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We present here triple differential cross sections for ionization of hydrogen atoms by electron impact at 1,
0.5, and 0.3 eV energy above threshold, calculated in the hyperspherical partial wave theory. The results are in
very good agreement with the available semiclassical results of Deb and Crothers �Phys. Rev. A 65, 052721
�2002�� for these energies. With this, we are able to demonstrate that the hyperspherical partial-wave theory
yields good cross sections from 30 eV �Phys. Rev. A 67, 042717 �2003�� down to near threshold for equal-
energy-sharing kinematics.
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I. INTRODUCTION

Over the last couple of years considerable progress has
been made in the study of ionization of hydrogen atoms by
electron impact, apparently the simplest three-body Coulomb
problem in quantum scattering theory, at low energies. Still
full understanding of this problem, particularly near thresh-
old, has not been achieved.

Ionization near threshold was studied by Pan and Starace
�1� where they reported distorted-wave calculations of the
�e ,2e� process with H, He, and other rare-gas targets at ex-
cess energies of 4 eV �above the respective ionization thresh-
olds� and below for equal-energy-sharing kinematics. For
atomic hydrogen they reported results at excess energies
2 eV and 0.5 eV above threshold in the coplanar constant �ab
geometry �in which the angle �ab between the emerging elec-
trons remain fixed� with �ab=�. Jones, Madison, and Srivas-
tava �2� also reported a distorted-wave �e ,2e� calculation
with an atomic hydrogen and helium target for equal-energy-
sharing kinematics but different geometries. Their results
were in good qualitative agreement with the experiments at
2 eV above threshold for atomic hydrogen for constant �ab
geometries. However, for the other geometries presented,
there were considerable deviations from the experimental re-
sults.

For equal-energy-sharing kinematics Rescigno and co-
workers made a breakthrough calculation in their exterior
complex scaling �ECS� approach �3–5�. Their results for 30,
25, 19.6, and 17.6 eV agree excellently with the measured
results of Röder et al. �6–8�. However, below 2 eV, results
of ECS theory are not yet available. Another sophisticated
approach is the convergent close-coupling �CCC� theory of
Bray and associates �9–11�, which works beautifully for
many atomic scattering problems and reproduces ionization
cross-section results very satisfactorily above 2 eV excess
energy. For 2 eV excess energy their results differ approxi-
mately by a factor of 2 from the absolute measured values
�6�. Below 2 eV excess energy CCC results are also not

available. Recent calculations of Das and co-workers �12� for
equal-energy-sharing kinematics in the hyperspherical
partial-wave �HPW� theory also reproduced the experimental
data �6,8� quite satisfactorily.

So far the hyperspherical partial wave theory has not been
tested below 2 eV excess energy. Deb and Crothers �13�
have reported a semiclassical calculation that gives very
good cross-section results for low energies of 4 and 2 eV
above threshold and also for energies 1, 0.5, and 0.3 eV
above threshold. This calculation encouraged us to test
whether the hyperspherical partial-wave theory works for ex-
cess energy below 2 eV. Here we made such a calculation
for excess energy of 1, 0.5, and 0.3 eV above the ionization
threshold. We found that the HPW theory gives cross-section
results in very good agreement with the semiclassical calcu-
lation of Deb and Crothers �13� for the above energies. One
only needs to increase the asymptotic range parameter R�

�defined later� to sufficiently large values of several thou-
sands of a.u. It is interesting to note here that the hyper-
spherical R matrix with semiclassical outgoing waves
�HRM-SOW� calculation of Selles et al. �14�, for the double
photoionization of the helium atom, also requires R� values
of several thousands of a.u. for converged results.

II. HYPERSPHERICAL PARTIAL-WAVE THEORY

The hyperspherical partial-wave theory has been de-
scribed in detail in �12,15� and briefly in �17,18�. In this
approach we determine scattering amplitude from the
T-matrix element given by

Tfi = �� f
�−��Vi��i� , �1�

where �i is the initial-state wave function, Vi is the interac-
tion potential in this channel, and � f

�−� is the exact two-
electron continuum wave function with incoming boundary
conditions in the presence of the nucleus, which is consid-
ered infinitely heavy and stationary at the origin. The scat-
tering state � f

�−� is determined by expanding it in terms of
symmetrized hyperspherical harmonics �15,19� which are
functions of five angular variables. The hyperradius and an-*Electronic address: kkch@eth.net
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gular variables are defined by R=�r1
2+r2

2, �
=arctan�r2 /r1�, r̂1= ��1 ,�1�, r̂2= ��2 ,�2�, and �= �� , r̂1 , r̂2�
and set P=�p1

2+ p2
2, �0=arctan�p2 / p1�, p̂1= ��p1

,�p1
�, p̂2

= ��p2
,�p2

�, and �0= ��0 , p̂1 , p̂2�, p�1 and p�2 being momenta
of the two outgoing electrons of energies E1 and E2 and
positions r�1 and r�2.

