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We present a theoretical study of the dissipative component of the force acting on a highly charged ion
moving in front of a solid surface at large distances. The friction force (stopping power) of the surface is
analyzed employing both the specular-reflection model and time-dependent density functional theory
(TDDFT). Contributions from particle-hole and plasmon excitations are discussed. A simple method to include
the correction due to the finite width of the plasmon resonance at large wavelength into the TDDFT description
of the stopping power is suggested. We present applications to the energy loss of charged particles undergoing
distant collisions at grazing incidence angles with the internal surface of the microcapillary. Our results
indicate that the correlation between the angular distribution and the energy loss of transmitted ions can be
used to probe the dielectric properties of the capillary material at large distances.
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I. INTRODUCTION

The study of multiply charged ion-solid interactions is of
considerable technological importance for the understanding
of material damage, surface modification, and plasma-wall
interactions. The recent availability of sources for slow
highly charged ions (HCI’s)—namely, electron cyclotron
resonance (ECR) and electron beam ion sources (EBIS)—
has led to a flurry of research activities, both experimental
and theoretical, in the field of HCI-solid interactions [1-7].
On the most fundamental level, its importance is derived
from the complex many-body response of surface electrons
to the strong Coulomb perturbation characterized by a large
Sommerfeld parameter 7y=Z/v>1 (Z is the charge and v is
the velocity of the incident HCI).

From numerous experimental as well as theoretical stud-
ies the following scenario of the HCI-surface interaction has
emerged: When an HCI approaches a solid surface, one or
more electrons are resonantly captured at large distances (d..)
into high Rydberg states of the projectile. As a result, so-
called hollow atoms (ions) are formed where the atomic
charge cloud transiently resides in shells with large diameters
while the core is virtually empty [8—17]. Direct observation
of this short-lived state is complicated by the fact that the ion
is always attracted towards the surface by its self-image po-
tential. Consequently it will suffer close collisions upon im-
pact on the surface and the memory of the hollow atom is all
but erased. This problem has motivated the study of interac-
tions of HCI’s with internal surfaces of microcapillaries and
nanocapillaries as an alternative technique to study above
surface processes [18-22]. Metal and insulating capillaries
have become available at the Tokyo Metropolitan University
[23,24], Japan and at the Hahn-Meitner-Institut Berlin, Ger-
many [25,26]. The use of capillary targets allows the extrac-
tion of hollow atoms in vacuum. Observation of photons or
Auger electrons emitted from them in flight becomes pos-
sible. Tons traveling approximately parallel to the capillary
axis [Fig. 1(a)] will be attracted by image forces toward the
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cylindrically shaped internal wall of the capillary [27-32].
When the distance of the ion to the wall reaches a critical
value |py—p|=<|py—p.|=d,, resonant charge transfer accord-
ing to the classical over-the-barrier (COB) model can take
place [3.,4]. Trajectories of type 2 [Fig. 1(a)] will undergo
close collisions with the surface as discussed above, leading
to (almost) complete relaxation to the neutral ground state
and the loss of memory on the original charge and excitation
state. Trajectories of type 3 will undergo only large-distance
“above-surface” collisions near the exit edge of the capillary
and form hollow atoms and ions due to the electron capture
from the surface. These ions can escape prior to hitting the
wall and, hence, preserve the memory of the above-surface
hollow atom formation.

In this contribution, for sake of simplicity, we focus on
the third class of trajectories that will exit without experienc-
ing charge transfer [trajectories of type 1 in Fig. 1(a)] and

(b) o/

FIG. 1. (a) Sketch of a microcapillary or nanotube with typical
ion trajectories. p,. is the critical capture radius and d.. is the critical

capture distance. (b) Illustration of image (ﬁ ;) and friction force

(Ij“ ) at a distance b from the surface of the projectile moving with
velocity v parallel to the metal surface.
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presents the dominant fraction of transmitted projectiles. The
point of departure of the following analysis is the fact that
these ions cruise over a large distance =1 um parallel to the
surface in its close proximity (<100 nm). They may provide
a sensitive probe of energy loss at microscopically large dis-
tances. Heavy particles as opposed to electrons feature well-
defined classical trajectories that allow the determination of
the local distance-dependent dielectric response of the sur-
face.

When charged particles are placed in front of the metal
surface, electrons in the surface and the bulk will be polar-
ized and build up an induced charge density. This induced
charge density can be visualized as an image charge of op-
posite sign [Fig. 1(b)]. Therefore, the interaction between the
charged particle and its image charge is attractive and the
particle will be accelerated towards to surface. Due to the

image force [I; ;in Fig. 1(b)], charged particles will eventu-
ally always undergo close collisions with the surface even if
the initial component of the velocity normal to the surface
v, was zero. When a charged particle is moving with finite
parallel velocity v, the induced charge density will lag be-
hind the ion, leading to an additional force in the direction

opposite to that of the ion velocity [I; ¢ in Fig. 1(b)]. This
force represents the so-called friction force or stopping
power, S=—dE/dx. Friction or dissipative forces can thus be
visualized in terms of the lateral displacement of the re-
sponse charge in the direction —V. In turn, the latter can be
associated with microscopic energy-dissipative processes,
the creation of electron-hole pairs, and collective
excitations—i.e., surface and bulk plasmons. Energy loss and
stopping power near surfaces poses several interesting prob-
lems, among them the separation of surface from bulk effects
[33-42].

One of the first pioneering treatments of friction forces
near surfaces invoked the specular reflection model (SRM)
[43-45]. In many applications of ion-surface scattering this
simplified classical dielectric response picture has proven to
be a very powerful tool. Within the SRM the dielectric re-
sponse is described by the bulk dielectric function (g;) below
the surface while above the surface € is assumed to be given
by its vacuum value 1. The presence of the surface is thus
represented by a discontinuous &. The key point of the SRM
is that the induced charged density is highly localized on the
surface represented by a J-shaped charge density on the in-
terface. This assumption may lead to the correct representa-
tion for the long-range image potential but fails to account
the realistic potential distribution in the vicinity of the sur-
face due to the crude description of the induced charge den-
sity. The linear-response calculation based on time-
dependent density functional theory (TDDFT) [46-50],
however, provides a more sophisticated alternative. During
the last years, TDDFT has been used for the stopping power
in the bulk [51,52]. Olevano and Reining calculated the elec-
tron energy loss function of silicon [53] including local-field,
self-energy, and excitonic effects. They found a substantial
improvement compared with the previous calculations in the
description of the experimental spectrum of bulk loss func-
tion of silicon for both the peak position and line shape. Very
recently the inelastic lifetime of bulk and surface states for
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noble metals [54,55] have been investigated. It was shown
that including the screening of the d electrons into the den-
sity functional calculations, the agreement between the ex-
perimental and theoretical values is improved. For a jellium
surface, only very few calculations have been performed for
energy loss near surfaces [56,57]. Cazalilla and Garcia
de Abajo [58] have shown that at low velocities and in the
vicinity of the surface the stopping power is significantly
larger calculated within the framework of TDDFT than the
SRM. So far, an investigation of the stopping power at large
distances within the framework of TDDFT is not available.

