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Field ionization measurements of CH3I and C2H5I dopant high-n molecular Rydberg states in argon and
krypton perturbers are presented as a function of perturber number density along various isotherms up to the
density of the triple point liquid. Using these data, a new local Wigner-Seitz model for the density-dependent
energy V0��P� of a quasifree electron in argon and krypton is developed. This model, which contains only one
adjustable parameter, uses a local Wigner-Seitz radius derived from the local number density rather than from
the bulk number density, includes a statistical mechanical calculation of both the ion/medium polarization
energy and the electron/medium polarization energy, and includes the thermal kinetic energy of the quasifree
electron. Using this model, V0��P� and the perturber-induced energy shift of the dopant ionization potential
�D��P� are calculated to within ±0.1% of experiment. Previously reported V0��P� data for xenon are also
shown to be interpretable within this new model.
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I. INTRODUCTION

The study of the density-dependent behavior of a free
electron in gases and liquids is important in many areas of
chemistry, including the investigation of electron/perturber
interactions in disordered systems. For example, since the
electron mobility in a solvent �perturber P� is directly related
to the energy minimum of a free electron V0��P� in the sol-
vent of number density �P �1–11�, one can use V0��P� to
study electron mobility effects of perturber parameters �e.g.,
molecular shape, strength of interaction, etc.�. Electron mo-
bility, in turn, can influence the kinetics of chemical reac-
tions �12,13�, especially electrochemical reactions. Thus, the
ability to model V0��P� accurately has applications in the
optimization of the choice of solvents and thermodynamic
conditions for chemical reactions.

At low perturber number density, a perturber atom or mol-
ecule acts on a dopant Rydberg state by shifting the Rydberg
state energy and by broadening the transition line shape as a
result of collisional interactions. The perturber-induced shift
of high-n Rydberg states can be explained within a simple
model �14�. This model assumes that, due to the large size of
the Rydberg state, the perturbers interact separately with the
Rydberg electron and with the ionic core. Within this as-
sumption, the shift of high-n Rydberg states, or of the dopant
ionization energy, arises from two independent phenomena,
namely the scattering of the Rydberg electron off of the per-
turber and the polarization of the perturber due to the ionic
core. In other words �14�,

�D��P� = �sc��P� + �pol��P� , �1�

where �D��P� is the total shift in dopant ionization energy
�i.e., �D��P�= I��P�− Ig, where I��P� is the perturbed dopant

ionization energy and Ig is the gas-phase ionization energy of
the dopant�, �sc��P� is the “scattering” shift, �pol��P� is the
“polarization” shift, and �P is the perturber number density.

For large n, the optical electron is loosely bound and can
therefore be assumed to be nearly free. Moreover, near
threshold the kinetic energy of the electron is approximately
zero, so the scattering of the Rydberg electron by a perturber
can be taken to be predominantly s-wave. In this case,
�sc��P� is given by �14�

�sc��P� =
2��2

m
A �P, �2�

where m is the electron mass, A is the electron scattering
length in the perturber medium �which may be either positive
or negative depending on the nature of the perturber�, and �
is the reduced Planck constant. The shift due to the polariza-
tion of the perturbing molecules by the ionic core can be
determined using �15–20�

�pol��P� = − 10.78�1

2
�Pe2�2/3

��v�1/3�P. �3�

In this equation, �P is the perturber polarizability, e is the
electron charge, and v is the relative thermal velocity of the
dopant and perturber molecules. Since �pol��P� can be calcu-
lated and �D��P� obtained experimentally, Eq. �1� has been
used to determine the zero-kinetic-energy electron scattering
length of various perturber atoms and molecules �17–21�,
including several fluorinated hydrocarbons �21�. Low-to-
medium number density studies have also yielded insights
into cluster formation �21�. However, the dopant/perturber
interaction mechanisms developed in low-density studies do
not extend into the high-density regime �11,16,17,22–24�.

As �P increases, Eq. �1� goes over smoothly to
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�D��P� = V0��P� + P+��P� , �4�

where �D��P� again is the total shift in dopant ionization
energy, V0��P� is the quasifree electron energy in the host
medium �i.e., the energy of the bottom of the conduction
band of the perturber�, and P+��P� is the average ion/medium
polarization energy. Unfortunately, high-n Rydberg states in
such high-density systems cannot be investigated using ab-
sorption spectroscopy or standard photoionization spectros-
copy because of pressure broadening of the bound and au-
toionizing Rydberg states. With this limitation in mind,
several groups have investigated very dense media using
photoconductivity techniques �3–5,11,24–30�. Most recently,
Reininger et al. �11,23,24,31–38� have exploited field ioniza-
tion of high-n dopant Rydberg states as a method for deter-
mining the quasifree electron energy V0��P� in various
atomic perturbers.

