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We develop a direct diagrammatic construction scheme for the inelastic propagator, which describes inelastic
scattering processes. Starting from the previously presented “direct approach” to the inelastic propagator,
which involves a higher-order elastic Green’s function, we show how one can obtain the inelastic propagator
for simple excitations without actually evaluating all the diagrams for the higher-order Green’s function. The
three cases where either the target molecule itself or its cation or anion is a closed-shell system are discussed.
A generalization of the method to obtaining inelastic propagators between higher excitations is briefly
addressed.

DOI: 10.1103/PhysRevA.72.022731 PACS number�s�: 34.80.Gs, 03.65.Nk, 31.10.�z

I. INTRODUCTION

It has been known for a long time now that elastic scat-
tering of electrons by molecules can be treated successfully
with the help of Green’s functions. Already in Ref. �1�, it was
shown that the one-particle Green’s function �also called
propagator� obeys a Dyson equation, in which the self-
energy is an optical potential �2� for the scattering. Nowa-
days, there is a multitude of methods for calculating the
propagator for elastic scattering and consequently the scat-
tering matrix, phase shifts, and resonance energies �for some
examples, see Refs. �3–9��.

On the other hand, not much work has been done on the
use of Green’s function methods in the even more important
case of inelastic scattering. Some pioneering work in this
direction was done by Csanak and co-workers �10,11�, but
they did not develop formal inelastic equivalents to the elas-
tic Green’s function and the optical potential, which are so
useful concepts in the treatment of elastic scattering. Such a
formulation was achieved only in recent years, first for the
scattering of nonelectronic projectiles from molecular targets
�12,13� and afterwards also for the case where the projectile
is indistinguishable from the target particles �14–16�. Also
worthwhile mentioning is the work done on the treatment of
inelastic scattering of electrons in the case that rotational and
vibrational degrees of freedom of the target molecule are
excited �17�.

Recently, two systematic diagrammatic methods for ex-
plicitly evaluating the inelastic propagator for transitions be-
tween electronically excited states were developed: the direct
approach and the Dyson approach �18�. Both methods are
based on spectral representations of higher-order elastic
Green’s functions. From these, one can extract either the in-
elastic propagator directly or generalized one-particle densi-
ties which can be used to obtain the inelastic propagator
from Dyson-like equations.

A drawback of these methods is that for obtaining the
inelastic propagator �or the generalized densities, respec-
tively� perturbatively, one first has to evaluate the Goldstone
diagrams for the higher-order Green’s functions and then ex-
tract the desired quantity from the results. Even in low orders
of perturbation theory, already several hundred diagrams
have to be considered, and extracting the inelastic propaga-
tors out of the various contributions to the higher-order
Green’s functions is also not an easy task �see the examples
given in Ref. �18��. Hence it is desirable to construct a dia-
grammatic evaluation method for the inelastic propagator di-
rectly.

As a first step towards that goal, it was already pointed
out in Ref. �18� that if one is interested only in the inelastic
propagator for the simplest excitations �i.e., 1p, 1h, or 1p1h
excitations�, only a considerably smaller number of diagrams
has to be taken into account. We demonstrate in this work
how also the second problem—the extraction of the inelastic
propagator out of the various contributions—can be solved.
This will lead to a diagrammatic construction method which
gives the inelastic propagator between the simplest excita-
tions itself, instead of only the higher-order Green’s func-
tions.

Section II first briefly summarizes the definitions of the
inelastic propagator and of the higher-order elastic Green’s
function used in �18�, and how one can obtain the former
from the latter in the direct approach. We then go on devel-
oping our new method in Sec. III and give Feynman rules for
constructing and evaluating the diagrams for the inelastic
propagator. This will be done for all three cases already ad-
dressed in �18�: a neutral closed-shell target molecule as well
as the cases of open-shell target molecules with closed-shell
ions. Inelastic propagators for higher excitations will also
briefly be discussed. Finally, Sec. IV summarizes our results
and addresses the possibility of applying our methods also in
the Dyson approach. The Appendix introduces some math-
ematical notation and contains a formal statement of the
Feynman rules and their proof.*Electronic address: Bjoern.Feuerbacher@pci.uni-heidelberg.de
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II. REVIEW OF THE DIRECT APPROACH

The inelastic propagator was defined in Ref. �15� by

Gpq
�M,N���� = Gpq

+�M,N���� + Gpq
−�M,N���� ,

where

iGpq
+�M,N���� = �����M�cp�t�cq

†�t���N�ei�+�M,N��t,t��,

iGpq
−�M,N���� = − ��− ���M�cq

†�t��cp�t��N�ei�−�M,N��t,t��, �1�

and the phases are

�+�M,N��t,t�� = − �E�M� − E�0��t + �E�N� − E�0��t�,

�−�M,N��t,t�� = − �E�M� − E�0��t� + �E�N� − E�0��t . �2�

The cp and cq
† are the usual one-particle destruction and cre-

ation operators, E�0� is the energy of the ground state �0�, and
the E�M� are the energies of the excited states �M�. The part

G+ is called the particle component, whereas G− is called the
hole component of the inelastic propagator.

In Ref. �18�, we also showed that in the cases of closed-
shell ions, the ground-state energy of the ion �E�0−� if one
considers a closed-shell anion or E�0+� for the case of a
closed-shell cation� naturally appears in the phases instead of
the ground-state energy E�0� of the neutral molecule itself.

The definition given above is for the so-called “natural”
inelastic Green’s function �15�. In Ref. �18�, we discussed
also the “scattering-motivated” and “ionization-motivated”
inelastic Green’s functions. Here, we will concentrate on the
first case only, for which we developed a straightforward
method to construct the inelastic propagator. In the other two
cases, this does not seem to be so easily possible.

A. Closed-shell neutral molecule

For the case of a closed-shell neutral molecule, the fol-
lowing six-point, four-times Green’s function was used in the
direct approach presented in Ref. �18�:

iRpqrstu�tf,t,t�,ti� = − �0�T̂ �cp
†�tf�cq�tf�cr�t�cs

†�t��ct
†�ti�cu�ti���0� + �0�T̂ �cp

†�tf�cq�tf�cr�t�cs
†�t����0��0�ct

†�ti�cu�ti��0�

+ �0�T̂ �cr�t�cs
†�t��ct

†�ti�cu�ti���0��0�cp
†�tf�cq�tf��0� + �0�T̂ �cp

†�tf�cq�tf�ct
†�ti�cu�ti���0��0�T̂ �cr�t�cs

†�t����0�

− 2�0�cp
†�tf�cq�tf��0��0�T̂ �cr�t�cs

†�t����0��0�ct
†�ti�cu�ti��0� . �3�

The time indices f and i mean “final” and “initial,” respec-

tively, and T̂ denotes the usual time ordering operator. Here
24 time orderings are possible, which all depend only on the
three time differences � f = tf − t, �= t− t�, and �i= t�− ti or, al-
ternatively, � f�= tf − t�, �= t− t�, and �i�= t− ti.

The component of R corresponding to � f �0, �i�0, and
��0 was called R�I�, whereas R�II� is the component of R
with � f��0, �i��0, and ��0. It was shown that Fourier
transforming with respect to all three time differences leads
to the following spectral representations of these two com-
ponents:

Rpqrstu
�I� �� f,�i,��

= �
M�0,N�0

�pq
�0,M�

� f − �E�M� − E�0�� + i0+

�tu
�N,0�

�i − �E�N� − E�0�� + i0+

	�Grs
+�M,N���� − 
MNGrs

+�0,0�
„� − �E�M� − E�0��…� �4�

and

Rpqrstu
�II� �� f�,�i�,��

= �
M�0,N�0

�pq
�0,M�

� f − �E�M� − E�0�� + i0+

�tu
�N,0�

�i − �E�N� − E�0�� + i0+

	�Grs
−�M,N���� − 
MNGrs

−�0,0�
„� − �E�M� − E�0��…� . �5�

Here, the generalized one-particle densities are defined by

�pq
�N,M� = �N�cp

†cq�M� . �6�

The poles of the components R�I� and R�II� of the Green’s
function �in both � f and �i or � f� and �i�, respectively� are
thus seen to be given by the energy differences between the
excited states and the ground state of the system, and the
residues of the double poles yield the inelastic propagators.

As explained in Ref. �18�, for the perturbative evaluation
of R it is convenient to write it using a matrix notation. We
introduced vectors Ttu containing the generalized densities
�tu

�N,0� for fixed t ,u and matrices Grs��� for the propagators

Grs
+�M,N���� − 
MNGrs

+�0,0�
„� − �E�M� − E�0��…

for fixed r ,s �the vector and matrix indices run over the ex-
cited states�. Further, we introduced the diagonal matrices E
and V, where the diagonal elements of E+V are the energy
differences E�M�−E�0�; E contains their leading-order contri-
butions and V the higher orders. This enabled us to write

Rpqrstu
�I� �� f,�i,�� = Tqp

† 1

� f − E − V
Grs���

1

�i − E − V
Ttu.

�7�

An analogous expression also holds for R�II�.
In any given order n of perturbation theory, R�I� re-

ceives various contributions. For the evaluation, it is then
convenient to subdivide T, G, E, and V into blocks, corre-
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sponding to the different types of excitations. In Ref. �18�,
we used superscripts 1, 2, etc., enclosed in square brackets,
for denoting the contributions from 1p1h, 2p2h, etc.,
excitations—e.g., Grs

�1,1� for the propagator between 1p1h
states. The evaluation of R�I��1�—i.e., the first-order contribu-

tion to R�I�—using these methods was shown explicitly in
Ref. �18�.

