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We study Bragg spectroscopy of ultracold atoms in one-dimensional optical lattices as a method for probing
the excitation spectrum in the Mott-insulator phase, in particular the one-particle-hole excitation band. Within
the framework of perturbation theory we obtain an analytical expression for the dynamic structure factor
S�q ,�� and use it to calculate the imparted energy which was shown to be a relevant observable in recent
experiments. We test the accuracy of our approximations by comparing them with numerically exact solutions
of the Bose-Hubbard model in restricted cases and establish the limits of validity of our linear-response
analysis. Finally we show that when the system is deep in the Mott-insulator regime, its response to the Bragg
perturbation is temperature dependent. We suggest that this dependence might be used as a tool to probe
temperatures of order of the Mott gap.
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I. INTRODUCTION

Recently, there has been a lot of experimental progress
studying cold atoms confined in optical lattices. The defect-
free nature of the lattice potential, the long coherence times
of the constituent atoms, and the high experimental control
of the lattice parameters �1,2� make this a unique system for
precisely studying many-body physics. In particular, the ex-
perimental observation of the superfluid to Mott insulator
quantum phase transition �3� has stimulated much interest in
this area of research.

Perhaps one of the most important potential applications
of the Mott-insulator transition is to use it as a means to
initialize a quantum computer register �4–7�. Particularly in
this case, it is important to have tools for thoroughly charac-
terizing the experimentally obtained Mott-insulator states.
The usual procedure for entering the Mott-insulator regime is
to begin with a magnetically trapped Bose-Einstein conden-
sate �BEC� �with almost all the atoms in the condensate�, and
slowly load it into an optical lattice by increasing the lattice
depth. One key piece of evidence for the quantum phase
transition is the loss of global phase coherence of the matter
wave function when the lattice depth increases beyond a
critical value �3�. However, the loss of coherence could arise
from many sources, such as the decoherence induced by
quantum or thermal depletion of the condensate during the
loading process �8� and therefore it is not a sufficient signa-
ture that the system is in the Mott-insulator state. For this
reason, in the experiments by Greiner et al. �3�, complemen-
tary evidence for the Mott-insulator transition was provided
by applying a potential gradient to the lattice to show the
presence of a gap in the excitation spectrum. In this paper we
show that Bragg spectroscopy, done by applying additional
laser beams independent from the lattice beams, is an experi-
mental technique with the potential to thoroughly character-
ize the Mott phase. In addition to determining the energy
gap, we show that it provides detailed information about the
excitation spectrum, information unavailable using other
techniques. Moreover, in contrast to applying a potential

across the lattice Bragg spectroscopy is not susceptible to
effects like Bloch oscillations and Zener tunneling. Further-
more, we show that unlike in the superfluid regime, the sys-
tem’s response to Bragg perturbation in the Mott regime is
sensitive to finite temperature. This property might be used
as a tool to probe temperatures of order of the Mott gap.

Our analysis is based on a perturbative treatment, which
we show to be applicable in the strong Mott regime that has
been reached in current experiments �9�. Although our ap-
proach is applicable only in the range of validity of first-
order perturbation theory, it has the advantage of properly
including one-particle-hole correlations. Such correlations
have a dominant influence on the spectrum of the system and
are not accounted for in mean-field treatments �10�.

The organization of this paper is the following. In Sec. II
we introduce the basic formalism that describes Bragg spec-
troscopy in an optical lattice and use a linear-response ap-
proach to calculate the imparted energy to the system. In Sec.
III we derive the zero-temperature response to Bragg spec-
troscopy of a translationally invariant lattice deep in the Mott
regime and in Sec. IV we discuss the conditions required for
our linear-response analysis to be valid. In Sec. V we extend
the zero-temperature analysis to finite temperature and fi-
nally in Sec. VI we conclude.

II. FORMALISM

The typical Bragg spectroscopic procedure is to gently
scatter atoms in an ultracold gas system with a moving po-
tential of the form V0 cos�qx−�t�. This type of experiment
was first demonstrated by Stenger et al. �11� and Stamper-
Kurn et al. �12�. In contrast to earlier experiments that used
momentum as the response observable, here we choose to
examine the imparted energy. In trapped systems this allows
long excitation duration which facilitates more precise spec-
tral resolution. Energy spectroscopy is not as well developed
as momentum spectroscopy but recent experiments have
demonstrated the use of this technique �13�. The Bragg
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potential is formed by the ac Stark shift arising from a pair of
interfering light fields �e.g., see �14��. In this paper we will
always assume that the Bragg potential is generated indepen-
dently of and is much weaker than the lattice potential. We
therefore treat the scattering process with linear-response
theory. Using an independent set of beams to generate the
Bragg potential also provides considerable flexibility in the
range of q and � values that can be obtained.

