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We give a Floquet analysis of photoemission of electrons and high-order harmonic generation from a solid
surface interacting with intense laser fields. A general theoretical algorithm, within a three-dimensional quasi-
free-electron model, is presented. It takes account of the effective masses of the electron both within and
outside the solid, as well as treating both reflected and refracted laser fields. The steady-state photocurrent is
obtained from the diagonal photon components of the expectation value of the time-dependent current operator
outside the surface, while the off-diagonal terms of the expectation value of the current operator from both
inside and outside the surface provide the probability of coherent emission of high-order harmonic radiation. It
is found, among other things, that electrons can be emitted from the surface requiring no net absorption of
photons or even accompanied by emission of extra photons. The origin of the effect lies in the difference in the
ponderomotive energy inside and outside the surface that can arise from the small ratio of the effective mass
of the electron inside the solid �e.g., GaAs� and the mass of the free electron. Another result of qualitative
significance is the formation of a plateau, well known in the atomic case, in both the kinetic energy distribution
of the photocurrent and the spectrum of the high-order harmonic radiation. They are shown to arise in the
present case from the evanescent part of the electron wave function at the surface.
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I. INTRODUCTION

Interaction of strong laser fields with solids and solid sur-
faces has been investigated for many years, both experimen-
tally �1–13� and theoretically �14–28�. Since the system, in
general, is very complex, many elementary processes over-
lap. This overlap creates difficulties in providing a clear
physical interpretation of the results. Even theoretical inves-
tigations, which deal with simplified models, are not free
from these problems entirely. They can, nevertheless, pro-
vide hints to the kind of elementary processes that dominate
or become important for such complex systems. In the past
much attention was focused on the role of intraband resonant
transitions in solids and on how they influence the photocur-
rent energy distribution or the high-order harmonic spectrum
�see, e.g., Refs. �21,23,11,12��. The aim of this paper is to
discuss photoemission and high-order harmonic generation
from a solid surface in an intense laser field, focusing our
attention only on the surface effects. For this reason we shall
adopt a three-dimensional quasi-free-electron model. This
approximation will allow us to eliminate intraband resonance
processes �23� and to investigate effects that are due solely to
the presence of the surface. A general scheme of these phe-
nomena is presented in Fig. 1. The incident, reflected, and
refracted laser beams are assumed to be periodic functions of
time, with the fundamental frequency �, which can have
arbitrary higher-order harmonics. Thus, both monochromatic
as well as harmonic pulses can be treated by the method. The
polarization vectors of the beams are considered to be arbi-
trary and in principle uncorrelated, which allows one to in-
corporate possible changes of the reflected and refracted
beams, as desired.

As mentioned above, the quasi-free-electron model does
not account for intraband resonance transitions. Our earlier
investigations of a one-dimensional model �23� suggest,

however, that these resonance transitions show up as sharp
peaks in the photocurrent spectrum. We presume therefore
that the model considered here should qualitatively describe
well the average behavior of photoemission from a metal
surface. Moreover, for slowly varying amplitude of the laser
field, it should correctly account for multiphoton processes
and interface transitions in semiconductor heterostructures
with a space-dependent effective mass. In this sense our in-
vestigations complement theoretical models for ultrafast phe-
nomena reviewed recently by Rossi and Kuhn �29�.

FIG. 1. �Color online� The laser beam of fundamental frequency
� and intensity I is reflected and refracted by the surface with
intensities �I and �1−��I , 0���1. In the laser focus a crystal
electron of momentum k is scattered by the surface and after ab-
sorption �M �0� or emission �M �0� of energy M� is transmitted
or reflected with momentum pM or qM, respectively. During the
collision of electrons with the surface higher-order harmonics of the
fundamental frequency � are emitted.
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The plan of this paper is the following. In the next section
we present a quasi-free-electron model of the solid surface
that accounts for the different effective masses of the elec-
trons inside and outside, and allows for the modification of
the reflected and refracted laser beams due to the presence of
the surface. This model is applied in Sec. III to investigate
photoemission, where the energy distribution of the laser-
field-induced photoelectron current is calculated. A phenom-
enon that may be called a “ponderomotive ionization” effect,
which can occur without the absorption of a laser photon or
even with the emission of extra photons, is predicted. Section
IV analyzes the appearance of a plateau in the energy distri-
bution of the high-order harmonics. The paper ends with the
conclusions and prospects in Sec. V. In this paper, Hartree
atomic units �a.u.� ��e�=�=m=1,c=1/�� are used, unless
stated explicitly otherwise.

