� . �4�

The time-evolution operator of the total Hamiltonian �1� sat-
isfies the Dyson equation

Ux�t,t�� = U0�t,t�� − i�
t�

t

d�Ux�t,��HIx���U0��,t�� , �5�

where U0�t , t�� denotes the time-evolution operator of the
Hamiltonian �2�.

The exact �gauge-invariant� ionization amplitude from an
initial bound state ��0�t�	= �0	exp�iIpt� with ionization poten-
tial Ip to a final continuum state ��p�t�	, both defined by the
Hamiltonian H0, is

Mp = lim
t→�,t�→−�


�p�t��Ux�t,t����0�t��	 . �6�

We assume that the laser field be turned off in the limits of
t→� and t�→−� and that A���=A�−��=0. Gauge invari-
ance then implies that Mp is gauge invariant, and indeed this

PHYSICAL REVIEW A 72, 023415 �2005�

1050-2947/2005/72�2�/023415�5�/$23.00 ©2005 The American Physical Society023415-1

http://dx.doi.org/10.1103/PhysRevA.72.023415


can easily be verified explicitly. The SFA is obtained if we
insert the Dyson equation �5� into the ionization amplitude
�6�. The first term, which comes from U0�t , t��, cancels since
the initial and final states are orthogonal, and we are left with
�9�

Mp = − i lim
t→�

�
−�

t

d�
�p�t��Ux�t,��HIx�����0���	 , �7�

which is still exact.
In the argument that follows we restrict ourselves for the

sake of transparence and simplicity to “direct” electrons—
i.e., those that after the initial ionization never again feel the
binding potential. In order to obtain the transition amplitude
for the direct electrons, we replace in Eq. �7� the exact state
at time �, which is 
�p�t��Ux�t ,��, by the Volkov state

�px

�Vv����� �given below in Eq. �9�� where the interaction with
the binding potential is neglected. This yields the well-
known �gauge-dependent� SFA amplitude �4,5�

Mpx = − i�
−�

�

d�
�px
�Vv�����HIx�����0���	 . �8�

Here, for times t�� the state of the electron is governed by
the Hamiltonian H0, while for t�� its time evolution follows
the Hamiltonian HFx.

The matrix element �8� conveys the following physical
picture: for times t�� the electron is sufficiently deeply
bound that to a good approximation its interaction with the
laser field can be ignored. At time �, it is ionized, and the
laser intensity is high enough to move the electron so rapidly
out of the range of the binding potential that now the latter
can be neglected.

However, this physical picture is in agreement with the
formal description only within L gauge. In L gauge, the in-
teraction with the laser field is accomplished by the scalar
potential e��t�=HIL�t�. There is no vector potential, so that
the operator of the mechanical momentum �mass times ve-
locity� agrees with the canonical momentum: mv̂=p. Hence,
p̂2 / �2m� is the operator of the kinetic energy and H0 is the
energy operator in the absence of the field, even if a field is
present. In V gauge, the operator of the mechanical momen-
tum is mv̂= p̂−eA�t� where p̂ is the operator of the canonical
momentum. The latter is a conserved quantity under the di-
pole approximation, but not a physical quantity �1�, since p̂
=mv̂+eA�t� and v̂ is a physical quantity while A�t� is not. In
consequence, in the presence of a laser field, the operator H0
is not the field-free energy operator and its eigenstate ��0�t0�	
does incorporate some interaction with the field �10�. Hence,
in V gauge, the physical picture formulated above is not
realized by the matrix element �8�.

It is instructive to evaluate the matrix element �8� by the
method of steepest descent, which is known to work very
well for sufficiently high intensity. We first recall the explicit
form of the Volkov wave function


r��px
�Vv��t�	 =

e−iSp�t�

�2��3/2�eip·r �x = V� ,

ei�p−eA�t��·r �x = L� ,
� �9�

with the action

Sp�t� =
1

2m
�t

d��p − eA����2. �10�

which has the same form in either gauge �11�.
Via an integration by parts, the transition amplitude �8�

can be recast in the form �9�

Mpx = − i�
−�

�

d�
�px
�Vv�����V�r���0���	 , �11�

which depends on the gauge only via the Volkov wave func-
tion �9�. Collecting the exponential time dependence of the
integrand in Eq. �11� we find that the stationary points with
respect to � are determined as the solutions of the saddle-
point equation