In this paper we provide a comparative analysis of the
friction force for charged particles within the framework of
the SRM and TDDFT with the emphasis on large distances
from the surface. We will treat the problem in TDDFT at the
level of the local-density approximation (LDA) and the ran-
dom phase approximation (RPA). The contributions of
particle-hole and plasmon excitations are considered sepa-
rately. We will suggest an improved description of the stop-
ping power based on our density functional calculations that
includes plasmon decay and is applicable at large distances
from the surface. Furthermore, we study trajectories of type
1 [see Fig. 1(a)] that do not undergo charge exchange, but
come close enough to the walls to suffer a significant energy
loss. It is worth noting that the present proposal resembles
the measurement of electron energy loss in grazing collisions
with crystals using the technique of reflection high-energy
electron diffraction (RHEED) [59] and the measurement of
ion energy loss in collisions between ions and surface steps
[60].

We perform the simulations for Al and protons with en-
ergy of to 2.1 keV/amu as projectiles and for Ni and Kr***
ions with energy of to 2.5 eV/amu as projectiles. We note,
however, the resulting energy loss is much larger for higher
charge of the incident projectile. At low energies, the stop-
ping power depends linearly on the projectile velocity
[51,61]. Therefore we will show the stopping power data
scaled by the projectile velocity.

In our investigations the linear response theory is used.
We note, however, that the applicability of linear-response
theory to the present case of slow charged particle with
Zlv>1 is a priori not obvious. Its justification is based on
the quasistatic limit of weak perturbations at large distances
rather than on short interaction times as implied by Z/v <1.
Simple estimates [4] indicate that for distances d > r\Z non-
linear effects should still be weak where r, is the Wigner-
Seitz radius. The distant ion-capillary surface interactions
should therefore be well approximated by the linear re-
sponse. Throughout the paper atomic units are used unless
stated otherwise.

II. THEORETICAL BACKGROUND

We briefly review the theoretical framework for the di-
electric response of surfaces which provides the starting
point for our investigations of energy loss and stopping at
large distances.

A. Surface response function

The response of a many-body system to an external per-
turbation is one of the key quantities of interest in many-
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body physics. When the response is treated within perturba-
tion theory to first order (linear response) the corresponding
response function can be determined quite accurately for a
large class of systems. For many-body systems of charged
particles such as quasifree electrons of a metal interacting
with an electric field set up by an external charge, the re-
sponse function is usually expressed in terms of the (bulk)
dielectric constant &,(g, w):

_ pext(q-)’ (1.))

Sb(tj, (l)) - > s
p(q,w)

(1)

where p., is the external charge causing the dielectric dis-
placement while p includes both p. and the induced dis-
placement charge p;,q in the medium. This definition taken
from classical electrodynamics turns out to be the inverse of
the dielectric response function for charged particle systems
whose exact expression can be found in books on many-body
theory [62]:

1 41
o) 1= ?X(C?, ). (2)

The right-hand side of Eq. (2) is denoted by x(g,w), the
response function. Equation (2) represents the dynamic (i.e.,
frequency w and wave number ¢ dependent) polarizability of
the medium. This expression as functions of ¢ and  is valid
for systems which are translationally invariant with respect
to both position 7 and time ¢. The charge density fluctuation
is space and time dependent with Fourier components
p(g,w). For isotropic systems, & will depend only on the
magnitude of |g|=¢ and w. Equation (2) is directly applicable
only for homogeneous systems such as bulk solids when the
lattice structure can be neglected (e.g., “jellium”).

Due to the breaking of translational symmetry in the di-
rection of the surface normal (Z), the response function be-
comes nonlocal in z while retaining its dependence on the
wave vector in the plane of the surface. The dielectric re-
sponse theory for the bulk requires therefore modifications
near surfaces. In order to motivate the nonlocal generaliza-
tion of y we express y in terms of the induced density p;,; as

pind(q» w) = X(qv w)q)ext(q’ w) s (3)

where ®,(q,w) is the three-dimensional Fourier transform
of a Coulomb potential. The extension of Eq. (3) to the case
of broken translational invariance along the surface normal
can now be easily guessed as

pind(Q’w’Z’b) = f dZ,X(Q’w7Z’Z,)q)ex[(Q7w’zlab)7 (4)

where b is the z coordinate of the external point charge. In
the following three-dimensional vectors are denoted by low-
ercase [ﬁ:(};,pz) with p2=P2+p§] while two-dimensional
(2D) vectors in the surface plane are denoted by uppercase
letters. In the two-dimensional Fourier representation, the

Coulomb potential of an external unit point charge is given
by
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q)ext(Q, w,Z,b) = %Te_le—bI' (5)

The response function y is still local in the Fourier variables
(Q, w) but nonlocal in the coordinate z in which the transla-
tional symmetry is broken. In the special case when y de-
pends only on the coordinate difference (z—z’), translational
symmetry is restored and Eq. (4) reduces to Eq. (3).

In order to simplify the notation and clarify the underly-
ing general structure of the method we introduce here a con-
venient Dirac-bracket-type matrix notation with respect to
the nonlocal coordinates. Accordingly, p;,; of Eq. (4) will be
identified as a matrix element of the operator p;,,(Q,®),

pind(Q’w’ZsZI) = <Z>I=)ind(st)|Z,>v (6)

where the induced charge density at the coordinate z is gen-
erated by a source located at z'. Analogously, the external
potential can be viewed as the matrix elements of the opera-
tor (z)ext(Q > w)’

2
(Dexl(Q’w’Z’Z,) = <Z|(1)exl(Q7w)|ZI> = Eﬂ- exp(— le - ZI|)'
(7)

In this matrix notation Eq. (4) simplifies to
gind(Q’ w) = )=((Q’ w)cl)exl(Qv (U) (8)

in complete analogy to Eq. (3).
Within the framework of the “self-consistent field” (SCF)
method or RPA we can replace Eq. (8) by

Eind(Q’w) = i(O(st)?SCF(Q’w), (9)

where y, is the independent particle susceptibility and the
self-consistent potential is given by

(!)SCF(Q’Q)) = (?ind(Q»w) + cl)exl(Q»w)' (10)

The SCF method takes into account the collective screening
by a many-body system. The self-consistency is imposed by
requiring p;,q to satisfy Poisson’s equation which takes the
form

?ind(Qv w) = ?SCF(Q’ w) - ?ext(Q’ (1)) = IS(Q’ w)gind(Q’ (,l)),
(11)
where the kernel K(Q, w) in the SCF or RPA is given by the

matrix element of the bare Coulomb interaction between
electrons:

2 '
(2| Krpa(Q.0)[2") = E’Te-Q‘H | (12)

Improvements beyond the RPA can be accomplished, for ex-
ample, by including exchange-correlation corrections of den-
sity functional theory into the kernel,

022901-3



TOKESI er al.