II. QUASI-FREE-ELECTRON MODEL

In the following we shall assume that electrons in solids
move freely, but with an effective mass m* that is in general
different from their rest mass m in vacuum. The solid surface
is described by a step potential. To be more specific, the
dynamics of electrons is assumed to be governed by the fol-
lowing Schrödinger equation:

i�t	V = �1

2
�1

i
� +

1

c
A�t��2		V, z � 0,

i�t	C = � 1

2m*�1

i
� +

1

c
AC�t��2

+ VS		C, z � 0. �1�

The surface is defined by the equation z=0. In the wave
equation above, A�t� and AC�t� are the vector potentials of
the radiation fields in the vacuum and in the solid, respec-
tively. The constant VS=−�EF+W� determines the surface
potential with EF being the Fermi energy and W being the
work function. We shall apply the dipole approximation to
the radiation field and assume that the vector potentials are
periodic functions of time, i.e.,

A�t� = 

NL=−N0

N0

e−iNL�taNL
, �2�

AC�t� = 

NL=−N0

N0

e−iNL�taC,NL
, �3�

where aNL
and aC,NL

are arbitrary complex �constant� vectors
and N0 is the maximum harmonic order of the incident laser
field. For N0=1, for example, we have a typical laser field
with a single carrier frequency. In the following we shall
treat the constant vectors as phenomenological parameters of
our theory. This is because adsorbed atoms or molecules gen-
erally have a significant influence on the electronic structure
of the surface, which leads to strong modifications of work
functions �30–32�, and of the optical properties of the surface
�see, e.g., Ref. �28��, which may be modeled by suitably
changing the constants.

The conservation of probability implies that the wave
functions 	V�r , t� and 	C�r , t� must satisfy the continuity
conditions at the surface �for the one-dimensional case see,
e.g., Refs. �22,33–37��,

	V�r,t��z=0 = 	C�r,t��z=0, �4�

nS · ��1

i
� +

1

c
A�t��	V�r,t��

z=0

=
1

m*nS · ��1

i
� +

1

c
AC�t��	C�r,t��

z=0,
�5�

valid for all times t. In the equation above nS means the unit
vector normal to the surface. Due to the time periodicity of
the radiation field these wave functions can be Fourier de-
composed:

	V�r,t� = e−iEt 

N�Z

e−iN�t	V,N�r� , �6�

	C�r,t� = e−iEt 

N�Z

e−iN�t	C,N�r� , �7�

with the same quasienergy E. Z stands for the set of all
integers. The explicit forms of 	V,N�r� and 	C,N�r� are deter-
mined by the Schrödinger equation, surface matching condi-
tions, and the boundary conditions relevant for the process
we are considering.

III. PHOTOEMISSION

A. Theory

First, let us consider a process that consists in the reflec-
tion by and the transmission through the surface of an inci-
dent electron of momentum k. Without the laser field, solu-
tions of the Schrödinger equation adopt the form

	V�r,t� = T0e−iEt+ip�·r�−
z, �8�

	C�r,t� = e−iEt�eik·r + R0eik�·r�−ikzz� , �9�

in which p� , 
, and the transmission and reflection probabil-
ity amplitudes T0 and R0 are determined from the matching
conditions, Eqs. �4� and �5� �the symbol � means parallel to
the surface�. In the presence of the laser field the wave func-
tion has a similar form, which we write as

	V�r,t� = 	T�r,t� , �10�

	C�r,t� = 	I�r,t� + 	R�r,t� . �11�

In the equations above the incident wave 	I�r , t�=	k�r , t� is
the Volkov wave function of momentum k in the solid with
kz�0, whereas 	R�r , t� and 	T�r , t� describe the reflected
and the transmitted waves, respectively. This means that
	R�r , t� is composed of momenta with negative z compo-
nents, and 	T�r , t� contains waves of positive z components
of momenta.