�p − eA����2 = − 2mIp. �12�

The transition amplitude then can be represented as the su-
perposition of the contributions of all those solutions ts of
Eq. �12� for which Im ts�0, with the result

Mpx = 
s

Vpxs� 2�i

E�ts� · �p − eA�ts��
ei�Sp�ts�+Ipts�. �13�

Only the form factor

Vpxs = �
p�V�r��0	 �x = V� ,


p − eA�ts��V�r��0	 �x = L� ,
� �14�

depends on the gauge. In V gauge, it is evaluated at the
momentum p at the detector, which is the same for all
saddle-point solutions. In L gauge, it is evaluated at the in-
stantaneous velocity at the ionization time ts, whose compo-
nent parallel to the laser field according to Eq. �12� is purely
imaginary and can have either sign. For a monochromatic
linearly polarized laser field, there are two solutions ts per
cycle of the saddle-point equation �12� with Im ts�0, one on
either side of the pertinent extremum of the vector potential.

To find out the signs of p−eA�ts� that correspond to the
solutions with Im ts�0, let us consider the vector potential
A�t�=eA cos �t. We let t= tR+ itI, where tR and tI denote the
real and imaginary parts of t, respectively. The real and
imaginary parts of the saddle-point equation �12� are

p� − eA cos �tR cosh �tI = 0, �15a�

eA sin �tR sinh �tI = �2mIp + p�
2 , �15b�

where p� and p� are the components of p parallel and per-
pendicular to the laser field and the square root may have
either sign. From Eq. �15a�, the two solutions per cycle are
such that cos �tR has the same sign. Then, from Eq. �15b�
and the fact that tI�0 for the physical saddle-point solutions,
we have that sin �tR has the opposite sign for the two solu-
tions. Hence, the two instantaneous velocities that enter the
L-gauge form factor �14� are p−eA�ts�= �±i�2mIp+p�

2 ,p��.
For p�=0, they are purely imaginary and have opposite sign.
This reflects the fact that the electric field E�tR� points in
opposite directions for the two solutions.

Now, for an even-parity ground state �0	, 
−a�V�0	
= 
a�V�0	, while for an odd-parity state, 
−a�V�0	=−
a�V�0	.
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Hence, for an odd-parity state, when in Eq. �13� the contri-
butions of the two saddle points add in V gauge, they sub-
stract in L gauge and vice versa. Consequently, for an odd-
parity initial state, constructive interference in L gauge
implies destructive interference in V gauge and vice versa. In
contrast, for an even-parity ground state, both gauges predict
interference maxima and minima at the same positions. As
soon as p��0, there is no complete destructive or construc-
tive interference anymore.

In Figs. 1–3 we compare the results of the SFA in L gauge
and V gauge with a numerical solution of the TDSE. All
calculations have been carried out for a four-cycle linearly
polarized laser pulse having intensity 2.4	1014 W/cm2

�field strength E0=0.0834 a.u.� and wavelength 800 nm
�photon energy �=0.056 a.u.�. The electric-field vector is
E�t�cos��t+
�ê, with the sine-square envelope E�t�
=E0 sin2��t /2np� for 0� t�Tp=npT, T=2� /�, and E�t�=0

outside this interval. The carrier-envelope phase is 
=0. Fig-
ure 1 exhibits the results of a numerical computation �not
using the saddle-point approximation� of the SFA amplitude
�8� in L gauge and V gauge, respectively, taking for ��0�t�	
the bound state of a zero-range potential �8,12–14�. They
illustrate the above statements. In other words, in L gauge,
everything else being equal, the positions of the interference
dips for a p ground state coincide with those of the interfer-
ence humps for an s ground state. In contrast, in V gauge
dips and humps occur at the same positions regardless of the
parity of the ground state. Figure 2 presents the correspond-
ing TDSE spectrum calculated by methods introduced else-
where �15�. In order to mimic a short-range potential in the
TDSE calculations, the Coulomb potential −Zeff /r has been
cut at rc=2 a.u. The nuclear charge Zeff was adjusted in such
a way as to keep the ionization potential Ip at 0.5 a.u. for

FIG. 1. �Color online� SFA
electron-energy spectrum for
emission in the �positive� direc-
tion of the laser field �four-cycle
sin2 pulse with 
=0, �
=0.056 a.u., E0=0.0834 a.u.� in L
gauge, starting from an initial 1s
�solid line� or 2p �dashed line�
state. The corresponding V-gauge
result is shown in the inset.