In this work we consider one-dimensional �1D� bosons
loaded in an optical lattice. Effective 1D systems have been
realized in recent experiments �for example Refs. �9,13�� by
loading a Bose-Einstein condensate into a three-dimensional
optical lattice, which is very deep in two directions. The
dynamics is then restricted to the third, or axial, direction
only. In this work we study the response of the system to
Bragg perturbation in the axial direction, assuming that the
dynamics in the transverse directions is frozen. We consider
a one-dimensional optical lattice which is sufficiently deep
that the tight-binding approximation is valid and assume that
we can restrict the dynamics of the atoms to the lowest vi-
brational band. This applies when changing the lattice poten-
tial does not induce band excitations. This condition is satis-
fied when the frequency � of the Bragg perturbation is less
than the gap between the first and second bands, and when
the momentum transfer q is contained within the first Bril-
lioun zone. A detailed analysis of the validity of this first-
band approximation to study Bragg scattering of a dilute
weakly interacting gas in an optical lattice is found in �15�
where the authors used a mean-field approach combined with
Bogoliubov analysis. In the single-band approximation and
in absence of external potentials, the system is described by
the Bose-Hubbard Hamiltonian �BHH� �16�

Ĥ = − J�
�n,l�

ân
†âl +

U

2 �
n

ân
†ân

†ânân. �1�

Here ân is the annihilation operator at site n which obeys the
canonical commutation relations for bosons, J is the hopping
matrix element between nearest neighbors, and U is the on-
site repulsion energy. The sum �n , l� is taken over nearest
neighbors. We use N for the total number of atoms and M for
the total number of wells. In the tight-binding approximation
the Hamiltonian describing the Bragg perturbation reads

ĤB =
1

2
V0��̂q

†e−i�t + �̂qei�t� , �2�

where the density fluctuation operator �̂q
† is defined as �̂q

†

=�n,m=0
M−1 Iq

n−mâm
† âneiqmd, where Iq

n=�dx eiqx�0
*�x��0�x−dn� is a

geometrical factor that involves integration over Wannier
functions �0�x�, and d is the lattice constant. For deep lat-
tices Iq

n��n,0 �15�.
To analyze the Bragg spectrum of the system we study the

energy transfer, which can be measured by time-of-flight
techniques �13�. Under linear-response theory, the energy
transfer is related to the so-called dynamic structure factor
S�q ,��, which is given by

S�q,�� =
1

Z�
ij

e−�Eifq��ij� , �3�

where fq��ij�	
�i��̂q�j�
2���−�ij�, �i� and Ei are eigenstates
and eigenenergies of the unperturbed Hamiltonian �1�, e−�Ei

is the usual Boltzmann factor with �=1/kBT where kB is
Boltzmann’s constant and T the temperature, Z is the canoni-
cal partition function, and ��ij =Ej −Ei. Because of the factor
fq��ij�, the system’s response shows peaks whenever the fre-
quency of the Bragg perturbation matches the energy differ-
ence between two eigenstates of the BHH. The peak height is
proportional to the the transition probability between the two
eigenstates, 
�i��̂q�j�
2.

The total energy transfer after applying the Bragg pertur-
bation can be shown to be given by �17�

�E =
V0

2

2�
�

0

Tp

dt�
−�

�

d����	�q,���
sin��� − ���t�

�� − ���
, �4�

where Tp is the duration of the perturbation and 	�q ,��
=S�q ,��−S�−q ,−��. Here we derive analytic expressions
for the dynamic structure factor assuming we are deep in the
Mott-insulator regime, where treating the hopping term in
the Hamiltonian as a perturbation is justified.