The Volkov wave funtion 	k�r , t� is known in the explicit
form
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	k�r,t� = exp�ik · r − i
0

t

d� EC�k +
1

c
AC����	 , �12�

where

EC�k� =
1

2m*k2 + VS, �13�

and the quasienergy is equal to

E =
1

2m*k2 + VS + UC. �14�

The last term in the above equation is the ponderomotive
energy in the solid,

UC =
1

2m*c2

�

2�


0

2�/�

d� AC
2 ��� . �15�

As we see, Eq. �14� determines only the amplitude of the
momentum k for a given quasienergy E,

�k� = �2m*�E − VS − UC� . �16�

Hence, the Volkov solution can be written in an equivalent
form,

	E,n�r� = exp�− iEt − i
0

t

d�� 1

2m*c2AC
2 ��� − UC�

+ i�2m*�E − VS − UC�n · �r −
1

m*c


0

t

d� AC����	 ,

�17�

labeled now by the quasienergy E and the unit vector
n , �n�=1, which determines the direction of k. This form of
the Volkov solution is helpful in constructing the most gen-
eral expressions for the reflected and transmitted waves,
	R�r , t� and 	T�r , t�.

During the process of reflection by and transmission
through the surface an electron can not only absorb or emit
energy M� with an arbitrary integer M, but also change its
direction of propagation. This leads to reflected and transmit-
ted waves at any time t of the form

	R�r,t� = 

M�Z

RM exp�− i�E + M��t + iqM · r

− i
0

t

d�� 1

m*c
qM · AC��� +

1

2m*c2AC
2 ��� − UC�	

�18�

and

	T�r,t� = 

M�Z

TM exp�− i�E + M��t + ipM · r

− i
0

t

d��1

c
pM · A��� +

1

2c2A2��� − UV�	 .

�19�

The matching conditions �4� and �5�, which have to be sat-

isfied for arbitrary x and y on the surface z=0, require that all
momenta pM� and qM� parallel to the surface are equal,

pM� = qM� = k� . �20�

For momenta perpendicular to the surface we have

pM,z
2 = 2�E + M� − UV� − k�

2, �21�

qM,z
2 = 2m*�E + M� − VS − UC� − k�

2. �22�

The channels for which pM,z
2 �0 are called open channels, as

opposed to the so-called closed channels, for which pM,z
2

�0, and similarly for reflected waves. Taking the square root
of the equations above we have to account for the boundary
conditions and the normalizability of the wave function. The
proper choice is the following:

pM,z = ��pM,z
2 for open channels,

i��pM,z
2 � for closed channels,

� �23�

and

qM,z = �− �qM,z
2 for open channels,

− i��qM,z
2 � for closed channels.

� �24�

Next we Fourier-analyze the functions periodic in time �see
Eqs. �18� and �19��,

exp�− ik · 
0

t

d�
1

m*c
AC��� − i

0

t

d�� 1

2m*c2AC
2 ��� − UC�	

= 

N�Z

e−iN�tCN, �25�

exp�− iqM · 
0

t

d�
1

m*c
AC��� − i

0

t

d�� 1

2m*c2AC
2 ��� − UC�	

= 

N�Z

e−iN�tCN,M , �26�

and

exp�− ipM · 
0

t

d�
1

c
A��� − i

0

t

d�� 1

2c2A2��� − UV�	
= 


N�Z
e−iN�tVN,M . �27�

This leads to the solution, which is suitable for our further
discussion,

	C�r,t� = 

M�Z

e−i�E+M��teik·rCM

+ 

M,N�Z

RNe−i�E+M��teiqN·rCM−N,N, �28�

	V�r,t� = 

M,N�Z

TNe−i�E+M��teipN·rVM−N,N. �29�

Let us note in passing that the coefficients CM, CM,N, and
VM,N satisfy the important summation rules for open chan-
nels,
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M��Z