2 !
(2l Kipa(Q.0)[2') = ge-Q‘H |+ ! (no(2) 8z - ),

(13)

where

6D, (n)

(I);,m(”o) = Sn

(14)

n:no

is the functional derivative taken at the unperturbed, but
z-dependent, density n((z). Equation (13) corresponds to the
LDA. It should be noted that the LDA refers here to the
kernel of the self-consistent field equation and not to the
exchange-correlation potential in the Kohn-Sham equations
for the single-particle orbitals generating x,. Combining Eq.
(8) and (9) with Eq. (11) we find an operator (integral) equa-
tion for the response function Yy,

)=((Q,(.O) =[1 —é/o(Q,(D)I:((Q,(D)]_I):(()(Q,O)), (15)
and the corresponding equation for the induced potential:

cl)ind(Q’w) = IS(Q,C!)))S(Q,L())@&“(Q,(U). (16)

The starting point for the calculations of the many-body
response function x(Q,z,z’, ) is the noninteracting particle
density-density correlation function xo(Q,z,z’,w). An ex-
plicit expression for xo(Q,w,z,z") can be easily determined
within the independent-particle model for the semi-infinite
jellium [56]. For later reference we point out that lattice ef-
fects and thus coupling to phonons are neglected. Using the
Fermi function at zero temperature for the occupation num-
bers, f(p)= 0(ky—p), Xo(Q,z,7', w) can be written in terms of
the one-electron wave functions and eigenenergies as

XO(Q’(’)’Z’Z’) = E [f(ﬁz) _f( Qz,):l
ppl.P

.4, 4D, ()

X

s

W +W, =Wy —éﬁ—%Q2+iF
(17)

with
FG)=fP.p), fG)=fP+Qp).  (18)
Within the framework of DFT, x,(Q,w,z,z’) is constructed
from Kohn-Sham orbitals ¢, (z) [46] with energies w,,_in the

degree of freedom along the surface normal. They are self-
consistent solutions of

{— %Vz + ngf(Z):| ¢pZ(Z) = sz¢Pz(Z)’ (19)

where V4 is the effective potential which depends only on
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the z coordinate because of translational invariance along the
jellium surface and can be written in the LDA as

Veiz) = @(2) + D, (n[2]), (20)

where ®(z) is the electrostatic potential which satisfies the
Poisson equation and @, .(n[z]) is the exchange-correlation
potential for which we use the Wigner formula [63]

0.611  0.587>

Prcln) == ry(n) - (ry+7.8)

(r,+5.85). 21)

Xo can be rewritten with the help of Green’s functions in the
form

X0(Q.0.2,2") = 2 f(p) 8} (8, (N[G(z,2'w,)
p

+G'(z,7,w)], (22)

with
W, =wit+ w—PQ—-Q¥2+iT, (23a)
w_=wi—w—PQ— Q42 +il. (23b)

In principle, I" should be an infinitesimally small positive
number. In practice, we use I'=0.01 a.u. in our numerical
calculations for reasons of numerical stability. Finally, the
integral equation (15) for y and thus the induced potential
are solved by discretization on a grid in z space.

Equation (16) provides the starting point for the calcula-
tion of the friction force. The key quantity is the surface loss
function g(Q, w) related to P;,4(Q, w) as

(0.0 = P00 ()

The imaginary part of g(Q,w) provides the key input to the
stopping power calculation.

B. Friction force for particles moving parallel to surfaces

We are interested in calculating the dissipative component
of the force acting on the charged projectile with charge Z
moving with a velocity parallel to a solid surface (v=VZ).
We assume that the trajectory is not modified due to the
interaction. We also assume that the surface is located in the
(x,y) plane. Within the linear-response theory all calcula-
tions for the stopping power S can be performed for unit
charge Z=1 using the scaling

S(Z,b,v)=728(Z=1,b,v) = Z>S(b,v). (25)

From the matrix element of the induced potential—i.e., the
surface loss function, the position-dependent friction force,
or stopping power—can be written as

1 [ &0 -- -
$6:1=- | 67 In010,(0.0= 6T,

(26)
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with 0?=Q?+w?/ V2. Equivalently, Eq. (26) can be written in
cylindrical coordinates as

S(b,V)= J +md —20b J 7 <
,V)=- Qe d¢ cos ¢
2T

0 0

XIm[g(Q,QV cos ¢)]. (27)

III. SPECULAR REFLECTION MODEL

The specular reflection model pioneered by Ritchie and
co-workers [43—45] provides a simplified intuitive model of
the surface response while retaining many of the essential
physics features of ion-surface scattering.

The dielectric response in the half-space below the sur-
face (z<<0) is described by the bulk dielectric function
€,(¢,w) while above the surface (z>0)e is given by its
vacuum value 1. This discontinuous change of the dielectric
response at the interface models the symmetry breaking due
to the presence of a surface within the SRM. Assuming that
the parallel (V) and perpendicular (v.) velocity components
of the particle satisfy the relation V>uv,, the induced poten-
tial per unit charge at position 7 is given by [64,65]

. 1 (dO -

D4R, 1 b, 0) = — —Qe’Q'R[q)(l) +®@], (28)
N 21 0
with

(Q,(l)) - 1
o =06 &\, 0/~ 1 =0(r+b) 29
(b) (rZ)SS(Q,w)He ; (29)

2 b 9
P = Ob)O(- Q)M —Qb’ (30)

e,(0,mw) + 1 ¢

where r=(R,r.), @=VQ, and O(x) is the Heaviside step
function. The terms ®) and ®? refer to the region of the
electronic coordinate above and below the surface. The pro-
jectile is assumed to be above the surface (b>0). Equation

(27) is expressed in terms of the surface dielectric function
[45,66]

e(0,z,0) = %W(Q,z,w), (31)

where

0

dQZeiqZZ
e (P +q))ey(q.0)

In the following, we will use the simplified notation
7(Q,w)=79(0,z=0,w) for its value at z=0. From Eq. (28)

70,z,0) = (32)
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we can directly identify the Fourier component of the in-
duced potential