III. ZERO-TEMPERATURE RESPONSE

In this work we assume a commensurately filled lattice
with no external confinement, filling factor N /M =g, and pe-
riodic boundary conditions. The unperturbed Hamiltonian in-
cludes only the on-site interaction term, which is diagonal in
a number Fock-state basis. To zeroth order the ground state
�
0

�0�� is the Fock state with g atoms in every lattice site. The
lowest-lying excitations correspond to the one-particle-hole
�1ph� states ��mn� with g+1 particles at site m, g−1 particles
at site n, and exactly g particles in every other site. There are
M�M −1� 1ph excitations and, because of the translational
symmetry, they are degenerate at zeroth order with excitation
energy U. To zeroth order the dynamic structure factor van-
ishes. At first order the ground-state wave function is �
0

�1��
= �
0

�0��+J /U
2Mg�g+1��S�, where �S�	�n=1
M ���nn+1�

+ ��nn−1�� /
2M is the normalized translationally invariant
state of adjacent particle-hole excitations. In order for pertur-
bation theory to be valid, the parameter Jg
M /U has to be
small �7�. This could be a significant restriction for systems
with a large number of filled sites but can be perfectly real-
ized in experiments such as Ref. �9� where the system has
only 20 occupied sites in the central tube. To find first-order
corrections to the M�M −1� low-lying excited states we must
diagonalize the kinetic energy Hamiltonian within the 1ph
subspace. If we expand the eigenstates as a linear combina-
tions of 1ph excitations �
i

�1��=�n,m�ncnm
i ��nm� the neces-

sary and sufficient conditions that the coefficients cnm
i have to

satisfy are

�g + 1��cn+1m
i + cn−1m

i � + g�cnm+1
i + cnm−1

i � = Ẽicnm
i , �5�

with Ei
�1�=U−JẼi. In addition to Eq. �5�, the amplitudes cnm

i

have to satisfy periodic boundary conditions cn+Mm
i =cnm+M

i
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=cnm
i and the constraint cnn

i =0 �which prevents particle and
hole excitations occurring at the same site�. Equation �5� is
analogous to the tight-binding Schrödinger equation of a
two-dimensional square lattice in the xy plane. The x direc-
tion is associated with the position of the extra particle and
the y direction with the position of the hole. The different
weights g+1 and g can be understood in the 2D lattice model
as different effective masses in the two directions and the
constraint cnn

i =0 as a hard wall along the x=y line. The
solutions are not straightforward due to the fact that the
effective-mass difference breaks the lattice symmetry around
the x=y axis and makes the hard-wall constraint hard to sat-
isfy. However, in the limiting case of high filling factor g
�1, the solutions of Eq. �5� �including the constraints� are

ErR
�1� = U − 2J�2g + 1�cos�
r

M
�cos�
R

M
� , �6�

cnm
r,R�0 = �

2

M
sin�
r

M
�n − m��sin�
R�

M
�n + m� + �rR� ,

2

M
sin�
r

M
�n − m��sin�
R�

M
�n + m� + �rR� ,�

�7�

cnm
r,0 = �


2

M
sin�
r

M
�n − m�� , r odd,


2

M
sin�
r

M
�n − m�� , r even,� �8�

where we used i= �r ,R�, with r=1,… ,M −1 and R
=0,… ,M −1. The notation R� restricts the values of R to the
ones where R+r is an odd number and R� to the values
where R+r is even. The constants �rR=
�r−R+1� /4 and
�rR=
�r+R−1+M� /4 guarantee the orthogonality of the
eigenmodes.

Using Eqs. �6� and �8� we get an expression for the zero-
temperature dynamic structure factor given by

S0�q,�� =
J2

U2g�g + 1��
r,R

��� − ErR
�1�/����

m=1

M

eiqdmHm
rR�2

= 32
J2

U2g�g + 1�sin2�qd

2
��

r
�sin2�
r

M
���� −

Erq̃
�1�

�
� ,

�9�

where Hm
rR=cmm+1

rR +cmm−1
rR −cm+1m

rR −cm−1m
rR , qd=2
q̃ /M, and q̃

an integer between 0 and M −1. The prime in the sum im-
poses the constraint that q̃+r is even. It is important to em-
phasize that only the states with R=0 have a dispersion re-
lation which agrees to first order in J with the mean-field
solution found in Ref. �10�. However, for these states Hm

r0

=0.
In Fig. 1 we compare the energy transfer as a function of

the Bragg frequency calculated from Eq. �9� to results ob-
tained by the exact diagonalization of the BHH for two val-
ues of Bragg momenta q. In contrast to the superfluid regime
�15�, where Bragg spectroscopy excites only the quasiparti-
cle state with quasimomentum q, in the Mott regime we ob-
serve M −1 peaks pertaining to the two-dimensional charac-
ter of the 1ph dispersion relation. The Bragg momentum q
fixes one quantum number R but the other can take M −1
different values. In the analytic solution due to the constraint
in Eq. �9�, q̃+r even, only �M −1� /2 of the possible M −1
peaks are present. The constraint is a consequence of the
extra symmetry introduced in the high-filling-factor approxi-
mation where similar “effective masses” are assumed.