Different sets of radial waves with definite 	= �L ,S ,��
�where L is the total angular momentum, S is total spin, and
� is the parity� satisfy different sets of coupled equations
each of the form

	 d2

dR2 + P2 −

N�
N + 1�

R2 
 fN + �
N�

2P�NN�

R
fN� = 0. �2�

These equations are truncated to N=Nmx which is the
number of channels retained in the calculation for each fixed
	. The Nmx number of independent solutions of the truncated
equations needs to be determined over the interval �0,��.
These equations may then be solved in different alternative
approaches. One possibility is to partition this interval into
three subintervals �0,��, �� ,R��, and �R� ,��, � being of the
order of a few atomic units and R� being a point in the
far-asymptotic domain. The solution in �0,�� is then con-
structed as in the R-matrix �16� method and then continued
to R� using Taylor’s expansion method �17,18�. Beyond R�

the solutions are known from series expansions �12�. This
approach, however, suffers from pseudoresonance problems
as pointed out in Ref. �18� and hence this is not the one
adopted here. Other possibilities include solving the set of
equations as a two-point boundary value problem �since the
radial wave function is known at origin and at R� from series
expansions� as in the ECS method �4�. This again would
require more computational resources than that we have at
present. The most effective approach for our purposes turns
out to be the following. We construct Nmx independent solu-
tions of Eq. �2� over the interval �0,�� by solving these as a
two-point boundary value problem. The kth solution vector is
made to vanish at the origin and takes the kth column of the
Nmx�Nmx unit matrix as its value at �. These solutions are
then continued over �� ,R�� by solving the coupled system of
equations by the Taylor’s expansion method with frequent
stabilization �20�. Beyond R� the solution may be obtained
from expansion in inverse powers of R with suitable sine and
cosine factors �12,15�. The asymptotic incoming boundary
conditions then completely define �12,15� the scattering-state
wave function � fs

�−�. For the initial interval �0,�� solution by
the finite-difference method proves most effective. In our
earlier calculation �12�, at higher energies we used a five-
point difference scheme. This gives us very good cross sec-
tions for 30, 25, 19.6, and 17.6 eV for various kinematic
conditions. In our present calculation we propose to use
larger mesh size �double that of our previous calculation� and
hence, in place of a five-point difference scheme, we use a
seven-point difference scheme. In the seven-point scheme
we divide the interval �0,�� into m subintervals by
using mesh points R0 ,R1 ,R2 , . . . ,Rm−1 ,Rm where Rk=hk �k
=0,1 ,2 , . . . ,m� and h=� /m. In this scheme we use the fol-
lowing formulas:

fN� �Rk� =
1

h2	 1

90
fN�Rk−3� −

3

20
16fN�Rk−2� +

3

2
fN�Rk−1�

−
49

18
fN�Rk� +

3

2
fN�Rk+1� −

3

20
16fN�Rk+2�

+
1

90
fN�Rk+3�
 + � 69

25200
h6fN

�viii��
1�
 �3�

for k=3,4 , . . . ,m−4,m−3. For k=1,2 and m−2,m−1 we
use the the formulas

fN� �R1� =
1

h2	3

8
fN�R0� + 6fN�R1� −

11

2
h2fN� �R2� −

51

4
fN�R3�

− h2fN� �R3� + 6fN�R4� +
3

8
fN�R4�


+ �−
23

10080
h6f �viii��
2�
 , �4�

fN� �R2� =
1

h2	3

8
fN�R1� + 6fN�R2� −

11

2
h2fN� �R3� −

51

4
fN�R3�

− h2fN� �R4� + 6fN�R4� +
3

8
fN�R5�


+ �−
23

10080
h6f �viii��
3�
 , �5�

fN� �Rm−2� =
1

h2	3

8
fN�Rm−5� + 6fN�Rm−4� − h2fN� �Rm−4�

−
51

4
fN�Rm−3� −

11

2
h2fN� �Rm−3� + 6fN�Rm−2�

+
3

8
fN�Rm−1�
 + �−

23

10080
h6f �viii��
4�
 , �6�

fN� �Rm−1� =
1

h2	3

8
fN�Rm−4� + 6fN�Rm−3� − h2fN� �Rm−3�

−
51

4
fN�Rm−2� −

11

2
h2fN� �Rm−2� + 6fN�Rm−1�

+
3

8
fN�Rm�
 + �−

23

10080
h6f �viii��
5�
 . �7�

In each of Eqs. �3�–�7� quantities on the right-hand sides
within the curly brackets represent the error terms. The cor-
responding difference equations are obtained by substituting
the values of second-order derivatives from the differential
equation �2� into these expressions. For continuing these so-
lutions in the domain �� ,R�� we need first-order derivatives
fN� �R� at �. These are computed from the difference formula

fN� �Rm� =
1

84h
�− fN�Rm−4� + 24fN�Rm−2� − 128fN�Rm−1�

+ 105fN�Rm�� +
2h

7
fN� �Rm� + �−

4h4

105
fN

�v��
�
 . �8�
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Here, too, the quantity within the curly brackets repre-
sents the error term. The solutions thus obtained in �0,�� are
then continued over �� ,R�� by the Taylor’s expansion
method, as stated earlier, with stabilization after suitable
steps �20�.