CM+M�CM�
* = M,0, �30�



M��Z

CM+M�,NCM�,N
* = M,0, �31�



M��Z

VM+M�,NVM�,N
* = M,0, �32�

which are used as a check for numerical calculations. In
practice they are computed by the fast Fourier transform of
the periodic part of the wave functions Eqs. �12�, �18�, and
�19�. The reflection and transmission amplitudes RN and TN
are still to be determined by applying the matching condi-
tions, i.e., Eqs. �4� and �5�. This leads to the following sys-
tem of linear equations for RN and TN:

CM + 

N�Z

CM−N,NRN = 

N�Z

VM−N,NTN, �33�



NL=−N0

N0 1

m*nS · �kNL,0 +
1

c
aC,NL

�CM−NL

+ 

N�Z

� 

NL=−N0

N0 1

m*nS · �qNNL,0 +
1

c
aC,NL

�CM−NL−N,N	RN

= 

N�Z

� 

NL=−N0

N0

nS · �pNNL,0 +
1

c
aNL

�VM−NL−N,N	TN, �34�

which can be solved numerically by truncating the domain of
the Fourier indices to a finite set. Such a truncation, however,
has to be done carefully. Due to the conservation of prob-
ability the amplitudes RN and TN satisfy the unitary condition



N

�
qN,z

kz
�RN�2 + 


N
�
m*pN,z

kz
�TN�2 = 1, �35�

in which the prime over the sum symbol means summation
only over the open channels. It may happen that if the trun-
cation is too drastic, we shall not be able to satisfy this equa-
tion with a sufficient precision. In order to achieve this goal
for higher laser-field intensities, we had to perform the cal-
culations in quadruple precision.

Having calculated the amplitudes RN and TN we can de-
termine the cycle-averaged electric current of photoelectrons
by evaluating the expectation value of the probability current
in the vacuum,

�Re�	T
*�1

i
� +

1

c
A�	T	� = 


N
�pN�TN�2, �36�

where we sum over the open channels. Further we have to
sum over all occupied states of electrons in the crystal with
kz�0, which leads to the total current emitted by a unit
surface

j = −
2

�2��3
�k��kF,kz�0

d3k

N

�pN�TN�2. �37�

Since TN is the probability amplitude for electrons to be ion-
ized from the surface with kinetic energy Ekin=pN

2 /2
=k2 /2m*+VS+UC−UV+N�, therefore we can write



N

�pN�TN�2 = 
0

�

dEkin P�Ekin,k� , �38�

with

P�Ekin,k� = 

N

�pN�TN�2� k2

2m* + VS + UC − UV + N� − Ekin� .

�39�

This permits us to define the energy distribution of photocur-
rent S�Ekin� per unit surface,

j = 
0

�

dEkin S�Ekin� , �40�

with

S�Ekin� = −
2

�2��3
�k��kF,kz�0

d3k P�Ekin,k� . �41�

Thus, the photocurrent energy distribution S�Ekin� is given as
the three-dimensional integral over momenta k, the integrand
of which is evaluated by solving a system of linear equations
for the transmission and reflection probability amplitudes.

B. Photoionization current from sodium surface

We shall apply our theory to the sodium surface �z=0�,
for in this metal the electrons may be assumed to move
“freely”, with the effective mass close to the free-electron
mass �38�. The work function and the Fermi energy for so-
dium metal are equal to 2.75 and 3.3 eV �38,39�, respec-
tively. For the incident laser beam we choose the monochro-
matic Ti: sapphire laser beam of frequency �=1.5498eV
��=800 nm� and with the linear polarization vector lying in
the xz plane. Denoting by �L the angle between the laser
beam propagation direction and the normal �z axis� to the
surface, we assume the case of specular reflection without
penetration into the solid and write the electromagnetic vec-
tor potentials as

A�t� = ex
c�I

�
cos �L�− sin��t� + sin��t + �R��

+ ez
c�I

�
sin �L�sin��t� + sin��t + �R�� ,

AC�t� = 0 , �42�

where I and � are the incident beam intensity and frequency
in atomic units. We shall investigate below the dependence
of the photocurrent energy distribution, Eq. �41�, on the
change of phase �R of the reflected beam. Other possible

FAISAL, KAMIŃSKI, AND SACZUK PHYSICAL REVIEW A 72, 023412 �2005�

023412-4



modifications of the reflected and refracted beams, e.g., po-
larization characteristics of reflected light, could be ac-
counted for if and when needed.