In the analytic solution, Bragg peaks have an overall en-
velope of the form of an inverted parabola centered at the
gap energy U, with a maximum height proportional to
sin2�qd /2� and extended over an interval with an approxi-
mated width of 4J�2g+1�cos�qd /2�. The cos�qd /2� depen-
dence of the width and sin2�qd /2� dependence of the height
indicate that as q approaches 
 /d the energy transfer is
highly peaked around U. This behavior is observed in Fig. 1,
where the overall width decreases as q approaches 
 /d,
while the peak height increases. In spite of the fact that the
analytic solution uses the high-filling-factor approximation,
the dependence on q of the width and peak height of the

FIG. 1. Energy transfer for a homogeneous
system at zero temperature. Solid line, exact so-
lution; crosses, perturbative solution �envelope,
dashed line�. Other parameters: M =N=9, J� /�
=20, U /J=45.
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envelope is in agreement with the g=1 exact energy response
as shown in Fig. 1.

We found no structure around ��=2U in the exact nu-
merical results. This is consistent with the fact that the pa-
rameters used in this paper lie within the regime of validity
of first-order perturbation theory.

For the form of energy spectroscopy we consider here,
there is no fundamental limit to Bragg pulsed durations, in
contrast to momentum spectroscopy.1 However, practical
considerations will likely inhibit the resolution of the indi-
vidual excitation peaks in current experiments �see discus-
sion below�. In this case the envelope shown in Fig. 1 will
provide a more realistic depiction of the experimentally ob-
servable spectrum.

IV. VALIDITY CONDITIONS

The treatment we present here is based on linear response.
In this section we indicate its strict validity conditions in
terms of the Bragg strength V0 which is the relevant experi-
mental parameter.

After the Bragg perturbation is applied, the many-body
state is no longer in the BHH ground state �0�. The transition
probability to an excited state �i�, �ci�t��2, according to first-
order perturbation theory is given by

�ci�t��2 = V0
2
�i��̂q

†�0�
2
sin2��Ei/� − ��t/2�

�2�Ei/� − ��2 , �10�

where the eigenenergies Ei of the states are measured with
respect to the ground-state energy. The validity of linear re-
sponse requires the total excited-state population at the con-
clusion of the Bragg perturbation to be small compared to
unity:

�
i�0

�ci�Tp��2 � 1. �11�

Deep in the Mott regime the response of the system is domi-
nated by the M excited states �
i

�1��. Because all these states
have energies Ei

�1� approximately given by U, the maximum
transfer energy possible is of order U. The validity of linear
response constrains the total imparted energy to be much less
than U and the heating rate �E /�t=U�i�0�ci�t��2 / t due to the
Bragg perturbation to be much less than U /Tp.

It was previously shown that the M excited states �
i
�1��

have an energy spread given by 4J�2g+1�cos�qd /2� �Eq.
�6��, and matrix elements given by 
�
i

�1���̂q
†�
0

�1��

�J sin�qd /2�
32g�g+1� /U �Eq. �9��. The average separa-
tion between two consecutive states is of order �E�4J�2g
+1�cos�qd /2� /M. Individually resolving the different lines
will require one to apply the Bragg pulse for a time of order
Tp

�s��Mh / �4J�2g+1�cos�qd /2��. The validity of linear re-
sponse, Eq. �11�, therefore requires that

V0 �
U

M
cot�qd

2
� . �12�

For the parameters of Ref. �9�, where 87Rb atoms are trapped
in a lattice of depth 18.5ER, the tunneling time h /J is about
0.1 s. The number of occupied wells is M �20, with a filling
factor g�1. Resolving a single peak would require a Bragg
pulse of duration Tp

�s��0.2 s. With these conditions linear
response is valid if V0�0.015 cot�qd /2�ER. The acceptable
heating rate is much less than 1.8ER / s.