2
<rz|¢=)ind(Q’ w)|b> = q)ind(Q’rpb’ (U) = Eﬂ-[q)(l) + (1)(2)]’
(33)
with diagonal elements

2_7785(Q’w) - le_ZQ;,
0 &(Q,w)+1 '

Consequently, the surface loss function in the SRM reduces
to

(b|Pina(Q, ) |b) = (34)

&(Q,0) - 1
e(0,w)+1°

For later reference we introduce here another response func-
tion &, not to be confused with g, as

1 2

gsrm(Q, w) = (35)

£(0,w) ol dzf_w dz' x(0,z,7'w).  (36)

Its significance is derived from the fact that it contains both
bulk- and surface-specific contributions to the dielectric re-
sponse. Within the SRM, when bulk excitations are also in-
cluded, Eq. (36) becomes

1 elQo)-1 ~ 1
0,0 &Qw+1 £(0,q.=0,0)

There is a wide variety of models of bulk dielectric functions
available that can be used to determine gggy(Q,w) via Egs.
(31)—(35). Benchmarks of a numerically satisfactory descrip-
tion are (a) the correct optical photoabsorption limit
(~Im{8;1(q=0,w)}), (b) the correct asymptotic free-particle
dispersion ~¢g*/2 for ¢>1, (c) the correct dispersion rela-
tion for bulk plasmons at small ¢, and (d) the correct width
(or damping) of the plasmon peak.
Ferell et al. [67] suggested an approximate form

(1)2

e(g,w) =1+ z s
q.©) §°q* — imws*q02qr — q)12qr — w(w + i)

(38)

where w,=+/(3/ r?) is the classical bulk plasmon frequency,
ry is the Wigner-Seitz radius, and vy is the damping of collec-
tive excitation. In Eq. (38), s denotes the group velocity of
the plasmons at small wave numbers. From the Lindhard
dielectric function [68] we expect

s=qp\3. (39)

(37

Further improvements can be built into Eq. (38) by choosing

(1)2

8b(q’ w) =1+ quz

y (40)

+q*4 — iTws*q0(x)) 0(x))12qr — w[w+iv(q)]’
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FIG. 2. (Color online) Gray scale plot (white, minimum inten-
sity; black, maximum intensity) of the energy loss function
Im[-1/&(Q,w)] [Eq. (37)] for Al based on SRM calculations using
he hydrodynamic model for s. The line indicates the border L,
=qqp+q>/2 where the channel for particle-hole excitation opens.

where x;=w-¢*/2+qpq and x,=¢*/2+qpq— . These cut-
offs conform with the energy-momentum dispersion of a free
particle ~¢?/2. Moreover, we allow for a momentum-
dependent damping y(q) [69,70]. Explicit expressions for
¥(q) can be obtained from fits to experimental data. For the
case of Al, measurements for the broadening of the bulk
plasmon loss peak as a function of g have been reported
[71,72] and can be represented by

Hg) = Yo+ v29” + vaq", (41)

with v,=0.0148 a.u. and ,=0.765 [71]. In our numerical
studies we will use ,=2.07 and y,=0.03 a.u. for Al

Figure 2 displays the density plot of the excitation
spectrum—i.e., Im{-£(Q, w)"'} [see Eq. (37)]—using &, as
given by Eq. (40) for Al The bulk and surface plasmon
dispersion can be clearly seen. The solid line L, in Fig. 2
indicates the onset of the continuum. The region of small w
predominantly contributes to the stopping power at large dis-
tances from the surface. With increasing momentum transfer
0, both the surface and bulk plasmon peaks shift to higher
energies. The dispersion of plasmon peaks is controlled by s.
A negative dispersion as discussed in [56] is not reproduced
in the SRM for AL

Using the abbreviations

a=s’q*- o’ +q*4, (42)
2
0(x;)0
d= ms~q6(x;) (xz)’ (43)
2qF
the surface dielectric function can be expressed as

where
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A—Jm P a(a+wﬁ)+w2(y+d)2
~ )L Pl o)+ oy

(45a)
B= f "4 wayy (45b)
- 1z ¢lla+ colz,)2 + o’ (y+d)?])’
) 2
ww.d
C= d L s 45¢
| "Z{ q2[<a+w,%>2+w2<y+d>2]} (459
which leads to a surface loss function
2B
Im{gSRM(va)} =—- _ _
A+1)?+(B+C)?
2C
(46)

A+12+B+07
with A=QA/m, B=QB/, and C=QC/ . The terms B and

C are associated with the plasmon and particle-hole damp-
ing, respectively. Ignoring for the moment the fact that in the

denominator both B and C appear and thus these contribu-
tions are mixed, we can write Eq. (46) as

Im{gsru(Q. @)} = Im{glky (0. @)} + Im{gkh,, (0. w)}.
(47)

We refer to Tm{glk,,(Q, )} and Im{glt (Q,®)} as the sur-
face loss functions due to the collective plasmon excitations
and due to the particle-hole excitations, respectively. At large
distances from the surface, the dominant contribution to the
loss arises from small momentum (Q <1) and energy trans-
fers (w<<1). Therefore we can determine the asymptotic
form of Eq. (47) by neglecting all terms in first order in w?
[44]. In this case an unambiguous separation can be achieved
between the plasmon and particle-hole excitations

-
Im{glh (0, )} = — —2—, (48)
(A+1)?

.

Im{glh (0, )} = — ———. (49)
(A+1)?

In this limit analytic expressions can be derived for the stop-
ping power [44]. By contrast we refer in the following to Eq.
(46) as the numerical solution of the SRM model.

A. Plasmon excitation

In the long-wavelength limit of plasmon excitations we
find

2B o 1

-9 w’}/q‘;F
(A+1)?

- 2
TA+1)? @

Im{gfpy(Q. )} = - 8,
(50)

with ggp=(12/7)"3/\r, being the Thomas-Fermi wave vec-

tor and
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The stopping power is, in the limit of large distances b>1,
determined by the Q — 0 limit

(51)

2
lim [~ Im{gZ (0. 0)}] = 022 (52)
0—0 wp

Inserting Eq. (52) into Eq. (26) leads to

2y (7 Y1
sP =—f dwo* K (2bwlV) = ———, (53
SRM WVzwf . 0w Ky(2bw/V) 8wf,b3 (53)

where w;=w,/ V2 is the classical surface plasmon frequency
and K|, is the modified Bessel function of second kind.