FIG. 2. �Color online� Same as Fig. 1, but computed from the
numerical solution of the TDSE.

FIG. 3. �Color online� Direct comparison of TDSE and SFA
�L-gauge� photoelectron spectra. The initial states are �a� 1s and �b�
2p, the other parameters as in Fig. 1. For convenience, the TDSE
spectra are rescaled �but unshifted in energy�.
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both the 1s and 2p states. It has been shown recently �16�
that the agreement between SFA and TDSE low-energy elec-
tron spectra improves with decreasing potential range rc. A
direct comparison of the TDSE and SFA �L gauge� results is
presented in Fig. 3. The agreement with respect to the ener-
getic positions of the various peaks is excellent. Residual
discrepancies are observed in the shape of the spectrum for
low energies, especially for the p ground state, and are likely
due to the different large-distance behavior of the wave func-
tions �zero range for the SFA versus cut Coulomb for the
TDSE�.

The exact solution for ionization of negatively charged
ions that is available in the context of effective-range theory
exhibits the interference dips in complementary positions for
s and p ground states �17�, in agreement with the L-gauge
SFA and exact TDSE solution. The authors of Ref. �17� argue
that, based upon a formal analysis, the length-gauge SFA
matches analytically the quasienergy solution of the TDSE
within the time-dependent effective-range approach. The
L-gauge SFA also appears to be supported by the experimen-
tal data: the above-threshold-detachment energy spectrum for
the negative F− ion �18�, which has a p ground state, displays
a pronounced change of its slope at the energy where the
L-gauge SFA predicts an interference dip �12,13�.

For elliptical polarization, for ellipticities higher than a
certain critical value the saddle-point equation �12� only has
one solution per cycle rather than two, so that the interfer-
ence ceases to exist �19�. This is so, in particular, for circular
polarization. Recently, the latter case was considered in de-
tail �20�. Even in the absence of interference, the form factor
�14� is still different in L gauge and in V gauge. For an s
ground state �0	, the form factor 
p�V�0	 has a maximum for
p=0 and decreases with increasing �p�, while for a p state, it
has a zero at p=0 and extrema away from p=0. In Ref. �20�,
for ionization of F− by a circularly polarized laser field, the
energy spectrum was calculated in either gauge. The V-gauge
spectrum peaks at a higher energy than the L-gauge spec-
trum, which conforms with the considerations given above.

Moreover, Wigner’s threshold law is only reproduced in L
gauge �20�.

Before concluding, we recall that in a numerical solution
of the TDSE the choice of gauge is “merely” a question of
convenience. Generally, convergence is faster in V gauge
where fewer angular momenta contribute, much faster indeed
for high intensity and low frequency �21�. In contrast, in
approximations such as the SFA, the choice of gauge is a
contributing factor for the quality of the approximation. In
fact, making formally the same approximation in two gauges
may correspond to different approximations physically. A
general argument in favor of the L gauge for use in the SFA
has been put forward in Ref. �8�: the L-gauge interaction
Hamiltonian �3� puts the emphasis on large distances from
the atom, where the Volkov wave function is a good approxi-
mation to the final state. In a similar vein, we add that it
appears to make more sense to evaluate the form factor �14�
at the instantaneous velocity at the time of ionization �as in L
gauge� rather than at the drift velocity �as in V gauge�, which
for low frequencies the electron does not assume before it is
far away from the ion.

On the basis of a comparison with the solution of the
time-dependent Schrödinger equation, we conclude that the
strong-field approximation applied to above-threshold de-
tachment of negative ions affords a better description in
length gauge than in velocity gauge. In view of the funda-
mental significance of the SFA for strong-field physics, it is
of great importance to find out which gauge is better suited
for above-threshold ionization of atoms and molecules as
well as nonsequential double ionization. In all of these cases,
the two gauges are known to yield different answers as well.
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