In Figs. 2 and 3 we show the normal component of the
photocurrent energy distribution, Eq. �41�, for the laser fre-
quency �=1.5498 eV and for two incident intensities 1013

and 2�1013 W/cm2. We observe a strong dependence of the
probability of photocurrent on the angle �R. This is consis-
tent with the expectation that after ionization the electrons
are accelerated by the laser field in the vacuum and gain
energy proportional to the laser-field intensity. Indeed, for
�R=0 the electric-field strength of the combined incident and
reflected beams is the maximum.

We attribute the existence of the dips and the formation of
the plateaus in the spectrum to the rescattering effect �40–42�
of photoelectrons by the surface potential. Such a rescatter-
ing is especially strong for �R=0. In this case the total elec-
tric field oscillates in the direction perpendicular to the sur-
face with an amplitude 2 sin �L=�2 times larger than the
amplitude for the incident laser beam. For �=1.5498 eV the
intensity 1013 W/cm2 corresponds approximately to the pon-

deromotive energy in vacuum of 0.6 eV. Thus, the pondero-
motive energy at the surface, for the incident intensity 2
�1013 W/cm2 and �R=0, equals UV=2.4 eV. This shows
that the maximum of the plateau in Fig. 3 should lie between
7UV and 10UV, which agrees quite well with what is ob-
served in the atomic case �42�. An explanation for this agree-
ment is that in this case the laser field interacts only with the
evanescent part of the electron states, which is very similar
to the bound-state wave function in the atomic case. We shall
see below a similar effect on the emission of high-order har-
monics.

The present investigations show that the enhanced high-
energy part in the energy spectrum of photocurrent is due not
only to the intraband resonant transitions in the crystal, as
was pointed out in Refs. �23,11,12�, but also to pure surface
effects, as exemplified here. The sensitive dependence of the
distributions on the properties of the surface �i.e., on the free
parameters of our theory� such as �R suggests that their
knowledge in specific cases is essential for interpreting the
experimental results.

C. Ponderomotive ionization from a GaAs-like surface

Our next illustration shows a dramatic influence of effec-
tive mass on the photoeffect in intense laser fields. It is usu-
ally assumed that in ionization processes electrons need to
absorb a minimum number of laser photons in order to pass
into the continuum state. This, however, is not in general
required to be true, as can be seen from the energy conser-
vation  function in Eq. �39� and from the expressions for the
ponderomotive energies UC and UV. If the effective mass of
the electron is small compared to the rest mass of the elec-
tron in the vacuum, then the energy accumulated in the
quiver motion of the electron in the laser field suffices for it
to be ionized without net absorption of photons. Such ion-
izations may even occur along with the emission of extra
laser photons. This can take place, for example, in the pho-
toemission from gallium arsenide semiconductor surfaces,
for in this material the effective mass m* of the electron is a
small fraction of its rest mass in vacuum, m*=0.0665 �a.u.�
�43�. Since in this case the Fermi level is just below the
conduction band, we shall assume for the purpose of model
calculations that EF=0, and W=4 eV �a value close to the
work functions for Ga and As crystals �39��. For the incident
laser frequency we take the third harmonic of the
Ti: sapphire laser ��=3�0.056 a.u.� and calculate the Fou-
rier components of electric current densities of the conduc-
tion electrons that move perpendicularly to the surface, i.e.,
kx=ky =0, and kz varies from zero to its maximum value kmax
for which EC�kmax�=0 �corresponding to the initially bound
electrons�. The electric current density associated with the
absorption of N photons �see Eq. �36�� is

jN�k� = − pN�TN�2, �43�

evaluated at k=kzez.
In Fig. 4 we present the Fourier components of the current

density for the laser intensity I=1014 W/cm2 and �L=� /2
�grazing incidence�. For weak laser beams electrons have to
absorb at least one laser photon in order to be emitted into

FIG. 2. �Color online� Energy distribution of photocurrent per-
pendicular to the sodium surface per unit area �see Eq. �41��, for
�L=� /4, �R=� /2 and 0. The vector potentials are defined by Eqs.
�42� with the incident laser intensity and frequency equal to
1013 W/cm2 and 1.5498 eV. Note a strong dependence of the pho-
tocurrent on �R.