Generalizing the observation that at small Q and w values
the term of the loss function associated with plasmon exci-
tation is linearly depend on the frequency [see Eq. (52)] we
can write

Im{— g0k, (0. )} = WFih, (O, V). (54)

Figure 3(a) shows the surface loss function given by the
numerical solution of the SRM model. The linear depen-
dence is fulfilled approximately for =<0.01 a.u. However, if
®>0.01 a.u., higher-order contributions in the dielectric
function become non-negligible and the linear dependence
ceases to be valid. FgﬁeM(Q, V) can be fitted to the form

pl
F{éﬁ?M(Q’ V) = agﬁeM(V)e_‘ISRM(V)Q’ (55)
with
alsjﬁw(v) = 27V/wi. (56)

Using the functional form, Eq. (55), the integrals in Eq.
(26) can still be calculated analytically and the stopping
power becomes

944 1

=——. 57
8(»? (b+ c‘_éﬁeM)3 (57)

We note for later reference that a similar asymptotic form
can be derived from a Taylor expansion of the loss function
g(0, w), keeping only the leading order terms in Q. Figure
3(b) displays the stopping power contribution originating
from plasmon excitation. About 100 a.u. from the surface the
asymptotic form [Eq. (53)] agrees very well with the numeri-
cal solution of the SRM and describes the stopping power
very accurately. However, at smaller distances discrepancies
indicate that contributions from shorter wavelengths become
important.

B. Particle-hole excitation

In the long-wavelength limit, the contribution from
particle-hole excitation can be written as

PHYSICAL REVIEW A 72, 022901 (2005)

©=0.08 a.u. (@)

®=0.005 a.u.

i {-gP Qi) oo (2.0.)

0.00 0.02 0.04 0.06 0.08 0.10
Q (a.uw)

-1 pl
\% SgRM(a.u.)

10 100
b (a.u.)

FIG. 3. (a) Surface loss function divided by the frequency for
plasmon excitation as a function of momentum transfer Q for vari-
ous  within the SRM. Solid line: direct numerical integration of
Eq. (46). Circle: fit with FgfﬁeM(Q)zagﬁeM exp(—cg’ﬁwQ). (b) Stopping
power contribution due to the plasmon excitation, Sgﬁw. Dashed
line: direct integration using the surface loss function, Eq. (46).
Solid line: long-wavelength limit given by Eq. (48).

2C
Im{g"S’ﬁM(Q,w)}z— - =—22 — 2wa,
(A+1)? T(A+1)2
(58)
with
VakG-0? dg,
asz_,z L ———— (59
42~ Nq; + Q°(q; + Q" + q7p)

In the long-wavelength limit Q — 0, Eq. (58) reduces to

40 1 44
lim [~ Im{g%)(0, w)}] = 0—5 In| 55" |, (60)
Q—»O[ {gSRM(Q )} 776]‘;1: [uz i_i_ l:| (
with u=Q/qr and u,,=2kp/grp. Inserting Eq. (60) into Eq.
(26) the particle-hole contribution to stopping follows as
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FIG. 4. (a) Surface loss function divided by the frequency for
particle-hole excitation as a function of momentum transfer Q for
various w within the SRM. Solid line: direct numerical 1ntegrati0n
with Eq. (46). Circle: fit with FZL, (Q)=dbn,Q In(cir,,/ Q)60
-0/(w)]. (b) Stopping power contribution due to the particle-hole
excitation, ng’w. Dashed line: direct integration using the surface
loss function described by Eq. (46). Solid line: long-wavelength
limit given by Eq. (49).

3V In(0.983¢b) 1
277"]TF bt

ph
SRM =

(61)
In general, the particle-hole contribution to the surface loss
function, Im{—g%%k,,(Q, w)}, can be written in analogy to Eq.
(54) as

Im{~ g5/ (0, )} = WFGm (O, V). (62)

Figure 4(a) shows the surface loss function for particle-hole
excitation. The linear dependence implied by Eq. (62) is ful-
filled for @=0.01 a.u. For larger w, @>0.01 a.u., higher-
order contributions in the bulk dielectric function become
important. Our numerical calculations can be fitted to the
functional form

Fi(0.V) = alp (V)0 In(clpy/ Q) 00 - Q)] (63)

suggested by the analytic structure of gh, (0, ). Also for
the particle-hole excitations the asymptotic form can alterna-
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tively be found using a Taylor expansion of the loss function,
g(0,w) and keeping only the leading-order terms in Q. Fig-
ure 4(b) shows the stopping power contribution due to the
particle-hole excitation. Above 100 a.u. from the surface the
asymptotic form describes the stopping power very accu-
rately while discrepancies arise at smaller distances.

IV. TIME-DEPENDENT DENSITY FUNCTIONAL THEORY

TDDFT has developed in recent years into an attractive
alternative to the SRM for calculating the surface response.
In this section we investigate its predictions for the surface
response and stopping power at large distances. The
coordinate-space representation of the matrix element for the
induced potential, Eq. (16), reads

+00 +00
‘I)md(Q,z,b,w)=J dz’K(Q,z,z’)f d7"x(Q.z',7", w)

Xq)ext(Q7Z”’baw)7 (64)

where x(Q,z,z',w) is the first-order many-body response
function and

K(Q,z,7') =

—exp( Olz-z'|)+ d&z- Z)

n=n(z)

(65)

in the LDA. The first term in Eq. (65) describes the bare
Coulomb interaction between electrons, and the second term
is the exchange-correlation correction. The scalar electric po-
tential ®,,, due to a charged particle moving parallel to the

surface with velocity V and at a distance b can be expressed
as
2w > >
®,.(0,2,b,w) = EZ&(w — QV)e 2, (66)
The 2D density plot of the energy loss function Im(—1/%)
[Eq. (36)] of Al within the framework of the LDA (Fig. 5)
resembles the two-dimensional distribution given by the
SRM (Fig. 2).

Based on the observation that the RPA and LDA approxi-
mations to the kernel [Egs. (12) and (13)] agree with each
other, we perform the analytical investigation of the large-
distance behavior of the TDDFT stopping power employing

the RPA kernel. Details of the calculations can be found in
Ref. [73]. Equation (64) can thus be written as

2 2
(W)f dzJ dz' e=2l0=

XIm[x(Q,z,2',@)]e @<~ (67)

DEA(Q,b,b,0) =

With b approaching infinity—i.e., when b is large compared

to z(z')—we can write
—2Qb J dz f dz' Q)

XIm[x(Q,z.7", w)]. (68)

In practice the integration is performed from deep inside the

DA, b,b, @
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FIG. 5. (Color online) Gray scale plot (white, minimum inten-
sity; black, maximum intensity) of the energy loss function
Im[-1/&(Q,w)] [Eq. (36)] of Al using TDDFT with LDA kernel.
The line indicates the border Ly=gqyr+q*/2 where the channel for
particle-hole excitation opens.