If the duration of the applied perturbation is Tp�Tp
�s�, ex-

cited states will not be individually discernible. Near reso-
nance ����U�, for pulse durations smaller than the inverse
bandwidth, Tp�Tp

�e�, Tp
�e�=h / �4J�2g+1�cos�qd /2��, all states

will be resonantly excited. If Tp�Tp
�e� the validity of linear

response requires

V0 �
U


M
cot�qd

2
� , �13�

where the factor of 
M accounts for the contribution from all
M excited states. For the parameters given above this in-
equality implies V0�0.07 cot�qd /2�ER. Here, the acceptable
heating rate is much less than 36ER / s.

We note that in the superfluid regime the uncorrelated
nature of the system allows for a less stringent validity con-
dition to hold: it is only required that the amount of excited
atoms be small compared to the condensate population.

V. FINITE-TEMPERATURE CASE

It is well known in the literature �see for example �17��
that in the superfluid regime, Bragg spectroscopy is not an
appropriate tool for probing the temperature of the system.
The reason is that even though S�q ,�� is temperature depen-
dent, experimental observables such as the energy transfer
depend on 	�q ,�� which is very weakly temperature depen-
dent. This is not the case deep in the Mott-insulator regime.
In a translationally invariant lattice all the 1ph excitations
have an energy separation of order U from the ground state
and a splitting between them of order J. If the temperature is
kBT�U /3, it is still valid to restrict the Hilbert space to the
one spanned by the 1ph excitations. In this regime 	�q ,��
�see Eq. �4�� can be written as

	�q,�� =
�1 − e−�U�

Z
	�q,��T=0 +

1

Z
	ph�q,�ij� , �14�

	ph�q,�ij� 	 �
i,j�i

�e−�Ei
�1�

− e−�Ej
�1�

��fq��ij� − f−q�− �ij�� ,

�15�

where the sum runs over the states in the one-particle-hole
band, and Z�1+M�M +1�e−�U. The first term in Eq. �14�,
proportional to 	q����T=0, causes a thermal reduction of the
zero-temperature response. The second term, which scales as

1Momentum spectroscopy requires that the pulse length does not
exceed a quarter of the period of the magnetic trap used to experi-
mentally confine the atoms �11�.
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e−�U�J /Z,2 makes the system sensitive to low-energy Bragg
perturbations at frequencies resonant with the energy differ-
ence between two 1-ph excitations. The factor e−�U sup-
presses the observability of these thermal effects for kBT
�U /5.

In Fig. 2 we plot the energy transfer as a function of the
Bragg frequency, as calculated from exact diagonalization of
the BHH for two different temperatures. The figure shows
that for temperatures kBT /U�1/5 the height of the zero-
temperature peaks around U decreases, while low-frequency
peaks appear. The presence of these low-frequency peaks is
therefore a signature of finite temperature. In particular, if
peaks around U are observed in the absence of low-
frequency response, the temperature is lower than U / �5kB�.
While this analysis does not provide a precise determination
of the temperature, it is still useful because it shows that
Bragg spectroscopy is sensitive to temperatures of order of
the interaction energy. Current experimental techniques do

not provide any information on the scale of U. In fact, in
current experiments temperature measurements rely on the
analysis of atomic interference patterns after a certain time of
flight following the release of atoms, and the measurement
precision is of the order of the energy spacing to the second
lattice band, which is typically one order of magnitude larger
than U.

VI. FINAL REMARKS

In recent experiments �13�, Bragg spectroscopy was per-
formed using a setup where the Bragg momentum equals the
lattice momentum and the response was observed. Our
present analysis, in agreement with previous ones �10,15�,
predicts no response for q=2
 /d. Using similar perturbative
techniques as the ones described here, we extended our cal-
culation to inhomogeneous systems with a strong harmonic
magnetic confinement. We also found no scattering for q
=2
 /d in these systems. The fact that neither the inhomoge-
neity nor the finite size of the system is responsible for the
observed signal suggests that nonlinear effects are the most
plausible explanation for the experimental results.

In summary, we have shown that Bragg spectroscopy can
be a suitable experimental tool for characterizing the Mott-
insulator phase. By measuring the transfer energy at different
Bragg momenta we proved it is possible to get information
about the excitation spectrum: Bragg peaks are centered
around the characteristic Mott excitation gap and are con-
tained in an interval whose width is proportional to the 1ph
excitation band width. Their average height is maximized
when the Bragg momentum approaches 
 /d. Finally, look-
ing at the low-frequency response we showed that Bragg
spectroscopy is sensitive to temperatures of order of the Mott
gap.
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