FIG. 3. �Color online� The same as in Fig. 2 but for the incident
laser intensity 2�1013 W/cm2. Note that on doubling the incident
intensity the photocurrent for larger energies increases by many
orders of magnitude. For �R=0 a plateau in the spectrum develops,
which is analogous to the one observed in the atomic case.
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the vacuum. This is also usually the case for strong laser
fields if the effective mass of electrons in the crystal is not
smaller than the rest mass. However for m*�1 �e.g., GaAs�
the pattern changes significantly since the large ponderomo-
tive energy accumulated in the quiver motion of conduction
electrons can be transferred, during the collision of the elec-
trons with the surface, into longitudinal motion in the
vacuum. The difference in the ponderomotive energies inside
and outside the surface can be large enough for the bound
electrons even to emit excess laser photons �by a stimulated
inverse bremsstrahlung mechanism� and still become free.

IV. HIGH-ORDER HARMONIC GENERATION

A. Theory

To investigate the emission of coherent high-order har-
monic radiation we need the Fourier decomposition of the
expectation value of the probability current density operator.
Let us first consider the vacuum part of the wave function
given by Eq. �29�. The current density in this case �cf. the
left-hand side of Eq. �36�� can be written down, after some
simple algebraic manipulations, as

jV�r,t� = 

M�Z

e−iM�t 

N,N��Z

ei�pN−p
N�
* �·rTNTN�

*

� 

NL=−N0

N0 �pN + pN�
*

2
NL,0

+
1

c
aNL

�
� 


M��Z

VM+M�−NL−N,NVM�−N�,N�
* . �44�

Since we are interested in the scattered radiation with har-
monic modes other than the incident modes, therefore all
terms with N=N� �for open channels� can be excluded from
the sum above. Hence, the expectation value of the probabil-
ity current density contributing to the high-order harmonics
of interest is equal to

JV�t� = S 

M�N0

e−iM�t 

N,N��Z

� TNTN�
*

− i�pN − pN�
* �z

� 

NL=−N0

N0 �pN + pN�
*

2
NL,0

+
1

c
aNL

�
� 


M��Z

VM+M�−NL−N,NVM�−N�,N�
* , �45�

where � over the sum symbol excludes N=N� for open
channels and S is the total area of the surface on which the
laser beam shines. Analogously, one can calculate the contri-
bution coming from the reflected and the incident parts of the
wave function inside the solid, Eq. �28�. Combining all of
them together we arrive at the total expectation value of the
probability current for an electron state characterized by the
initial momentum k,

J�k,t� = S 

M�N0

e−iM�tJM�k� , �46�

with

JM�k� = JV,M�k� + JR,M�k� + Jir,M�k� , �47�

where

JV,M�k� = 

N,N��Z

� TNTN�
*

− i�pN − pN�
* �z



NL=−N0

N0 �pN + pN�
*

2
NL,0

+
1

c
aNL

� 

M��Z

VM+M�−NL−N,NVM�−N�,N�
* , �48�

JR,M�k� = 

N,N��Z

� RNRN�
*

i�qN − qN�
* �z



NL=−N0

N0 1

m*�qN + qN�
*

2
NL,0

+
1

c
aC,NL

� 

M��Z

CM+M�−NL−N,NCM�−N�,N�
* , �49�

and

Jir,M�k� = 

N�Z

RN

i�qN − k�z



NL=−N0

N0 1

m*�qN + k

2
NL,0

+
1

c
aC,NL

� 

M��Z

CM+M�−NL−N,NCM�
*

− 

N�Z

RN
*

i�qN
* − k�z



NL=−N0

N0 1

m*�qN
* + k

2
NL,0

FIG. 4. �Color online� The transition current Eq. �43� as a func-
tion of electron kinetic energy E�k�=k2 /2m* in the solid for kx