If one is interested in the inelastic propagator in order n
for 1p1h excitations, only one of the various summands
which make up R�I��n� is relevant:

Rpqrstu
�I��n� �� f,�i,�� = Tqp

�1��0�† 1

� f − E�1�Grs
�1,1��n����

1

�i − E�1�Ttu
�1��0� + ¯

=
npn̄q�Grs

+�qp̄,tū��n���� − 
pu
qtGrs
+�0,0��n��� − E�qp̄� + E�0���n̄tnu

�� f + �p − �q + i0+���i − �t + �u + i0+�
+ ¯ . �8�

Here, �p denote the one-particle energies and np are the oc-
cupation numbers of the orbitals, with n̄p=1−np. Grs

+�qp̄,tū� is
the particle component of the inelastic propagator between
excitations which are on the Hartree-Fock level simply the
states with a hole in orbital u and a particle in orbital t or
with a hole in orbital p and a particle in orbital q, respec-
tively.

R�I��n� can be obtained with the help of Feynman and
Goldstone diagrams; for details, see Ref. �18�. We used the
Hamiltonian

H = �
p

�pcp
†cp + �

pq

Wpqcp
†cq −

1

2 �
abcd

Vabcdca
†cb

†cccd, �9�

with the Hartree-Fock one-particle interaction

Wpq = − �
n

Vpn�qn�nn. �10�

The quantities

Vabcd = ��a�1��b�2��V�1,2���c�1��d�2��

denote the matrix elements of the two-particle interaction
with respect to the one-particle states ��a�, and the abbrevia-
tion

Vab�cd� = Vabcd − Vabdc = Vabcd − Vbacd = V�ab�cd

is used for the antisymmetrized matrix elements.
As already argued in Ref. �18�, a Goldstone diagram for

order n which has an internal vertex at a time before ti or
after tf cannot contribute to the term shown in Eq. �8�. Thus,
there is a considerable reduction in the number of time
orderings which have to be considered: only �n+2�! /2
�=1,3 ,12, . . . , compared to �n+4�! /4!=1,4 ,20, . . . in the
original direct approach� Goldstone diagrams are necessary
to evaluate for every Feynman diagram and any given time
ordering of the external vertices. We have then 2 Goldstone
diagrams in zeroth order, 18 in first order, and 432 in second
order.

Expression �8� will be our starting point for constructing a
diagrammatic evaluation scheme for the inelastic propagator
Grs

�qp̄,tū� directly.

B. Closed-shell anion

This case is simpler than the treatment of closed-shell
neutral molecules. Only a four-point, four-times inelastic
Green’s function is necessary in the direct approach:

iRpqrs�tf,t,t�,ti� = − �0−�T̂ �cp
†�tf�cq�t�cr

†�t��cs�ti���0−�

+ �0−�T̂ �cp
†�tf�cs�ti���0−�

	�0−�T̂ �cq�t�cr
†�t����0−� . �11�

The notation is as in the previous section. �0−� denotes the
ground state of the anion here.

As previously, 24 time orderings are possible, which all
depend only on the three time differences � f = tf − t, �= t− t�,
and �i= t�− ti or, alternatively, � f�= tf − t�, �= t− t�, and �i�= t
− ti. The components R�I� and R�II� are defined in the same
way as in the case of the closed-shell neutral molecule. The
spectral representations are then

Rpqrs
�I� �� f,�i,��

= �
M,N

xp
�M�†

� f − �E�M� − E�0−�� + i0+

xs
�N�

�i − �E�N� − E�0−�� + i0+

	�Gqr
+�M,N���� − 
MNGqr

+�0−,0−�
„� − �E�M� − E�0−��…�

�12�

and

Rpqrs
�II� �� f�,�i�,��

= �
M,N

xp
�M�†

� f� − �E�M� − E�0−�� + i0+

xs
�N�

�i� − �E�N� − E�0−�� + i0+

	�Gqr
−�M,N���� − 
MNGqr

−�0−,0−�
„� − �E�M� − E�0−��…� ,

�13�

with the transition amplitudes

xs
�N� = �N�cs�0−� . �14�

The following matrix notation was very helpful for the
diagrammatic evaluation in this case:
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Rpqrs
�I� �� f,�i,�� = Xp

† 1

� f − E − V
Gqr���

1

�i − E − V
Xs,

�15�

and an analogous expression for R�II�. Here, the vectors Xs
contain the transition amplitudes �N�cs�0−� for fixed s. The
matrices Gqr, E, and V are as in the case of the closed-shell
molecule, with the exception that E�0−� has to be used instead
of E�0�. The matrices can be subdivided into blocks again,
this time for the 1h ,2h1p, etc., excitations. We denoted them
in Ref. �18� with superscripts 1, 2, etc., in square brackets.

In the perturbative expansion of this expression, various
terms contribute, coming from the perturbative expansion of
X, V, and G. But if one is interested in the inelastic propa-
gator for 1h excitations, only one term is of relevance:

Rpqrs
�I��n��� f,�i,��

= Xp
�1��0�† 1

� f − E�1�Gqr
�1,1��n����

1

�i − E�1�Xs
�1��0� + ¯

=
np�Gqr

+�p̄,s̄��n���� − 
psGqr
+�0−,0−��n��� − E�p̄� + E�0−���ns

�� f + �p + i0+���i + �s + i0+�

+ ¯ , �16�

where Gqr
+�p̄,s̄� is the particle component of the inelastic propa-

gator between excitations which are on the Hartree-Fock
level simply the states with a hole in orbital p or in orbital s,
respectively.

The same argument as for the closed-shell neutral mol-
ecule applies here: for every given Feynman diagram, only
the �n+2�! /2 Goldstone diagrams for which all internal ver-
tices are between ti and tf contribute. Then we have 1 Gold-
stone diagram in zeroth order, 3 in first order, and 60 in
second order �see �18�; the relevant Feynman rules were also
given there�. Expression �16� can then serve as the starting
point for an evaluation of the inelastic propagator Gqr

�p̄,s̄�.

C. Closed-shell cation

Here we used the following four-point, four-times inelas-
tic Green’s function in our direct approach:

iRpqrs�tf,t,t�,ti� = − �0+�T̂ �cp�tf�cq�t�cr
†�t��cs

†�ti���0+�

+ �0+�T̂ �cp�tf�cs
†�ti���0+��0+�T̂ �cq�t�cr

†�t���

	�0+� . �17�

�0+� is the ground state of the cation here; the other parts of
the notation are as in the preceding sections.

The spectral representations of the two interesting compo-
nents in this case are

Rpqrs
�I� �� f,�i,��

= �
M,N

yp
�M�†

� f − �E�M� − E�0+�� + i0+

ys
�N�

�i − �E�N� − E�0+�� + i0+

	�Gqr
+�M,N���� − 
MNGqr

+�0+,0+�
„� − �E�M� − E�0+��…�

�18�

and

Rpqrs
�II� �� f�,�i�,��

= �
M,N

yp
�M�†

� f� − �E�M� − E�0+�� + i0+

ys
�N�

�i� − �E�N� − E�0+�� + i0+

	�Gqr
−�M,N���� − 
MNGqr

−�0+,0+�
„� − �E�M� − E�0+��…� ,

�19�

with the transition amplitudes

ys
�N� = �N�cs

†�0+� . �20�

The necessary matrix notation is here

Rpqrs
�I� �� f,�i,�� = Yp

† 1

� f − E − V
Gqr���

1

�i − E − V
Ys,

�21�

and an analogous expression for R�II�. For the inelastic propa-
gator for 1p excitations, only

Rpqrs
�I��n��� f,�i,��

= Yp
�1��0�† 1

� f − E�1�Gqr
�1,1��n����

1

�i − E�1�Ys
�1��0� + ¯

=
n̄p�Gqr

+�p,s��n���� − 
psGqr
+�0+,0+��n��� − E�p� + E�0+���n̄s

�� f − �p + i0+���i − �s + i0+�

+ ¯ �22�

has to be considered, leading again to a reduction in the
number of Goldstone diagrams one has to consider for a
given Feynman diagram. Here, Gqr

+�p,s� is the particle
component of the inelastic propagator between excitations
which are on the Hartree-Fock level simply the states with a
particle in orbital p or in orbital s, respectively.

As pointed out in Ref. �18�, the number of diagrams is
here the same as for the case of a closed-shell anion. We will
see in the next section that the diagrammatic method for
obtaining the inelastic propagator is very similar in these two
cases.

III. OBTAINING THE INELASTIC PROPAGATOR
DIRECTLY

A. Closed-shell anion

In contrast to the discussion in Ref. �18�, we present here
the case of a closed-shell anion first, since it is easier to treat
and therefore more transparent than the case of the closed-
shell neutral molecule.

As pointed out in Sec. II B, for calculating the particle
component of the inelastic propagator for 1h excitations it
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suffices to look at the diagrams for R�I� where all internal
vertices are between ti and tf. Unfortunately, even those dia-
grams do not only give contributions of the general structure
shown in Eq. �16� directly. We will see that partial fraction
decompositions of the expressions resulting from the evalu-
ation of these diagrams are necessary in order to extract the
term of the desired structure and, consequently, the inelastic
Green’s function.