solid to a sufficiently large distance a far from from the
surface until convergence is achieved. Substituting Eq. (68)
into Eq. (16), the surface loss function in the RPA within the
framework of TDDFT reads

grea(Q, ) = _f(Q w), (69)

where

{(Q,w):f f dzdz'eQ(“Z’)Im[)((Q,Z,z',w)]. (70)

The large-b behavior can be determined by means of power
series expansion in Q around Q=0. We note that because of
the relation w=\7é, the frequency simultaneously ap-
proaches zero which requires some care. In order to deter-
mine the leading term of Eq. (70), the functions ¢2¢*") and
x(0,z,7' ,w) are expanded in a Taylor series. Keeping the
leading terms in Eq. (70) and inserting into Eq. (27) leads to

Srpa(b,V) = SRPA(b,V) + Sf?}ll’A(b’V)’ (71)
where
v [
Shpa(b.V) = —c,, f dQQ?* exp 29, (72)
0
7wV 3TV e
Shpa(b,V) = [7621;3 L cﬁ?} J dQQ? exp™?"
0

(73)

and
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e e Jd i 0,(1)
CpFJ dzf dz’|:(z+z') x(0.)
—0 —o Jdw

w=0
, Pxi(0.) ] o
0Qdw 0,00
”-J a’zf dz’ [( +z') aX’(O ©)
- dw w=0
+2(z+2")? % (93X::3Q,w) ]
® Q.0=0 w w=0
(75)
#x:(0,

,£72h)=f_m dzf [ X‘( ©) wzo]. (76)
In Eqgs. (74)-(76), Im[x(Q,z,2", )]

=Im[x(Q,z,z",0QV cos ¢)] is denoted by x;(Q,w). The inte-
grations in Egs. (72) and (73) can be performed analytically,
resulting in the stopping power at large distances:

’7TV 1
SRPA(b V)= 8 pr, (77)
37V 3V3 1
P (b, V) = | ——c)) e (78)

16 P ea o |t

In analogy with the SRM, we have identified S%, =pa and S’I’{;,A
as the stopping power due to the plasmon and particle-hole
excitations, respectively. This assignment originates from the
small-Q expansion where terms to the same order in Q can
be identified. Its physical justification hinges on the explicit
calculation of Cpi» c(lh), and c(z) The inevitable discretization
errors during the calculatlons however, can pose problems
when investigating the small-Q limit numerically as Fourier
reprocity requires a very wide slab size (L=2/Q). In fact
this difficulty may have caused spurious results in previous
numerical investigations of the surface response function
[74]. We therefore combine numerical with analytic tech-
niques in order to explore the small-Q (and large-b) behav-
ior. The starting point is the observation (Fig. 6) that the
surface loss function Im[g(Q,w)] divided by the frequency
using both the RPA and LDA kernels becomes nearly fre-
quency independent at small values of Q and w. This linear
frequency dependence is fulfilled for both the RPA and LDA
when w=0.01 a.u. In analogy to our treatment of the SRM
model we assume that the loss function can be written as

= Im{gpp(Q,0)} = 0F pp(Q,V). (79)

In principle, the DFT calculation using either the RPA or
LDA kernel contains all excitations—i.e., particle-hole, sur-
face, and bulk plasmon excitations. However, the present jel-
lium calculation predicts that the surface plasmon width de-
creases linearly with Q as Q —0 [75-78]. This is due to the
fact that the plasmon coupling to the lattice and the plasmon
decay into a double electron-hole pair is neglected from the
outset. The significance of corrections of the unphysically
long lifetimes for long-wavelength plasmon excitations be-
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FIG. 6. Surface loss function divided by the frequency as a
function of momentum transfer Q with (a) RPA and (b) LDA kernel.

comes obvious when realizing that the asymptotic plasmon
contribution within the SRM depends linearly on the Q—0
value of y(Q). Consequently, the plasmon contribution
(~b7%) to the stopping vanishes in the asymptotic limit b
—0 of DFT for a structureless jellium. Numerically the co-
efficient c,; is found to be either negligible small or equal to
zero. Corrections of this deficiency will be discussed below.

Since the asymptotic contribution to the stopping comes
from particle-hole excitations, we fit the numerical data at
®=0.005 a.u. and 0<Q<0.05 a.u. (Fig. 6) to the functional
form [see Eq. (63)]

Fprr(Q,V) = apr(V)Q In(cpr/ Q). (80)

Inserting Egs. (79) and (80) into Eq. (27) the integration
with respect to Q can again be done analytically, leading to
the stopping power in the form

_ 3aDFTV

DFT= W[HDFT"' In(b)]. (81)

This power law closely mirrors the one we found for
particle-hole excitation in SRM.
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FIG. 7. Surface loss function as a function of momentum trans-
fer Q at @=0.0037 a.u. (a) for a wide range of Q and (b) enlarged
for the case of small momentum transfers. Dash-dotted line: LDA.
Dashed line: RPA. Solid line: SRM and SRM contributions due to
plasmon excitation (dotted line) and particle-hole excitation
(double-dot-dashed line).

V. COMPARISON BETWEEN SRM AND TDDFT

Figure 7 shows the surface loss function as a function of
the momentum transfer Q for w=0.0037 a.u. calculated in
the framework of the SRM and TDDFT. Almost over the
whole range of Q the loss function is significantly larger in
DFT than in the SRM [Fig. 7(a)]. Moreover, the loss function
is smaller for the RPA kernel than the LDA kernel. This is
due to the fact that the effective interaction potential is stron-
ger in the RPA than in the LDA. The exchange correlation
term in the LDA reduces the repulsive interaction potential,
thereby increasing the polarizability of the surface electron
density. The enhancement in the LDA is only about 5% com-
pared to the RPA. We note here that this is in contradiction
with the observation of Liebsch [74] where the difference
between the LDA and RPA calculations at the peak position
is about 60%.

For very small values of Q, however [Fig. 7(b)], the order
is reversed: Below the critical value of Q(Q,~0.04 a.u.) the
loss function within DFT drops to below the SRM value.
Decomposing the SRM loss function into its plasmon and
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FIG. 8. Surface loss function as a function of frequency for
various values of parallel momentum transfer. Dash-dotted line:
LDA. Dashed line: RPA. Solid line: SRM and SRM contributions
due to plasmon excitation (dotted line) and particle-hole excitation
(double-dot-dashed line).

particle-hole contributions clearly indicates that the underes-
timate of width of the plasmon spectrum at Q=0 in TDDFT
is the main source for the smaller TDDFT values for
Im[g(Q, w)]. The discrepancy is highlighted in more detail in
Fig. 8 where the surface loss functions as a function of fre-
quency for various values of parallel momentum transfer are
shown. The transition from the Q=0 regime [Fig. 8(a)]
where the SRM exceeds the TDDFT value to the regime
where particle-hole excitation dominates and thus
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FIG. 9. Distance-dependent stopping power for a unit charge
moving on a parallel trajectory in front of the vicinity of an Al
surface. (a) Small to intermediate distances (linear scale). Dash-
dotted line: LDA. Dashed line: RPA. Solid line: SRM. (b) large
distances (log scale). Dashed line: DFT. Solid line: SRM-ph+pl
(contributions due to both plasmon and particle-hole excitations).
Dotted line: SRM-pl (contribution due to plasmon excitation).
Double-dot-dashed line: SRM-ph (contribution due to particle-hole
excitation).