=ky =0. The laser-field intensity and frequency of the incident laser
beam are equal to 1014 W/cm2 and �=3�1.5498 eV, �=0 �no
reflected beam�, and �L=� /2 �grazing incidence� �see Eq. �42��.
The laser beam is taken to be linearly polarized with the polariza-
tion vector perpendicular to the surface. For low intensities the
absorption of at least one laser photon is needed for electron emis-
sion into the vacuum. For the high intensity considered here elec-
trons can be emitted into the vacuum by absorption of no net num-
ber of photons or even by emitting one extra photon �N=−1�. Such
a phenomenon can occur generally whenever a large difference be-
tween the ponderomotive energies in the solid and the vacuum
exists.
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+
1

c
aC,NL

� 

M��Z

C−M+M�−NL−N,N
* CM�. �50�

In the equations above the Fourier components JV,M�k� arise
from �	T�t��p̂+A�t� /c�	T�t�� �vacuum current�, JR,M�k� from
�	R�t��p̂+AC�t� /c�	R�t�� /m* �reflected current�, and Jir,M�k�
from �	I�t��p̂+AC�t� /c�	R�t�� /m*+c .c. �interference cur-
rent�, where p̂ is the momentum operator.

The cycle-averaged power of the Mth-order harmonic ra-
diated by an electron of incident momentum k in the solid
angle d� and in the direction of a unit vector n is equal to
�44�

dPM�k�
d�

=
M2�2S2

8�c3 �JM�k� · JM
* �k� − �n · JM�k���n · JM

* �k��� ,

�51�

and the angle-integrated power emitted is

PM�k� =
M2�2S2

3c3 �JM�k� · JM
* �k�� . �52�

Next, in order to determine the power emitted by the high-
order harmonics we sum the contributions from all the occu-
pied states of electrons in the solid. Thus we obtain the dif-
ferential power spectrum of the Mth-order harmonic

dPM

d�
=

M2�2S2

2�2��4c3
�k��kF,kz�0

d3k��JM�k��2 − �n · JM�k��2� ,

�53�

and the angle-integrated power

PM =
2M2�2S2

3�2��3c3
�k��kF,kz�0

d3k�JM�k��2. �54�

B. Harmonic generation from sodium surface

In this subsection we present the high-order harmonic
spectra for the laser-field configuration described by Eq.
�42�, and only for the lower intensity 1013 W/cm2 �for higher
intensities the computation time becomes too long�. We shall
also confine our discussion to the case of the phase shift in
reflection �R=� /2. In Fig. 5 we present the total power
spectrum of high-order harmonics. We observe the existence
of a plateau in the high-order harmonic spectrum. It ends at
Mcutoff=5, which matches quite well with the cutoff formula

EF + W + 3UV = Mcutoff� . �55�

This is a generalization of the formula I+3Up�Mcutoff�
known in the atomic case �41� to the case of the surface
where the reflection phase �R=� /2 and the direction of the
beam with respect to the normal to the surface �L=� /4. Note
that in this case the vector potential in the vacuum is of the
form

A�t� =
c�I

�
�ex cos��t +

�

4
� + ez sin��t +

�

4
�	 . �56�

Thus, the maximum electric field in the vacuum is equal to
the maximum electric field of the incident laser beam and
hence UV=0.6 eV. This equality permits us to relate the
high-order harmonic generation with the recombination pro-
cess of photoelectrons to the evanescent part of the electron
wave function in the vacuum during the rescattering process
with the surface. Note that now all the conduction electrons
take part in the harmonic generation from the plateau and not
only those with energy close to the Fermi energy. It would be
interesting to check the cutoff formula at higher intensities in
the future.