Let us start with a simple example. The diagram shown on
the left of Fig. 1 gives a product of the following terms:

np

� f + �p + i0+

n̄anbnq

� f − �a + �b + �q + i0+

	
n̄anb

� − �a + �b + i0+

	
n̄anbnr

�i − �a + �b + �r + i0+

n̄cndnr

�i − �c + �d + �r + i0+

ns

�i + �s + i0+ ,

where the overall sign, permutation factors, and interaction
factors V are omitted for transparency. By performing partial
fraction decompositions in the first and third lines, this prod-
uct can be rewritten to give

np

� f + �p + i0+

n̄anbnq

− �a + �b + �q − �p

	
n̄anb

� − �a + �b + i0+

	
n̄anbnr

− �a + �b + �r − �s

n̄cndnr

− �c + �d + �r − �s

ns

�i + �s + i0+ + ¯ ,

where ellipsis denotes all the irrelevant terms resulting from
the partial fraction decompositions—i.e., terms which are not
of the general structure shown in Eq. �16�.

The rewritten expression differs from the original one
given above in that there are only two denominators left
which contain the energy variables � f and �i and the corre-
sponding single-particle energies �p and �s. By comparison
with Eq. �16�, we can read off this expression the contribu-
tion to the inelastic propagator.

The contribution of this graph for the higher-order
Green’s function R to the particle component of the inelastic
propagator reads then

n̄anbnq

− �a + �b + �q − �p

n̄anb

� − �a + �b + i0+

	
n̄anbnr

− �a + �b + �r − �s

n̄cndnr

− �c + �d + �r − �s
.

The crucial point is now that this result is the same as the one
which would have been obtained by evaluating the right
Goldstone diagram shown in Fig. 1, with the sole exception
that the lines p and s give factors np and ns, respectively,
although they are particle lines in the new diagram.

In other words, the above result can be derived directly by
deforming the diagram for the higher-order Green’s function
shown on the left of Fig. 1 to obtain the new diagram de-
picted on the right-hand side of that figure. That new dia-
gram gives the desired contribution to the inelastic propaga-
tor.

This deformation is achieved by taking the limits tf → t
and ti→ t�—i.e., by moving the uppermost dotted line down-
wards and the lowermost dotted line upwards, dragging the
vertices p and s and the lines connected to them along. No-
tice that the auxiliary lines mentioned in the Feynman rules
�see Ref. �18��, connecting the times �tf , t� and �t� , ti�, vanish
when performing these limits.

It will be proven in the Appendix that this argument can
be generalized: the contribution of a given diagram in the
perturbative expansion of R�I� to the particle component of
the inelastic propagator can be obtained by taking the limits
tf → t and ti→ t�, as described above. This will result in there
being no lines left after the time of the latest and before the
time of the earliest internal vertex of the original diagram.
Additionally, between these times and the time t or t�, re-
spectively, there will now be lines for p and s which go
upwards—i.e., particle lines instead of the previous hole
lines �compare Fig. 1�. Nevertheless, these two particle lines
still have factors np and ns, respectively, associated with
them.

Notice that the diagrams obtained in this way correspond
to the first component �i.e., for which t� t�� of the following
Green’s function:

iRpqrs�t,t�� = − �0−�T̂ �cp
†�t�cq�t�cr

†�t��cs�t����0−�

+ �0−�T̂ �cp
†�t�cs�t����0−��0−�T̂ �cq�t�cr

†�t����0−� ,

�23�

which is obtained from Eq. �11� by performing the limits tf
→ t and ti→ t�. This Green’s function is quite similar to the
polarization propagator �19�, with the only difference that a
different type of disjoint diagrams is subtracted. However,
the rules for evaluating the diagrams corresponding to this
Green’s function are not entirely identical to the usual ones.

Using the standard diagrammatic rules, the first compo-
nent of the Green’s function �23� would give the contribu-
tions to

FIG. 1. Example for the limiting procedure in a diagram for the
four-point, four-times elastic Green’s function for the case of a
closed-shell anion. Left: original diagram. Right: diagram after the
limits were performed.
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�
N,M

xp
�M�†�Gqr

+�M,N���� − 
MNGqr
+�0−,0−�

„� − �E�M� − E�0−��…�xs
�N�.

It is unclear how one would extract from this result the de-
sired inelastic propagator between the simplest excitations.
Even if the transition amplitudes xs

�N� are already known, that
would pose a nontrivial problem. On the other hand, using
the slightly changed diagrammatic rules we present below
�and in more detail in the Appendix�, this inelastic propaga-
tor is directly obtained.

At first sight, only a quite small change is required to the
usual diagrammatic evaluation rules: the lines p and s always
give factors np and ns, respectively, no matter if they run
upwards or downwards. The overall sign of the diagram,
factors V, and permutation factors are determined exactly as
prescribed in the original rules �see Ref. �18� and the Appen-
dix�.

But due to the special rules for occupation number factors
for the p and s lines, there are now cases in which the stan-
dard evaluation rules do not work properly: diagrams
which—before performing the limits—were one-hole-
reducible �1HR� in the parts before t� or after t—i.e., dia-
grams which could be divided into two unconnected parts by
cutting one hole line in these time regions. For example, if
such a hole line appears after the time t and has the label q
�see Fig. 2�, then �among others� the following factors
emerge from the evaluation rules for the cuts:

np

� f + �p + i0+

nq

� f + �q + i0+ .

A partial fraction decomposition of that expression would
result in a contribution to the inelastic propagator containing
the factor

npnq

�q − �p
,

which is the same result as one would obtain by evaluating
the cuts on the right-hand side of Fig. 2. Since p also labels
a hole state, the energies in the denominator can be equal,

and hence a zero denominator can occur. To handle this, one
has to write

np

� f + �p + i0+

nq

� f + �q + i0+

= �
pq + 
̄pq�
np

� f + �p + i0+

nq

� f + �q + i0+ ,

with


̄pq = 1 − 
pq,

and consider the term with p=q separately, employing again
a partial fraction decomposition. �N.B.: We neglect here the
possibility of degeneracies—i.e., �p=�q for p�q; in prin-
ciple, such cases could be handled by methods similar to the
ones presented below.� This is discussed in detail in the Ap-
pendix.

It turns out that the rules to evaluate the diagrams which
contribute directly to the inelastic propagator have to be
amended in the following way:

�i� The result of the evaluation of the part of the diagram
after the time t is a sum of several terms, where the first term
is the result of the usual evaluation of the cuts, with extra

factors 
̄ in the numerator for every term in the denominator
which could be zero.

�ii� Additional terms appear now for every possible com-

bination of the factors 
 and 
̄:
�a� Every such term has an additional sign factor equal

to minus one to the power of the number of factors 
.
�b� Every such term consists of the sum of all fractions

where the energy factors in the denominator corresponding
to the factors 
 in the numerator are omitted. Instead, one has
to consider all possible combinations of the remaining en-
ergy factors, so that the total number of energy factors
�counting every power of a factor separately� stays the same
in every denominator.

Analogous rules apply to the evaluation of the part of the
diagram before the time t�. A proof and a more formal state-
ment of the rules are given in the Appendix.

For example, the usual evaluation of the cuts in the left
diagram shown in Fig. 3 would give

FIG. 2. Example for a diagram for the four-point, four-times
elastic Green’s function for the case of a closed-shell anion which is
one-hole reducible in the part after time t and therefore poses prob-
lems �for details, see text�. Left: original diagram. Right: diagram
after the limits were performed.

FIG. 3. Two examples for diagrams for the inelastic propagator
between 1h excitations which pose problems because they have
1HR parts �for details, see text�.
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npnan̄bncnd

��a − �b + �c − �p���d − �p�

for the part after time t and

nsnf n̄gnhne

�� f − �g + �h − �s���e − �s�

for the part before time t�. Since the factors �d−�p and �e
−�s could be zero, these expressions have to be replaced by

npnan̄bncnd	 
̄dp

��a − �b + �c − �p���d − �p�
−


dp

��a − �b + �c − �p�2

and

nsne nfn̄gnh	 
̄es

�� f − �g + �h − �s���e − �s�
−


es

�� f − �g + �h − �s�2
;

i.e., we have now sums in which the first term is the result of

the direct evaluation of the cuts, amended with a factor 
̄,
and one additional term for the case d= p or e=s, respec-
tively, appears. In that term, the factor �d−�p or �e−�s, re-
spectively, is left out in the denominator. Because the total
number of energy factors has to remain the same, we there-
fore need the second power of the remaining energy factor
�a−�b+�c−�p or � f −�g+�h−�s, respectively. The sign of this
additional term is negative, since one factor 
 appears in it.

The evaluation of the diagram hence results in the contri-
bution

npnan̄bnc	 
̄dp

��a − �b + �c − �p���d − �p�
−


dp

��a − �b + �c − �p�2

	

ndn̄qnen̄r

� + �d − �q + �e − �ri0
+nsnfn̄gnh

		 
̄es

�� f − �g + �h − �s���e − �s�
−


es

�� f − �g + �h − �s�2

to the particle component of the inelastic proagator.

In contrast, no problems arise with the part of the diagram
on the right-hand side of Fig. 3 which belongs to times be-
fore the time t�. It simply gives a factor ns
rs, arising from
the line connecting the vertices r and s. But the evaluation of
the part after time t would give

npnan̄bncndnen̄f ngnh

��a − �b + �c − �p���d − �p���e − � f + �g − �p���h − �p�
.