Im[g(Q,w)] calculated in TDDFT is larger near Q=0.04
[Figs. 8(b) and 8(c)] is clearly seen.

Finally, the distance-dependent stopping power, Eq. (27),
near an Al surface with parallel velocity is presented both for
small to intermediate distances [Fig. 9(a)] and large distances
[Fig. 9(b)]. The stopping power is scaled by the projectile
velocity. Our present calculations confirm the observation by
Cazalilla and Garcia de Abajo [58] that at low velocities and
in the vicinity of the surface large differences between the
stopping power calculated within the framework of TDDFT
and the one calculated with the SRM exist. The latter de-
creases faster with increasing distance than the former. This
behavior directly mirrors the surface loss function at inter-
mediate to large values of Q [see Figs. 8(b) and 8(c)]. Also
the results for the RPA and LDA kernels reflect the corre-
sponding differences between Im[ghr1] and Im[gh7]. At
large distances [Fig. 9(b)] a completely different situation
emerges. The stopping powers for RPA and LDA kernels are
virtually indistinguishable (labeled as DFT) and fall below
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the value of the SRM at about =40 a.u. Obviously, this tran-
sition is related to the dominance of the plasmon contribution
near =0 missing in TDDFT because of the incorrect width
of the plasmon resonance at small Q.

VI. APPLICATIONS
A. Improvement of TDDFT at large distances

The asymptotic analysis of the large-distance behavior of
the stopping power immediately suggests remedies for the
TDDFT as applied to a jellium surface. The underestimate of
the width y(Q) of the plasmon line near w,(Q=0) leads to
an underestimate of the surface loss function near Img(Q
~0,w=0). With Q approaching zero, energy and momen-
tum conservation cannot be satisfied in the absence of the
lattice for the decay of a plasmon into a single particle-hole
excitation. At long wavelengths O <Q,,, where Q,, is the
wave number where the plasmon dispersion merges into the
continuum of particle-hole excitations, plasmons do not suf-
fer Landau damping. The energy conservation for the single
particle-hole decay reads

2
0(Q)=wjg—wi= -

> >

+PQO (82)

and, therefore,

lim w(Q) =0. (83)

0—0
It is clear that at small values of Q the decay of plasmons
with energy o, (Q=0)>0 is suppressed. Ichimaru [79] has
shown that the decay rate of the plasmon is proportional to
Q?. Therefore, it vanishes in the long-wavelength limit. The
width at y(Q=0) near Q=0 is governed primarily by two
processes: decay of the plasmon into a particle-hole excita-
tion accompanied by momentum transfer to the lattice
(phonons) and emission of pairs of particle-hole excitations
[62]. These processes can be taken into account by shifting
the plasmon pole in the complex plane near Q=0 by an
amount given by first-order perturbation theory—i.e., by
Fermi’s golden rule for these processes. A simplified method
to accomplish such a correction is suggested by the behavior
of the surface loss function at small Q [see Fig. 7(b)]. Below
Q. the surface loss function -calculated within DFT,
Im[gpr{(Q,w)], crosses the line Im[ g gz (Q, w)], because of
the missing plasmon decay channels. We can simply correct
for this deficiency by setting

Im[gli))lFT(Q’w)] =Im[gpr(Q, w) ]+ Im[g{;ﬁw(Q,w)]

-1
X{1+exp<QQ_ QC)] . (84)
w

In Eq. (84), Im[g%%,,] is the plasmon contribution [Eq. (48)]
to the SRM and Im[ gpx7] stands for the TDDFT calculations
using either the RPA or LDA kernels which give virtually
identical results at small Q where the correction applies. The
parameters entering Eqs. (84) and (48) can be taken from
perturbation theory for interband transitions and correlated
two-electron processes. For Al, the critical point for the tran-
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FIG. 10. Distance-dependent stopping power for a unit charge
moving in a parallel trajectory in front of an Al surface. Dashed
line: DFT-pl. Solid line: SRM.

sition Q. is at 0.=~0.04 a.u. and the transition width is set to
Ow=0.01 a.u. Figure 10 displays the position-dependent
stopping power, based on DFT corrected for plasmon decay,
Im[gf’)lFT], for a unit charge moving along a parallel trajectory
in front of an Al surface. This improved form of stopping
power including plasmon decay (DFT-pl) significantly ex-
ceeds the SRM in the vicinity of the surface while approach-
ing the SRM at large distances.

B. Energy loss of charged particles in capillary transmission

In the following application we first present the energy
loss for a proton (H") rather than an HCI. The reason for this
choice is that for small z differences between TDDFT and
SRM are more pronounced. Note, however, that integrated
energy loss is much larger and more easily measurable for
HCT’s. For the study of the problem of energy loss in micro-
capillary transmission discussed in the Introduction, we have
performed a classical trajectory Monte Carlo simulation with
an ensemble of 5X 10° primary trajectories. In our simula-
tions an Al capillary with a radius of 2360 a.u. and length
L=30000 a.u. was used. The spatial distribution of the en-
semble is uniform across the opening of the capillary cylin-
der. To simulate the spread of the incident beam, we use a
Gaussian angular distribution of ; with a full width at half
maximum (FWHM A, 6) of 0.2°. The critical distance of the
first capture is taken from the classical-over-the-barrier
model [3,4]. Details of the simulation are given elsewhere
[32]. For the sake of simplicity, we neglect the curvature of
the internal capillary walls. The forces (parallel and perpen-
dicular to the capillary axis) acting on the projectile during
the trajectory calculation are therefore close to the surface
equivalent to that of a flat surface. In the regime of distances
relevant for the energy loss this approximation leads to vir-
tually identical values for flat and curved surfaces. The en-
ergy loss of ions that do not undergo capture is restricted to
distances larger than the minimum critical distance. Accord-
ing to the COB model [3,4] the estimated distance where the
first resonant charge transfer can take place is
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(85)

where W is the work function of the target. For the case of
H* scattering at an Al capillary with W=4.2¢eV, d,
~9.2 a.u., and for Kr*% projectiles d,~50.2 a.u. In view of
the long interaction times of the ion with the capillary walls
(t=10° a.u.) it is important to estimate the contributions
from charge transfer by tunneling at distances larger than d..
We performed test simulations including tunneling [3,80].
We typically find that despite the long interaction times, the
additional tunneling contributions leads only to a slight in-
crease of the effective distance of the capture by tunneling d,
compared to the classical value d. by <25%. As will be
shown explicitly below (see Fig. 14, below), the effect on the
resulting energy loss is negligibly small.