The analysis of the differential power spectrum shows
that high-order harmonics are radiated predominantly paral-
lel to the surface and in the direction perpendicular to the
plane of reflection of the laser field �which in our case is the
xz plane�. This is shown for the seventh-order harmonic in
Fig. 6. For other values of M the pattern looks similar. It is
interesting, however, to notice that for harmonics from the
plateau the radiation in the xy plane is virtually isotropic, in
contrast to the case of the other harmonics. The differential
power spectrum in the xy plane is shown in Fig. 7 as a polar
plot. It clearly differs from that observed for a differential
power spectrum obtained for the high-order harmonics emit-
ted from a gas jet, where the emission is predominantly in
the direction of propagation of the incident laser beam. The
pattern seen in the present case is consistent with the experi-
mental observations of surface harmonics generated at rela-
tivistic laser-field intensities �5,9�.

We may define the efficiency of high-order harmonic gen-
eration as the ratio of the total power of high-order harmon-
ics to the total power of the incident laser beam. Let the laser
spot on the surface be of the order of �2, where � is the
wavelength of the incident laser beam; then the efficiency for
the generation of the Mth-order harmonic, EM, is

FIG. 5. �Color online� The angle-integrated high-order harmonic
spectrum �in atomic units, computed from Eq. �54��; laser intensity
I=1013 W/cm2 and frequency �=1.5498 eV. The laser field is de-
fined by Eq. �42�. Note the appearance of a plateau with a cutoff
estimated by the formula Mcutoff��EF+W+3UV for Mcutoff=5.
The plateau arises from the evanescent part of the wave function at
the surface.
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EM �
PM

I�2 . �57�

For the fifth-order harmonic �the last harmonic from the pla-
teau in Fig. 5� we find P5=3�10−16�4 a.u. Since for the
laser frequency �=1.5498 eV the wavelength equals �
�1.5�104 a.u., for I=1013 W/cm2 the efficiency EM
�10−4, which is comparable to �or could be even higher
than� the case of high-order harmonics generated in gas jets.

V. CONCLUSIONS

In this paper we presented a three-dimensional theoretical
scheme for the calculation of the photocurrent and high-
order harmonic radiation emitted from a surface irradiated by
a strong laser field. We have assumed a quasi-free-electron
model with different effective masses inside and outside the
surface. It allowed us to consider arbitrary forms of the in-
cident, reflected, and refracted laser beams. Different charac-
teristics of the reflected and refracted beams �e.g., different
polarization vectors, relative phases, and intensities� are
treated as phenomenological parameters, which could be
chosen to model the different reflection or refraction proper-
ties of the surfaces of interest. Both the kinetic energy dis-
tribution of the photocurrent and the high-order harmonic
spectrum are found to depend sensitively on the phenomeno-
logical parameters chosen. In particular, the high-energy part
of the photocurrent is dependent strongly on the macroscopic
�reflection, transmission, and refraction� characteristics of the
beam at the surface. For the case of specular reflection of the
incident laser beam �no significant penetration� both the ki-
netic energy distribution of the photocurrent and the high-

order harmonic spectrum exhibit plateaus, with properties
similar to the ones observed in the atomic case. They arise in
the present case from the evanescent part of the electron state
at the surface. We also found a strong dependence of the
photocurrent on the change of the electron’s effective mass.
In particular, the electrons can be emitted in the vacuum with
no net absorption of photons or even along with the emission
of extra photons. This phenomenon, which may be called a
“ponderomotive ionization” effect, is due to the difference of
ponderomotive energies of electrons in the solid and the
vacuum, arising from the difference in the effective electron
masses inside and outside the crystal. Finally, we may point
out that the general theoretical scheme presented here can be
used to model more complex physical situations than that
considered here explicitly. For example, it would allow one
to analyze photoemission and high-order harmonic genera-
tion by trains of attosecond pulses that are currently under
active investigation.
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FIG. 6. �Color online� The differential power spectrum of the
seventh-order harmonic for I=1013 W/cm2, �=1.5498 eV, �L

=� /4, and �R=� /2. The harmonics are radiated predominantly in
the surface plane ��=� /2� and in the directions perpendicular to the
laser-field propagation ��=� /2 and 3� /2�.

FIG. 7. �Color online� The polar plots of differential power
spectra �in a.u.� for I=1013 W/cm2, �=1.5498 eV, �L=� /4, �R

=� /2, and �=� /2 �cf. Fig. 6�. The harmonics from the plateau are
almost isotropically distributed.
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