Both factors �d−�p and �h−�p could become zero. Hence we
have to treat the four cases �p�d , p�h�, �p=d , p�h�, �p
�d , p=h�, and �p=d=h� separately. The first case gives the
same denominator as the naive evaluation, in the second, the
factor �d−�p is left out, in the third, the factor �h−�p, and in
the fourth, both factors. In all four cases, we have then to
consider all possible combinations and powers of the remain-
ing energy factors which leave the total number of energy
factors the same. This results finally in the following contri-
bution to the inelastic propagator:

npnan̄bncndnen̄fngnh	 
̄pd
̄ph

��a − �b + �c − �p���d − �p���e − � f + �g − �p���h − �p�

− 
pd
̄ph� 1

��a − �b + �c − �p�2��e − � f + �g − �p���h − �p�
+

1

��a − �b + �c − �p���e − � f + �g − �p�2��h − �p�

+
1

��a − �b + �c − �p���e − � f + �g − �p���h − �p�2� − 
̄pd
ph� 1

��a − �b + �c − �p�2��d − �p���e − � f + �g − �p�

+
1

��a − �b + �c − �p���q − �p�2��e − � f + �g − �p�
+

1

��a − �b + �c − �p���q − �p���e − � f + �g − �p�2�
+ 
pd
ph� 1

��a − �b + �c − �p�3��e − � f + �g − �p�
+

1

��a − �b + �c − �p�2��e − � f + �g − �p�2

+
1

��a − �b + �c − �p���e − � f + �g − �p�3�
 nhn̄q

� + �h − �q + i0+

nhn̄jnkn̄l

� + �h − � j + �k − �l + i0+

1

� + i0+ns
rs.

Summarizing, the particle component of the inelastic
Green’s function can be evaluated diagrammatically in the
following way.

�1� Draw and evaluate all diagrams for the Green’s func-
tion �23� according to the usual Feynman rules �see, e.g.,

Ref. �18��. The single exception is that the lines with indices
p and s contribute always a factor np or ns, respectively, no
matter if they run upwards or downwards.

�2� If the diagram is one-hole reducible in the parts be-
fore time t or after time t�, replace the results of the corre-
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sponding cuts with sums containing factors 
 and 
̄, as out-
lined above.

The detailed rules for drawing and evaluating the dia-
grams are provided in the Appendix.

Finally, look at the spectral representation for the second
component of the higher-order elastic Green’s function,
given in Eq. �13�. It is obvious that the only difference in the
general structure is that the energy variables � f� and �i� ap-
pear there instead of the usual � f and �i. This corresponds in
the diagrams to a different ordering of the dotted lines: The
second line counting from below corresponds to the time t
and the third to the time t�. For extracting the hole compo-
nent of the inelastic propagator, we can then use arguments
very similar to those employed above for the component R�I�.

We conclude that when one draws the Goldstone dia-
grams for R�II�, performs the limits ti→ t and tf → t�, and then
evaluates the resulting diagrams according to the rules given
above �paying special attention to the reducible diagrams�,
one obtains the contributions to the hole component of the
inelastic propagator. This argument is explained in more de-
tail, and proved, in the Appendix.

B. Closed-shell cation

This case is very similar to the one discussed in the pre-
ceding section. We again look at only the diagrams for R�I�

where all internal vertices are between ti and tf. Here we are
interested in diagrams which give terms of the general struc-
ture shown in Eq. �22�. That is, from a general expression
resulting from the evaluation of a Goldstone diagram, we
have to extract the contribution which has exactly one factor

n̄p

� − �p + i0+

and exactly one factor

n̄s

� − �s + i0+ ,

using partial fraction decompositions.
It turns out that we can get the contributions to the par-

ticle component of the inelastic propagator resulting from
these decompositions by evaluating instead a diagram where
the limits tf → t and ti→ t� were performed, as described pre-
viously. For the evaluation of the resulting diagram, the usual
diagrammatic rules can be used, with the sole exception that
the lines p and s always give factor n̄p and n̄s, respectively,
no matter if they run upwards or downwards.

The resulting diagrams correspond to the first component
of the Green’s function

iRpqrs�t,t�� = − �0+�T̂ �cp�t�cq�t�cr
†�t��cs

†�t����0+�

+ �0+�T̂ �cp�t�cs
†�t����0+��0+�T̂ �cq�t�cr

†�t����0+� ,

�24�

which is obtained from Eq. �17� by performing the limits tf
→ t and ti→ t�. Similar arguments as in the case of the
closed-shell anion apply here also. Especially, note that using

the standard diagrammatic rules, the first component of the
Green’s function �24� would give the contributions to

�
N,M

yp
�M�†�Gqr

+�M,N��� − 
MNGqr
+�0+,0+��„� − �E�M� − E�0+��…�ys

�N�,

for which it is unclear how one could extract the desired
inelastic propagator between the simplest excitations. Again,
by employing the slightly changed diagrammatic rules we
describe here, this inelastic propagator is directly obtained.

Diagrams which are one-particle reducible �1PR� in the
parts before t� or after t—i.e., diagrams which can be divided
into two unconnected parts by cutting one particle line in
these time regions �before the limits were performed�—pose
a problem here. This problem can be dealt with in a way

analogous to the case of the anion: introduce factors 
 and 
̄
and evaluate the different contributions separately. The re-
sulting rules are the same as previously �see Sec. III A�.

Again, the hole component of the inelastic propagator can
be obtained from the component R�II� of the original higher-
order Green’s function, using the same methods. A more for-
mal statement and proof of the diagrammatic rules for evalu-
ating both components of the inelastic propagator for a
closed-shell cation can be found in the Appendix.

C. Closed-shell neutral molecule

Here only diagrams for R�I� which give terms of the gen-
eral structure shown in Eq. �8� are relevant for the inelastic
propagator. Such terms can only come from diagrams which
have internal vertices only at times between ti and tf. From
the results of the evaluations of such diagrams, we have then
to extract the contributions which have exactly one factor

npn̄q

� + �p − �q + i0+

and exactly one factor

n̄tnu

� − �t + �u + i0+ ,

using partial fraction decompositions.
Again, we can get the contributions of these diagrams to

the particle component of the inelastic propagator by per-
forming the limits tf → t and ti→ t�—i.e., moving the upper-
most dotted line downwards and the lowermost dotted line
upwards, carrying the external vertices p, q, t, and u along.
Figure 4 shows three illustrative examples. On the left side,
the original diagrams for R�I� are shown; on the right side the
resulting diagrams after the limits are performed.

The resulting diagrams are evaluated using the usual dia-
grammatic rules, with the exception that the lines p and u
always give occupation number factors np and nu, respec-
tively, and the lines q and t always give factors n̄q and n̄t, no
matter of the direction in which they are running.

These diagrams correspond to the first component of the
Green’s function
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iRpqrstu�t,t�� = − �0�T̂ �cp
†�t�cq�t�cr�t�cs

†�t��ct
†�t��cu�t����0�

+ �0�T̂ �cp
†�t�cq�t�cr�t�cs

†�t����0��0�ct
†�t��cu�t��

	�0� + �0�T̂ �cr�t�cs
†�t��ct

†�t��cu�t����0�

	�0�cp
†�t�cq�t��0� + �0�T̂ �cp

†�t�cq�t�ct
†�t��cu�t���

	�0��0�T̂ �cr�t�cs
†�t����0� − 2�0�cp

†�t�cq�t��0�

	�0�T̂ �cr�t�cs
†�t����0��0�ct

†�t��cu�t���0� , �25�

which results from Eq. �3� when the limits tf → t and ti→ t�
are considered. It is essentially a 2p1h propagator with some
disjoined diagrams subtracted. By applying the usual dia-
grammatic rules, the first component of the Green’s function
�25� would give

�
M�0,N�0

�pq
�0,M��Grs

+�M,N���� − 
MNGrs
+�0,0�

	„� − �E�M� − E�0��…��tu
�N,0�,

which receives various contributions from inelastic propaga-
tors between different types of excitations. In contrast, the
diagrammatic rules which we present here give the inelastic
propagator between the simplest excitations directly.

Here we have problems with three types of reducible dia-
grams: those which are one-particle, one-hole, or one-
particle–one-hole reducible �1P1HR� in the parts before t� or
after t—i.e., diagrams which can be divided into two uncon-
nected parts by cutting one particle line or one hole line or
both in these time regions �before the limits were per-
formed�. For remedying this, we have to introduce appropri-

ate factors 
 and 
̄; here the abbreviations


pq,rs = 
pr
qs

and


̄pq,rs = 1 − 
pq,rs

are useful. A closer analysis reveals that we have the same
rules as previously �see Sec. III A� then.

As an example, consider what one gets by evaluating the
middle diagram on the right side of Fig. 4:

npnan̄bncnrn̄dnen̄fn̄qn̄tnu
su

�− �p + �a − �b + �c��− �p + �r��− �p + �r − �d + �e − � f + �q��− �p + �r − �t + �q�
	

1

� − �t + i0+ .