The energy loss (AE=E;~E;, where E; and E are the ion
energies at the position of the ion source and detector, re-
spectively) of the charged particle can be obtained from an
integration of the friction force (stopping power S) along the
trajectory of the particle. According to Fig. 10 the stopping
power is negligible small for distances larger than about
100 a.u. from the metallic surface. Most of the ions traveling
along trajectories of type 1 [Fig. 1(a)] during the entire trans-
mission will hardly suffer any perceptible energy loss. How-
ever, the strength of the stopping power strongly increases as
the particle approaches the surface. We introduce the yield
function of transmitted ions which have not changed their
charge state as

Y=—",

N (86)

where N, is the number of transmitted ions in their initial
charge state g; without undergoing close collisions and N is
the total number of primary ions entering the capillary.
For protons with v=0.29 a.u. corresponding to 2.1 keV,
Y=0.91. We also introduce the energy loss probability
density as
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FIG. 11. (Color online) 2D
correlation pattern between the
energy loss and the scattering
angle of H* ions passing through
an Al microcapillary at
2.1 keV/amu energy. (a)
Distance-dependent stopping
power is calculated by SRM. (b)
Distance-dependent stopping
power is calculated by DFT-pl.

0.6 0.8 1.0 1.2

N(AE)

AEN,

P(AE) = , (87)

where N(AE) is the number of transmitted ions suffering
energy loss AE. Similarly, we introduce the 2D probability as
a function of energy loss AE and emission (polar) angle 6 as

N(AE, )

P(AE,0)=AEA0N .
q;

(88)

Figure 11 displays the two-dimensional correlation pattern
between the scattering angle and the energy loss employing
the SRM [Fig. 11(a)] and DFT-pl [Fig. 11(b)] approxima-
tions. In both cases the dominant fraction of the incident
beam will undergo only small-angle scattering and will suf-
fer negligible energy loss (=98% of the transmitted ions).
The amount of energy loss is strongly correlated to the dis-
tance of closest approach which also determines the strength
of the interaction between the projectile and solid surface.
We obtain a significantly larger maximum energy loss for
DFT-pl than for the SRM. To highlight this effect we inte-
grated the P(AE,#) distribution over the scattering angle.
Figure 12 shows the energy loss probability for a
2.1 keV/amu H* ions passing through an Al microcapillary.
The energy loss exceeding about 0.3 eV corresponding to
AE/E=0.014% should be experimentally observable. This
would require an energy resolution for the measurement bet-
ter than AE/E=0.02%. We note that with increasing projec-
tile charge the maximum reachable energy loss for DFT-pl
approaches the value obtain with the SRM. Since the scatter-
ing angle and the distance of closest approach are strongly
correlated, the distant-dependent stopping power can be
probed in detail.

We turn now to a typical case of a highly charged ion and
present results for Kr’®* with very low velocity (v
=0.01 a.u.) expected to be available at the future HITRAP
facility at GSI. Figure 13 shows the two-dimensional corre-
lation pattern between the scattering angle and the energy
loss for Kr*™ ions with an energy of 2.5 eV/amu employing
the SRM approximation for Ni. For Kr’** the first critical
capture distance is 40.5 a.u. This minimum distance is large
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FIG. 12. Energy loss probability for a 2.1 keV/amu H* ions
passing through an Al microcapillary.

enough that the maximum energy loss for DFT-pl approach
should be almost identical to that obtained with the SRM.
The maximum energy loss is about 0.9 eV corresponding to
AE/E=0.4%.

Including the contributions due to tunneling increases the
effective distance for first capture due to tunneling to dp
~50 a.u.—i.e., about 25% larger than the classical value.
The point of closest approach without charge transfer is thus
shifted further out which results in a decrease in the energy
loss. However, the effect of tunneling contributions on the
energy loss is very small (see Fig. 14). The reason is that AE
is an integral quantity over the entire trajectory through the
capillary. Since most contributions stem from large dis-
tances, the shift in d. has only a minor effect.

Encrgy loss (cV)

5 10 15 20 25
Scattering Angle (Deg.)

FIG. 13. (Color online) 2D correlation pattern between the en-
ergy loss and the scattering angle of Kr’%* ions passing through an
Ni microcapillary at 2.5 eV/amu energy. The distance-dependent
stopping power is calculated by the SRM employing the same bulk
dielectric function as in Ref. [32].
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FIG. 14. Energy loss probability for 2.5-eV/amu Kr3%* ions
passing through a Ni microcapillary. Solid line with full circle:
COB model. Dashed line with open circle: COB model with tun-
neling taken into account.

VII. CONCLUSIONS

In summary, we have presented a detailed investigation of
the asymptotic form of the stopping power for charged par-
ticles moving parallel to a metal surface at large distances. A
comparative study of the linear response employing the
specular reflection model and time-dependent density func-
tional theory shows dramatic differences: in the vicinity of
the surface the SRM underestimates the stopping power
since it underestimates the local electron density that pro-
vides the drag force. At large distances, the roles are re-
versed: the TDDFT calculation for a jellium surface neglect-
ing lattice effects and coupling to phonons underestimates
the stopping power. The latter originates from the vanishing
(surface) plasmon line width in the long-wavelength limit.
Since the SRM contains the experimental linewidth on a phe-
nomenological level, its asymptotic stopping power results in
the correct power law ~(distance)™® and dominates over the
TDDFT result ~(distance)™. We have proposed a simple
extension of the TDDFT description that remedies this defi-
ciency. While in the vicinity of the surface this stopping
power calculation gives values significantly larger than ob-
tained by SRM, it converges to the SRM in the asymptotic
region above the surface. We hope our results will stimulate
experimental investigations of the surface dielectric response
function at large distances probed by transmission of highly
charged ions through microcapillaries or nanotubes [81].
This technique promises the possibility to obtain the surface
loss function well separated from the bulk one. It is worth
noting that such a proposal resembles the measurement of
electron energy loss of electrons transmitted through cylin-
drical microchannels [82,83]. Higher charges of HCI and
better defined classical trajectories should provide a favor-
able setting for probing the stopping power at large dis-
tances. Finally we note, however, in our recent studies, for
the sake of simplicity, we restricted ourselves to that type of
trajectories which do not suffer charge exchange; trajectories
of type 3 [Fig. 1(a)] will give rise to higher energy loss.
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