III. RESULTS

In our present calculation for the equal-energy-sharing ki-
nematics and 1, 0.5, and 0.3 eV excess energies, we have
included 30 channels and have chosen �=5 a.u. �as in our

FIG. 1. �a� TDCS for coplanar equal-energy-sharing constant �ab geometry at 1 eV excess energy above threshold. Solid curves, present
results; dashed curves, semiclassical results of Deb and Crothers �13�. �b� TDCS for coplanar equal-energy-sharing geometry at 1 eV excess
energy above threshold for fixed �a and variable �b of the out going electrons. �c� TDCS for coplanar equal-energy-sharing with two
electrons emerging on opposite sides of the direction of the incident electron with equal angle �a at 1 eV excess energy above threshold.
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previous calculation �12� for higher energies�. A small varia-
tion of the value of � about the value chosen does not
change the results. Here we need to choose R� equal to
1000 a.u. for 1 eV, 2000 a.u. for 0.5 eV, and 3000 a.u. for
0.3 eV for smooth convergence of the asymptotic series so-
lution and for smooth fitting with the asymptotic solution
�12� in the equal-energy-sharing cases. For unequal-energy-
sharing cases one may need to move to still larger distances.
For going that far in the asymptotic domain a larger value of
h �grid spacing� is preferable. Here we have chosen h

=0.1 a.u. up to � and a value 0.2 a.u. beyond � in all the
cases. Accordingly a seven-point scheme, as described
above, is more suitable than the five-point scheme used in
our earlier calculation �12� and hence we chose the above
seven-point scheme in the present calculation. We included
states with L up to 5. Values of L above 5 give insignificant
contributions. The �l1 , l2� pairs which have been included in
our calculation are sufficient for convergence as found from
the results of calculations with the inclusion of larger number
of channels. All the computations were carried out on a 2

FIG. 2. �a� Same as in Fig. 1�a� but for 0.5 eV excess energy. �b� Same as in Fig. 1�b� but for 0.5 eV excess energy. �c� Same as in Fig.
1�c� but for 0.5 eV excess energy.
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CPU SUN Enterprise 450 system with 512 MB RAM.
For each incident energy three sets of results with differ-

ent geometry have been presented for the two outgoing elec-
trons having equal energies. These are the constant-�ab ge-
ometry results, constant-�a geometry results, and the results
for symmetric geometry. For 1 eV excess energy we present
these results in Figs. 1�a�–1�c�, respectively. The correspond-
ing results for energy 0.5 eV are presented in Figs. 2�a�–2�c�,
respectively, and the results for 0.3 eV are presented in Figs.
3�a�–3�c�, respectively. The bottom row of each of the Figs.

1�a�, 2�a�, and 3�a� corresponding to �ab=150° and �ab
=180° are as in our earlier work �21� �though these are now
calculated with different R� values�. This is merely to ensure
completeness in the results presented and to compare our
results with the semiclassical calculation of Deb and
Crothers. For other geometries, unfortunately, neither experi-
mental nor any theoretical results are available for compari-
son. The overall agreement between our results and those of
Deb and Crothers �13� for �ab=180° and �ab=150° is highly
encouraging. The little steeper rise of our results compared to

FIG. 3. �a� Same as in Fig. 1�a� but for 0.3 eV excess energy. �b� Same as in Fig. 1�b� but for 0.3 eV excess energy. �c� Same as in Fig.
1�c� but for 0.3 eV excess energy.
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those of Deb and Crothers �13� at 0° is in conformity with
the general trends of our corresponding earlier results �12� at
2 and 4 eV excess energies. Our results for �ab=120° and
100° also appear reasonable when compared with the shapes
of the corresponding results for 2 and 4 eV excess energy
�12�. Unfortunately there are no experimental results for
verification. The results for constant-�a geometry and those
of symmetric geometry are also in very nice agreement in
shapes, particularly for �a=−30° and �a=−150°, with those
for 2 and 4 eV excess energy cases �see Das et al. �12��.

IV. CONCLUSION

From the results presented above it appears that the hy-
perspherical partial-wave theory works satisfactorily at 1,

0.5, and 0.3 eV excess energies. We have already good re-
sults �12� for energies up to 30 eV for various kinematic
conditions. Calculations at a higher incident energy of
54.4 eV are now in progress and we propose, to present them
in the future. Another point to note is that in this approach
exploration of the far-asymptotic domain is possible by in-
creasing R� to thousands of atomic units. All these suggest
that the hyperspherical partial-wave theory is capable of be-
ing developed into a successful method for �e ,2e� collisions.
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