The second and fourth factors in the denominator of the first fraction could become zero. Hence we have to introduce

appropriate factors 
 and 
̄ and replace this single fraction with a sum over fractions. In these fractions, the energy factors in
the denominators corresponding to the factors 
 in the numerators are left out, and the remaining factors have to be combined
in all possible ways so that the total number of energy factors remains the same. The final result is then

	 
̄rp
̄rt,pq

�− �p + �a − �b + �c��− �p + �r��− �p + �r − �d + �e − � f + �q��− �p + �r − �t + �q�

− 
rp
̄rt,pq� 1

�− �p + �a − �b + �c�2�− �p + �r − �d + �e − � f + �q��− �p + �r − �t + �q�

+
1

�− �p + �a − �b + �c��− �p + �r − �d + �e − � f + �q�2�− �p + �r − �t + �q�

FIG. 4. Three examples for the limiting procedure in diagrams
for the six-point, four-times elastic Green’s function for the case of
a closed-shell neutral molecule. Left: original diagrams. Right: dia-
grams after the limits were performed.
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+
1

�− �p + �a − �b + �c��− �p + �r − �d + �e − � f + �q��− �p + �r − �t + �q�2�
− 
̄rp
rt,pq� 1

�− �p + �a − �b + �c�2�− �p + �r��− �p + �r − �d + �e − � f + �q�

+
1

�− �p + �a − �b + �c��− �p + �r�2�− �p + �r − �d + �e − � f + �q�

+
1

�− �p + �a − �b + �c��− �p + �r��− �p + �r − �d + �e − � f + �q�2� + 
rp
rt,pq� 1

�− �p + �a − �b + �c�3�− �p + �r − �d + �e − � f + �q�

+
1

�− �p + �a − �b + �c�2�− �p + �r − �d + �e − � f + �q�2 +
1

�− �p + �a − �b + �c��− �p + �g − �d + �e − � f + �q�3�

	

npnan̄bncnrn̄dnen̄fn̄qn̄tnu
su

� − �t + i0+ .

In contrast to the ionic cases, it can here happen that there
are no additional energy factors which could replace the left-
out energy factors in the additional summands. In such a
case, the corresponding summand is simply left out. An ex-
ample for this is provided by the diagram shown in the lower
right of Fig. 4, where a naive evaluation would give a con-
tribution to the inelastic propagator containing the fractions

npn̄anbn̄qn̄cnrnsn̄tnu

�− �a + �b + �q − �p��− �c + �r + �q − �p�
1

� − �c + i0+

	
1

− �c + �s + �t − �u
.

The denominators of the first and last fractions could become
zero; hence we have to replace them with sums of fractions

which have appropriate factors 
 and 
̄ in the numerators,
and leave out the corresponding factors in the denominators.
The remaining factors have to be combined in a way so that
the total number of energy factors remains the same. Obvi-
ously, in the cases that in the first fraction both factors are
left out or that in the last fraction the only appearing factor is
left out, nothing is left to compensate for the left-out
factors—and hence no corresponding fractions can appear in
the sums. The final result is thus

� 
̄ab,qp
̄cr,qp

�− �a + �b + �q − �p��− �c + �r + �q − �p�

−

ab,qp
̄cr,qp

�− �c + �r + �q − �p�2 −

̄ab,qp
cr,qp

�− �a + �b + �q − �p�2�
	

1

� − �c + i0+ 	
npn̄anbn̄qn̄cnrnsn̄tnu
̄cs,tu

− �c + �s + �t − �u
.

Like for the ionic cases, the method works also for ob-
taining the hole component of the inelastic propagator from
the component R�II� of the original higher-order Green’s
function. The Appendix contains also for this case of a neu-

tral closed-shell molecule a more formal statement of the
Feynman rules for constructing and evaluating the diagrams
for both components of the inelastic propagator and a proof.

D. Higher excitations

In principle, the methods presented here could also be
used to obtain the inelastic propagator between higher ex-
cited states. The general construction method would be as
follows:

�1� Construct an appropriate higher-order elastic Green’s
function, which contains creation and annihilation operators
at the times t� and t which create and destroy, respectively,
the desired type of excitation, and additionally a creation
operator at time t� and an annihilation operator at time t. This
Green’s function results from one where the excitations are
created at time ti and destroyed at time tf by performing the
limits ti→ t� and tf → t.

�2� For obtaining the contribution of order n to the par-
ticle component of the natural inelastic propagator between
these excitations, draw all Goldstone diagrams for the first
component of this Green’s function.

�3� Evaluate these diagrams with the usual Feynman
rules for obtaining permutation factors, factors V for the ver-
tices, factors 
 for the free Green’s function lines, energy
denominators, and occupation number factors. The lines cor-
responding to the excitations always give occupation number
factors corresponding to the type of excitation which is cre-
ated or destroyed; i.e., lines corresponding to a hole created
at time t� or destroyed at time t always give a factor n, and
lines corresponding to a particle always give a factor n̄, irre-
spective of the actual directions of these lines.

�4� Pay special attention to diagrams which would have
been reducible before taking the limits—i.e., diagrams which
give energy denominators which could become zero. Handle

these by introducing appropriate factors 
 and 
̄, and replac-
ing the result of the naive evaluations with sums over frac-
tions with the problematic energy factors left out and re-
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placed by combinations of the other energy factors, as
outlined in the preceding sections.

The hole component of the inelastic propagator can be
obtained using analogous rules.

For example, if one wants to have the particle component
of the inelastic propagator between 1h and 2h1p excitations
of an ion, one has to employ the six-point, four-times elastic
Green’s function defined by

iRpqrstu�t,t��

= − �0−�T̂ �cp
†�t�cq�t�cr

†�t��cs�t��ct
†�t��cu�t����0−�

+ �0−�T̂ �cp
†�t�cs�t��ct

†�t��cu�t����0−��0−�T̂ �cq�t�cr
†�t���

	�0−� ,

where the operators cs, ct
†, and cu create a 2h1p excitation at

time t� and the operator cp
† destroys a 1h excitation at time t.

The particle component of the inelastic propagators can
then be obtained by drawing all Goldstone diagrams with t
� t� and obtaining permutation factors, vertex factors, factors

, occupation numbers, and energy denominators for these
diagrams according to the usual Feynman rules. The lines p,
s, and u give here always factors np, ns, and nu, respectively,
whereas the line t always gives a factor n̄t, irrespective of the
directions of these lines.

Special attention has to be paid to diagrams where the part
after time t is 1HR or where the part before time t� is reduc-
ible �1PR, 1HR, 1P1HR, 2HR, or 2H1PR�. One has to intro-

duce factors 
pp� and 
̄pp�, 
tt� and 
̄tt�, 
ss� and 
̄ss�, etc., or


stu,s�t�u� and 
̄stu,s�t�u�, then, and replace the results of the
naive evaluation with sums over fractions with all different

combinations of the 
 and 
̄. For every combination, one has
to use a sum over fractions where the energy factors corre-
sponding to the factors 
 are left out, and all possible com-
binations of the remaining energy factors appear which leave
the total number of energy factors constant.

As a specific example, consider the graph shown on the
right side of Fig. 5, which results after the limits were per-
formed in the graph shown on the left side. A naive evalua-
tion of the cuts would give here

npn̄q

� + �p − �q + i0+

	
nsnrnun̄tn̄a

�− �s + �p − �q + �r − �u + �t��− �a + �r − �u + �t�
.

The two factors in the second fraction could become zero:
the first factor for s= p, q= t, u=r or s=r, q= t, u= p, the
second factor for u=r, t=a. Hence this fraction has to be
replaced by a sum of fractions, involving appropriate factors


stu,pqr, 
̄stu,pqr, 
ut,ra, and 
̄ut,ra, where in the denominators
the corresponding energy factor is replaced by all possible
combinations of the remaining factors. Note that in the case
where both factors are left out, there are no remaining factors
to compensate, and hence the corresponding summand sim-
ply does not appear—just as described in the case of the
simple excitations for the neutral closed-shell molecule in
Sec. III C.

IV. SUMMARY AND DISCUSSION

We have developed a method for obtaining the natural
inelastic propagator directly by evaluation of diagrams. Our
method is based on the “direct approach” presented in Ref.
�18�. There, it was shown how one can obtain the inelastic
propagator from the spectral representation of a higher-order
elastic Green’s function. The methods we presented there
were plagued by the problem that one had to extract the
desired inelastic propagator from the results of a diagram-
matic evaluation of the higher Green’s function.

In this work, we demonstrated how it is possible to obtain
the inelastic propagator for the simplest excitations �i.e., 1h,
1p, or 1p1h excitations, for the case of a closed-shell anion,
cation, or neutral target molecule, respectively� directly with
diagrammatic methods, without having to evaluate the higher
Green’s function explicitly. This was achieved by consider-
ing that only a certain class of terms from the evaluation of
the higher Green’s function actually gives contributions to
the inelastic propagator and analyzing how the propagator
can be obtained from these terms by doing partial fraction
decompositions. It was then shown how the results of these
partial fraction decompositions can be obtained directly by
slightly changing the usual Feynman rules for the construc-
tion and evaluation of the diagrams.

At first it might look like a drawback that the method
presented here gives the inelastic propagator for the simplest
excitations only, whereas the original direct approach yielded
also the propagator for higher excitations. But we showed in
Sec. III D how this can be remedied: define higher-order
elastic Green’s functions for the desired type of excitations,
and evaluate these with methods analogous to the ones we
presented for the simple excitations.

Consider further that the new approach has a distinct ad-
vantage compared to the previously presented direct ap-
proach: diagrams corresponding to order n of perturbation
theory �i.e., containing n vertices� directly give the contribu-
tions of order n to the desired inelastic propagator, whereas
in the direct approach, only lower orders were obtained for
propagators between higher excitations �e.g., the diagrams of

FIG. 5. Example for the limiting procedure in a diagram for the
six-point, four-times elastic Green’s function for the case of a
closed-shell anion. Left: original diagram. Right: diagram after the
limits were performed.
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first order for the six-point, four-times elastic Green’s func-
tion gave only the zeroth-order contributions to the inelastic
propagator between 1p1h and 2p2h excitations; see Ref.
�18��.

Note that in principle the methods we developed here
could also be used in the “Dyson approach” we presented in
Ref. �18�. That approach employs the evaluation of higher-
order elastic Green’s functions from whose spectral represen-
tation the generalized densities can be obtained. Using
Dyson-like equations, it is then possible to calculate the in-
elastic propagator from these densities.

As in the direct approach, the Dyson approach was also
plagued by the problem of extracting the desired expressions,
here the generalized densities, out of the results of the dia-
grammatic evaluation of the higher-order Green’s function.
The methods discussed here could be used to facilitate that
extraction: by a diagrammatic evaluation method analogous
to that used for the direct approach, involving a limiting
procedure, one would obtain the generalized densities di-
rectly.

The number of Goldstone diagrams per Feynman diagram
one has to consider then in order n of perturbation theory is
only n+1 �compared to �n+3�! /3! in the original Dyson ap-
proach�; i.e., one achieves a significant reduction in the num-
ber of diagrams. On the other hand, one obtains only the
generalized densities for the simplest excitations with this
method �i.e., 1h, 1p, or 1p1h excitations, respectively�. This
could be remedied by a generalization of the method along
the lines discussed for the direct approach in Sec. III D.

As already mentioned in Ref. �18�, the Dyson approach is
especially useful for treating the scattering of projectiles
which are distinguishable from the particles of the target
�e.g., positron-molecule scattering�, since in these cases the
self-energy, which is an optical potential for the scattering,
can already be calculated when only the densities are known
�15�. In contrast, when the projectile is indistinguishable
from the particles of the target, the full inelastic Green’s
function is needed in order to calculate the optical potential.
Then, a problem which was already discussed in Ref. �18�
arises: for evaluating the Dyson-like equations, not only the
generalized densities for the excitations of interest are
needed, but also higher excitations. Hence in that case, the
Dyson approach generally requires a considerable amount of
additional work, compared to the direct approach.

Finally, note that having a diagrammatic evaluation
scheme available which gives the inelastic propagator di-
rectly is a step forward, but still not sufficient compared to
the methods available for the elastic one-particle propagator
or the polarization propagator. For the latter ones, approxi-
mation schemes like the random-phase approximation �20�,
the outer-valence Green’s function method �21�, or the par-
tial third-order approximation �22� had been proposed which
not only make use of a perturbative diagrammatic evaluation,
but also take some higher-order contributions into account.
The algebraic diagrammatic construction scheme �23–25� is
a successful attempt to do such partial resummations in a
systematic way. It would be very desirable to extend this
scheme also to the inelastic propagator.

APPENDIX: DIAGRAMMATIC RULES FOR THE
INELASTIC PROPAGATOR AND THEIR PROOF

1. Preliminaries

We will show and prove now how one can get from the
Feynman rules for the first and second components R�I� and
R�II� of the four-point, four-times elastic Green’s function for
a closed-shell anion to rules with which one can directly
construct and evaluate diagrams for the natural inelastic
propagator G�p̄,s̄�.

A general Goldstone diagram for R�I��� f ,�i ,�� where tf is
after and ti is before all internal vertices will give a sum
�over internal particle indices� of terms which can be written
as

f�� f� 	 g��� 	 h��i� ,

where the function g��� contains all the factors 
, n, n̄, V and
all denominators containing �, and the functions f�� f� and
h��i� are only products of fractions with numerator 1 and
denominators containing � f or �i, respectively. Denomina-
tors with combinations of the �’s or without an � can not
result due to the restrictions imposed on the possible time
orderings.

For obtaining G+�p̄,s̄�, we need to extract from this the
contributions which look like

1

� f + �p + i0+ g̃���
1

�i + �s + i0+ .

Hence we have to extract the contribution with only one
factor

1

� f + �p + i0+

�and no other � f denominators� from f�� f� and the contribu-
tion with only one factor

1

�i + �s + i0+

�and no other �i denominators� from h��i�. We will show
explicitly how to do the first extraction; the second works
completely analogously.

The evaluation of the cuts for a diagram for R�I� gives for
f�� f� always an expression which can be written as

1

� f + �p + i0+

j=1

J
1

� f + �qj
+ i0+ 


m=1

M
1

� f + Em + i0+ , �A1�

where the Em are sums of particle and hole energies �not
simply one hole energy�. The first term comes from a cut
through the part of the diagram between the latest internal
vertex and the time tf, the other terms come from cuts be-
tween vertices at times between t and the latest internal ver-
tex. For obtaining the contribution which has only one factor

1

� f + �p + i0+

and no other � f denominators, one has to perform partial
fraction decompositions of this expression. One encounters
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then the problem that the qj can be equal to p, which would
lead to zero denominators.

Hence we first write for the 1 in the numerators of the
fractions with only the hole energies qj in the denominators,

1 = 
pqj
+ 
̄pqj

,

and introduce the notation NJ for the set �1,2 , . . . ,N�. As
usual, the number of elements in set A is denoted with #A
and the power set of the set NJ with P�NJ�. Then Eq. �A1�
can be written as

�
A�P�NJ�



j�A


pqj

�� f + �p + i0+�#A+1 

j�NJ\A


̄pqj

� f + �qj
+ i0+

	

m=1

M
1

� f + Em + i0+ . �A2�

If we now further introduce the abbreviations Ẽk=Ek for

all 1
k
M and ẼM+k=�qjk
with jk�NJ \A for all 1
k
J

− #A , j1
 j2
 ¯ 
 jJ−#A, this can be rewritten as

�
A�P�NJ�


 j�A

pqj

�� f + �p + i0+�#A+1 

j�NJ\A


̄pqj 

k=1

M+J−#A
1

� f + Ẽk + i0+
.

�A3�

Since we only want to have terms with a single factor

1

� f + �p + i0+ ,

we now have to do partial fraction decompositions for each
of the summands in Eq. �A3�.

For this, we first have to introduce some further math-
ematical terms. A partition of a non-negative integer N is by
definition a set of positive integers whose sum gives N �26�.
We call a K-tuple for which the sum of the elements gives N
an ordered partition with K elements of N. The set of all
ordered partitions with K elements of the integer N+K−1
will be denoted by P�N ,K�, and for p� P�N ,K� , pj means
the element number j of the K-tuple p.

We now claim that if Ẽk��p for all k, then for N ,K�1

1

�� f + �p + i0+�N

k=1

K
1

� f + Ẽk + i0+

=
�− 1�N+1

� f + �p + i0+ �
p�P�N,K�



k=1

K
1

�Ẽk − �p�pk

+ �other terms�

�A4�

holds, where “other terms” refers to summands in which

1

�� f + �p + i0+� j ,

with j�1, appears, but no other � f denominators. Formula
�A4� can be proven by induction for N and K �27�.

Now we can use this formula to evaluate the summands in
Eq. �A3� further, since each of them is of the form given on
the left-hand side of Eq. �A4�. This yields

1

� f + �p + i0+

j=1

J
1

� f + �qj
+ i0+ 


m=1

M
1

� f + Em + i0+

= �
A�P�NJ�

�− 1�#A
 j�A

pqj

� f + �p + i0+ 

j�NJ\A


̄pqj �
p�P�#A+1,M+J−#A�

	 

k=1

M+J−#A
1

�Ẽk − �p�pk

+ �other terms� .

Thus a diagram for R�I� for which the cuts give a factor

f�� f� =
1

� f + �p + i0+

j=1

J
1

� f + �qj
+ i0+ 


m=1

M
1

� f + Em + i0+

gives a contribution to G+�p̄,s̄� containing the factor

�
A�P�NJ�

�− 1�#A

j�A


pqj 

j�NJ\A


̄pqj �
p�P�#A+1,M+J−#A�

	 

k=1

M+J−#A
1

�Ẽk − �p�pk

. �A5�

On the other hand, first taking the limit tf → t in the diagram
as described previously and then evaluating the cuts for the
resulting diagrams would have yielded a factor



j=1

J
1

�qj
− �p



m=1

M
1

Em − �p
. �A6�

The variable � f does not appear anymore in any of the frac-
tions since due to the limit tf → t, the auxiliary line corre-
sponding to that variable has shrunk to zero. The hole line p
was dragged down when taking the limit, becoming a par-
ticle line, and hence in all denominators, we now have the
term −�p, and the fraction

1

� f + �p + i0+

has vanished completely.
We have shown now that instead of the simple expression

�A6� for the factor resulting from the cuts after the time t, the
more complicated one shown above in Eq. �A5� has to be
used. An analogous line of reasoning can be applied to the
terms with �i, which result from the cuts before the time t�.

On the other hand, as already pointed out in Sec. III A,
the result Eq. �A6� can be obtained by evaluating the dia-
grams for the first component of the Green’s function

iRpqrs�t,t�� = − �0−�T̂ �cp
†�t�cq�t�cr

†�t��cs�t����0−� �A7�

+ �0−�T̂ �cp
†�t�cs�t����0−��0−�T̂ �cq�t�cr

†�t���

	�0−� , �A8�

with the usual Feynman rules. The only exception is that the
lines p and s always get a factor np and ns, regardless of their
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directions. Hence we can get the inelastic propagator by first
evaluating the diagrams for this Green’s function, leading to
expressions like Eq. �A6�, and then replacing these with ex-
pressions like Eq. �A5�. This realization led to the Feynman
rules for the inelastic propagator we will present in the next
section.

An analogous line of reasoning can be used for obtaining
the hole component of the inelastic Green’s function.

2. Formal statement of the Feynman rules for the case
of a closed-shell anion

Collecting everything discussed in the previous sections
together, we can formulate the following Feynman rules for
the evaluation of the Goldstone diagrams for the natural in-
elastic propagator in order n.

�1� Draw all topologically distinct connected diagrams
with n interaction �wavy� lines and 2n+2 directed free
Green’s function �solid� lines. If the particle component of
the inelastic propagator is desired, both at the times t and t�,
one line has to start and one line has to end. If the hole
component is desired, consider the diagrams where two of
the lines start at time t� and two of the lines end at time t.

�2� Skip all disjoint graphs.
�3� Employ the Abrikosov notation—i.e., replace the

wavy interaction lines by interaction points representing the
antisymmetrized matrix elements Vab�cd�. Multiply each
graph by 2−P, where P is the number of permutations of two
free Green’s function lines leaving the graph topologically
unchanged.

�4� For a given nth order Feynman diagram, draw all �n
+2�! /2! time-ordered diagrams which result from permuting
the ordering of the times t , t� , t1 , . . . , tn. For the particle com-
ponent, consider only diagrams with t� t�, for the hole com-
ponent, only diagrams with t�� t. Introduce an auxiliary line
going from t to t�.

�5� Label the graphs with one-particle indices. One of the
lines starting at t� gets the label r, one of the lines ending at
t gets the label q. In the case of the particle component, the
line ending at t� gets the label s, the line starting at t is p. In
the case of the hole component, the other line starting at time
t� gets the labels p, the other line ending at time t the label s.
Every directed free Green’s function line contributes a factor

. Every particle line gives a factor n̄, every hole line gives a
factor n. The sole exceptions are the lines p and s, which
always give a factor np or ns, respectively. Sum over all
internal indices.

�6� The sign for the graphs is �−1�L+M, where L is the
number of loops and M the number of hole lines. The lines p
and s are always counted as hole lines, irrespective of their
actual directions. An additional factor of −1 arises if t is
connected to t� �look at the Feynman graphs contained in the
Abrikosov graph in order to determine this�.

�7� Each cut �a horizontal line� between two successive
vertices �including the external vertices� introduces a de-
nominator of the type

�� + �k + �l + ¯ − �i − � j − ¯ + i0+.

Here each cut line gives a contribution: hole lines k , l , . . .
contribute the one-particle energies �k ,�l , . . .; particle lines

i , j , . . . contribute the negative energies −�i ,−� j , . . . . The en-
ergy variable � is introduced if the auxiliary line is cut and
has positive ��= +1� or negative sign ��=−1� according to
the downward or upward direction of the auxiliary line. If the
auxiliary line is not cut, then � does not appear in the de-
nominator; i.e., a constant denominator results, in which the
imaginary infinitesimal i0+ can be omitted.

�8� The resulting expression can always be written as a
sum �over internal particle indices� over terms of the form



j=1

J
1

�qj
− �p



m=1

M
1

Em − �p
g���


j=1

J�
1

�rj
− �s



m=1

M�
1

Em� − �s

,

with a factor g��� which contains all the factors 
 ,n , n̄ ,V
and all denominators containing �. The factors before and
after g��� have then to be replaced, taking into account that
the denominators with qj or rj could be zero, resulting in the
final expression

�
A�P�NJ�

�− 1�#A

j�A


pqj 

j�NJ\A


̄pqj �
p�P�#A+1,M+J−#A�

	 

k=1

M+J−#A
1

�Ẽk − �p�pk

g��� �
A�P�NJ��

�− 1�#A

j�A


srj

	 

j�NJ�\A


̄srj �
p�P�#A+1,M�+J�−#A�



k=1

M�+J�−#A
1

�Ẽk� − �s�pk

,

where

�a� Ẽk=Ek for all 1
k
M and ẼM+k=�qjk
with jk

�NJ \A for all 1
k
J− #A, j1
 j2
 ¯ 
 jJ−#A,

�b� Ẽk�=Ek� for all 1
k
M� and ẼM�+k
� =�rjk

with jk

�NJ� \A for all 1
k
J�− #A , j1
 j2
 ¯ 
 jJ�−#A.
The rather obscure mathematical expression in rule �8� is

identical to what was stated already previously in Sec. III A:
The results for the factors beside g��� are both sums of terms

in which all possible combinations of the 
 and 
̄ appear.
Every such term is again a sum over fractions with 1 in the
numerators. In the denominators, the energy factors corre-
sponding to the factors 
 are left out and replaced by all
possible combinations of the remaining energy factors, so
that the total number of energy factors �counting every
power separately� stays the same.

The results obtained by drawing and evaluating the Feyn-
man graphs as outlined above are the contributions in order n
to

Gqr
�p̄,s̄���� − 
psGqr

�0−,0−��� − E�p̄� + E�0−�� .

On the other hand, if one also includes the disjoint diagrams,
the results will be the contributions in order n to the quantity

Gqr
�p̄,s̄����

alone.
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3. Formal statement of the Feynman rules for the case
of a closed-shell cation

This case is very similar to the anionic case discussed in
the preceding sections. Instead of Eq. �A1�, we now have the
general expression

1

� f − �p + i0+

j=1

J
1

� f − �qj
+ i0+ 


m=1

M
1

� f + Em + i0+ , �A9�

for the term f�� f�, where the Em are sums of particle and
hole energies �not simply one particle energy�. Then one in-

troduces factors 
pqj
and 
̄pqj

and abbreviations Ẽk

analogously to the preceding sections. This results in

�
A�P�NJ�



j�A


pqj

�� f − �p + i0+�#A+1 

j�NJ\A


̄pqj 

k=1

M+J−#A
1

� f + Ẽk + i0+
.

�A10�

By using the formula

1

�� f − �p + i0+�N

k=1

K
1

� f + Ẽk + i0+

=
�− 1�N+1

� f − �p + i0+ �
p�P�N,K�



k=1

K
1

�Ẽk + �p�pk

+ �other terms� ,

�A11�

which is exactly analogous to Eq. �A4�, one can then extract
the desired terms with only one factor

1

� f − �p + i0+

and no other � f denominators. Again, for the factor g��i� the
argument works exactly analogous. Similarly to the preced-
ing case, it can also be shown that one can get in the same
way the hole component of the inelastic propagator from the
component R�II� of the higher-order elastic Green’s function.

The Green’s functions we have to use here are

iRpqrs�t,t�� = − �0+�T̂ �cp�t�cq�t�cr
†�t��cs

†�t����0+�

+ �0+�T̂ �cp�t�cs
†�t����0+��0+�T̂ �cq�t�cr

†�t����0+� ,

�A12�

if we consider the particle component, or

iRpqrs�t,t�� = − �0+�T̂ �cp�t�cq�t�cr
†�t��cs

†�t����0+�

+ �0+�T̂ �cp�t�cs
†�t����0+��0+�T̂ �cq�t�cr

†�t����0+� ,

�A13�

if we look at the hole component. These result from the first
and second components of the four-times, four-point Green’s
function �17� by taking the appropriate limits.

Hence the Feynman rules for the cationic case can be
formulated. They are very similar to those formulated for the
anionic case �see Appendix subsec. 2�. What has to be
changed are the rules �1�, �5�, �6�, and �8�, which read now as
follows.

�1�� Draw all topologically distinct connected diagrams
with n interaction �wavy� lines and 2n+2 directed free
Green’s function �solid� lines. If the particle component of
the inelastic propagator is desired, consider the diagrams
where two of the lines starts at time t� and two of the lines
end at time t. If the hole component is desired, both at the
times t and t�, one line has to start and one line has to end.

�5�� Label the graphs with one particle indices. One of
the lines starting at t� gets the label r, one of the lines ending
at t gets the label q. In the case of the particle component, the
other line starting at time t� gets the labels s, the other line
ending at time t the label p. In the case of the hole compo-
nent, the line ending at t� gets the label p, the line starting at
t is s. Every directed free Green’s function line contributes a
factor 
. Every particle line gives a factor n̄, every hole line
gives a factor n. The sole exceptions are the lines p and s,
which always give a factor n̄p or n̄s, respectively. Sum over
all internal indices.

�6�� The sign for those graphs is �−1�L+M, where L is the
number of loops and M the number of hole lines. The lines p
and s are always counted as particle lines, irrespective of
their actual directions. An additional factor of −1 arises if t is
not connected to t� �look at the Feynman graphs contained in
the Abrikosov graph in order to determine this�.

�8�� The resulting expression can always be written as a
sum �over internal particle indices� over terms of the form



j=1

J
1

− �qj
+ �p



m=1

M
1

Em + �p
g���


j=1

J�
1

− �rj
+ �s



m=1

M�
1

Em� + �s

,

with a factor g��� which contains all the factors 
 ,n , n̄ ,V
and all denominators containing �. The factors before and
after g��� have then to be replaced, taking into account that
the denominators with qj or rj could be zero, resulting in the
final expression

�
A�P�NJ�

�− 1�#A

j�A


pqj 

j�NJ\A


̄pqj �
p�P�#A+1,M+J−#A�

	 

k=1

M+J−#A
1

�Ẽk + �p�pk

g��� �
A�P�NJ��

�− 1�#A

j�A


srj

	 

j�NJ�\A


̄srj �
p�P�#A+1,M�+J�−#A�



k=1

M�+J�−#A
1

�Ẽk� + �s�pk

,

where

�a� Ẽk=Ek for all 1
k
M and ẼM+k=−�qjk
with jk

�NJ \A for all 1
k
J− #A , j1
 j2
 ¯ 
 jJ−#A,

�b� Ẽk�=Ek� for all 1
k
M� and ẼM�+k
� =−�rjk

with jk

�NJ� \A for all 1
k
J�− #A , j1
 j2
 ¯ 
 jJ�−#A.
The results of the evaluation procedure described above

provide the contributions in order n to
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Gqr
�p,s���� − 
psGqr

�0+,0+��� − E�p� + E�0+�� .

On the other hand, if one also includes the disjoint diagrams,
the results will be the contributions in order n to the quantity

Gqr
�p,s����

alone.

4. Formal statement of the Feynman rules for the case of a
closed-shell neutral molecule

Here we encounter some additional difficulties compared
to the cases discussed above in �2� and �3�. In the term f�� f�,
we now have not only factors

1

� f + �p − �q + i0+

and

1

� f + �pj
− �qj

+ i0+

and the product



m=1

M
1

� f + Em + i0+ ,

where the Em are sums of particle and hole energies �not
simply one particle energy plus one hole energy�, but in gen-
eral also factors

1

� f + �p − �qj
+ i0+

and

1

� f + �pj
− �q + i0+ .

Also, it can happen here that M =0. Evaluating the diagrams
resulting after the limits are performed, we would then have
in the denominators only energy factors which can be zero;
i.e., none of them would be always different from zero.

Fortunately, none of these problems is of a mathematical
nature—all of them merely pose some additional problems to
our notations. For factors which could be zero, we can again

introduce 
’s and 
̄’s, and all energy factors can again be

collected into the collective notation Ẽk. We just have to pay
attention to using the appropriate factors: 
ppj

, 
qqj
, or


pq,pjqk
.

The Green’s functions which have to be considered here
are

iRpqrstu�t,t�� = − �0�T̂ �cp
†�t�cq�t�cr�t�cs

†�t��ct
†�t��cu�t����0�

+ �0�T̂ �cp
†�t�cq�t�cr�t�cs

†�t����0��0�ct
†�t��cu�t��

	�0� + �0�T̂ �cr�t�cs
†�t��ct

†�t��cu�t����0�

	�0�cp
†�t�cq�t��0� + �0�T̂ �cp

†�t�cq�t�ct
†�t��cu�t���

	0��0�T̂�cr�t�cs
†�t����0�

− 2�0�cp
†�t�cq�t��0��0�T̂ �cr�t�cs

†�t����0�

	�0�ct
†�t��cu�t���0� , �A14�

for the particle component, and

iRpqrstu�t,t�� = − �0�T̂ �cp
†�t��cq�t��cs

†�t��cr�t�ct
†�t�cu�t���0�

+ �0�T̂ �cp
†�t��cq�t��cs

†�t��cr�t���0��0�ct
†�t�cu�t�

	�0� + �0�T̂ �cs
†�t��cr�t�ct

†�t�cu�t���0�

	�0�cp
†�t��cq�t���0�

+ �0�T̂ �cp
†�t��cq�t��ct

†�t�cu�t���0�

	�0�T̂�cs
†�t��cr�t���0�

− 2�0�cp
†�t��cq�t���0��0�T̂ �cs

†�t��cr�t���0�

	�0�ct
†�t�cu�t��0� , �A15�

for the hole component, resulting from taking the appropriate
limits of first and second components of the original four-
times, six-point Green’s function �3�.

This enables us to formulate the Feynman rules for the
case of a neutral closed-shell molecule. Most rules are iden-
tical to those formulated for the cases of the closed-shell ions
�see subsecs. 2 and 3, above�. Rules �1�, �5�, �6�, and �8� have
to be changed to the following.

�1�� Draw all topologically distinct connected diagrams
with n interaction �wavy� lines and 2n+3 directed free
Green’s function �solid� lines, with two lines starting at time
t�, one line ending at t�, one line starting at t and two lines
ending at t.

�5�� Label the graphs with one-particle indices. One of
the lines starting at t� gets the label s, one of the lines ending
at t gets the label r. In the case of the particle component, the
other line starting at time t� gets the labels t, the other line
ending at time t the label q, the line ending at t� is u, and the
line starting at t is p. In the case of the hole component, the
other line starting at t� gets the label p, the other line ending
at t is u, the line ending at t� is q, and the line starting at t is
t. Every directed free Green’s function line contributes a fac-
tor 
. Every particle line gives a factor n̄, every hole line
gives a factor n. The sole exceptions are the lines p, q, t, and
u, which always give a factor np, n̄q, n̄t, or nu, respectively.
Sum over all internal indices.

�6�� The sign for those graphs is �−1�L+M, where L is the
number of loops and M the number of hole lines. The lines p
and u are always counted as hole lines, the lines q and t
always as particle lines, irrespective of their actual direc-
tions. An additional factor of −1 arises for the connections

p to u, q to t, r to s,
p to r, q to s, t to u,
t to r, u to s, p to q

�look at the Feynman graphs contained in the Abrikosov
graph in order to determine this�.

�8�� The resulting expression can always be written as a
sum �over internal particle indices� over terms of the form
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j=1

J
1

�pj
− �p



k=1

K
1

− �qk
+ �q



l=1

L
1

�pl
− �ql

− �p + �q


m=1

M
1

Em + �p

	 g��� 	 

j=1

J�
1

− �tj
+ �t



k=1

K�
1

�uk
− �u

	

l=1

L�
1

− �tl
+ �ul

+ �t − �u


m=1

M�
1

Em� + �s

,

with a factor g��� which contains all the factors 
 ,n , n̄ ,V
and all denominators containing �. The factors and after
g��� have then to be replaced, taking into account that the
denominators without Em or Em� could be zero, resulting in
the final expression

�
A�P�NJ�
B�P�NK�
C�P�NL�

�− 1�#ABC 

j�A

k�B

l�C


ppj

qqk


pq,plql 

j�NJ\A

k�NK\B

l�NL\C


̄ppj

̄qqk


̄pq,plql

	 �
p�P�#ABC+1,M+N−#ABC�



k=1

M+N−#ABC
1

�Ẽk − �p + �q�pk

g���

	 �
A��P�NJ��

B��P�NK��

C��P�NL��

�− 1�#ABC� 

j�A�

k�B�

l�C�


ttj

uuk


tu,tlul

	 

j�NJ�\A�

k�NK�\B�

l�NL�\C�


̄ttj

̄uuk


̄tu,tlul

	 �
p�P�#ABC�+1,M�+N�−#ABC��



k=1

M�+N�−#ABC�
1

�Ẽk� + �t − �u�pk

,

where
�a� #ABC= #A+ #B+ #C; #ABC�= #A�+ #B�+ #C�,
�b� N=J+K+L; N�=J�+K�+L�,

�c� Ẽk=Ek for all 1
k
M; ẼM+k=�pjk
with jk�NJ \A for

all 1
k
J− #A , j1
 j2
 ¯ 
 jJ−#A ; ẼM+J−#A+k=�pjk
with

jk�NK \B for all 1
k
K− #B, j1
2
 ¯ 
 jK−#B;

ẼM+J−#A+K−#B+k=�pjk
with jk�NL \C for all 1
k
L− #C,

j1
2
 ¯ 
 jL−#C,

�d� Ẽk�=Ek� for all 1
k
M�; ẼM�+k
� =�pjk

with jk

�NJ� \A� for all 1
k
J�− #A�, j1
 j2
 ¯ jJ�−#A�;

ẼM�+J�−#A�+k
� =�pjk

with jk�NK� \B� for all 1
k
K�− #B�,

j1
2
 ¯ 
 jK�−#B�; ẼM�+J�−#A�+K�−#B�+k
� =�pjk

with jk

�NL� \C� for all 1
k
L�− #C�, j1
2
 ¯ 
 jL�−#C�.
The meaning of the rather obscure expressions in rule �8�

is simple: the result of the evaluation gives a factor g��� for
the part of the diagram between the time t and t� and two
sums for the parts outside it. The first term in each sum is the
result of the naive evaluation of the cuts. It has to be

amended with factors 
̄ for every energy factor in the de-
nominator which could become zero. For every other pos-

sible combination of factors 
 and 
̄, additional summands
appear, which are themselves sums over fractions. These
fractions contain every possible combination of energy fac-
tors with the factors corresponding to the factor 
 in the
numerators left out, so that the total number of energy factor
�counting every power separately� remains the same.

In the special case that M =0, all energy factors appearing
in the denominator can be zero. Hence no summand can
appear in which all factors which could be zero are left out,
because no factors would be left then in the denominator at
all. The formula automatically gives this result, since the
case where all factors are left out corresponds to #ABC=N,
and then we would have to sum over all partitions in P�N
+1,0�. But obviously, no such partitions exist.

The results of the above described evaluation provide the
contributions in order n to

Grs
�qp̄,tū���� − 
pu
qtGrs

�0,0��� − E�p̄q� + E�0�� .

On the other hand, by also including some of the disjoint
diagrams �for details, see Ref. �18��, the results will be the
contributions in order n to the quantity

Grs
�qp̄,tū����

alone.
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