In this paper, we first outline previous experimental tech-
niques used to obtain V0��P� from Eq. �4�. We then discuss
the original Wigner-Seitz model for V0��P� and give a brief
history of subsequent modifications to this model. After dis-
cussing the experimental methods employed by us, we
present new field ionization data for CH3I and C2H5I in
dense Ar and Kr, and we provide a statistical mechanical
model to calculate P+��P� in Eq. �4� in order to determine
V0��P� experimentally. Finally, we introduce a new local
Wigner-Seitz theory that accurately models V0��P� over the
entire density range and allows one to calculate �D��P� to
within ±0.1% of experiment. The results of this new theory
are further tested by comparing known experimental mea-
surements of V0��P� in Xe with our model calculations.

II. EXPERIMENTAL DETERMINATION OF V0

The direct approach to obtaining V0��P� involves photo-
injecting an electron from a metal into a dense perturber.
Since V0��P� is the energy required to take an electron from
a vacuum into the bulk fluid, the difference between the
work function of the metal in a vacuum and in the fluid
corresponds directly to V0��P�. Thus, if the photoemission
spectrum of a metal is measured in a vacuum and separately
in the fluid, the difference in the threshold region can be used
to determine V0��P�. In Fig. 1, photoinjection data for Ar
�6,11,24� and Kr �3,11,24� are shown. One clearly sees that
there is considerable experimental scatter. Furthermore, the
fitted curves through the experimental points do not extrapo-
late to zero energy in the absence of a perturber �i.e., in a
vacuum�. This problem results from the formation of oxide
layers on the metal surface, which form a barrier through
which a photoemitted electron must tunnel. Thus, the photo-
injection energy of the oxide contaminated metal electrode is
nonzero in the vacuum. A second problem is that the per-
turber interacts with the surface of the electrode and, thereby,
changes the electronic structure of the electrode. This
perturber/electrode interaction is dependent upon the surface
area and roughness of the electrode, the type of metal, the
nature of the perturber, and the number density of the per-
turber. Thus, modeling the perturber/electrode interaction is

difficult, which makes the accurate correction of photoinjec-
tion data essentially impossible.

Since directly determining V0��P� using photoinjection is
interpretationally problematic, Reininger and co-workers
�11,23,24,31–38� developed an indirect method to obtain
V0��P� experimentally. This method uses the relationship in
Eq. �4� to extract V0��P� once one determines �D��P� experi-
mentally and calculates P+��P�. Studies of atomic Rydberg
states in the presence of a static electric field �39� show that
high-n Rydberg states ionize at an electric field Fcl equal to
1/ �16n4�, or that the change in the ionization energy is given
by I=−2Fcl

1/2 �in atomic units�. This process is referred to as
classical field ionization. In the field ionization of molecular
Rydberg states, vibrational and rotational effects must be
taken into consideration, and these effects lead to the classi-
cal field-ionization limit being written as �24,39�

�I = − c0Fcl
1/2, �5�

where c0 is a constant. A field ionization spectrum of a dop-
ant in a dense medium is obtained by subtracting a photoion-
ization spectrum measured at a low field FL from a spectrum
measured at a high field FH after intensity normalization
�necessary to remove the effects of secondary ionization
�24��. The field ionization spectrum results from high-n Ry-
dberg states that are field-ionized by FH but not FL. Variation
in the strength of FH leads to a shift in the energetic position
of the field ionization peak. By plotting this shift as a func-
tion of the square root of the electric field, one can extrapo-
late the zero-field energy position of the ionization energy
I0��P� using Eq. �5�. Similarly, one can also correct for FL by
holding FH constant and varying FL. Thus, �D��P� in Eq. �4�
is obtained from

FIG. 1. V0��P� obtained from various photoinjection measure-
ments, plotted as a function of perturber number density �P. �a�
P is Ar; ��� �6,11,24�, ��� �6,11,24�, ��� �11,24�, and ��� �11,24�.
�b� P is Kr; ��� �3,11,24�, ��� �3,11,24�, and ��� �11,24,30�. Lines
provide a visual aid.
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�D��P� = I0��P� − Ig �6�

with I0��P� being determined experimentally from

I0��P� = IF��P� + c0��FL + �FH� , �7�

where IF��P� is the dopant ionization energy perturbed by the
electric field and by the dense gas. Therefore, if one can
calculate P+��P�, one can determine V0��P� for a given per-
turber number density using Eqs. �4�, �6�, and �7�.

The density-dependent average polarization energy
P+��P� depends upon the position ri of each of the N perturb-
ers relative to the dopant at the moment of excitation. Rein-
inger et al. �11,24,31–38� used a potential of the form

w+�r1, . . . ,rN� = −
1

2
�Pe2�

i

N

ri
−4f+�ri� , �8�

where f+�r� is a screening function that incorporates the re-
pulsive interactions between the induced dipoles in the per-
turber medium. The screening function chosen was
�24,31–38,40�

f+�r� = 1 − �P��P	
0

� 1

s2gPP�s�ds

� 	

r−s


r+s 1

t2 f+�t�gPD�t�	�r,s,t�dt , �9�

where

	�r,s,t� =
3

2s2 �s2 + t2 − r2��s2 − t2 + r2� + �r2 + t2 − s2� ,

�10�

and where the integration variables s and t represent the dis-
tance between the atom of interest and all other perturber
atoms. In Eq. �9�, gPP�r� and gPD�r� are the perturber/
perturber and perturber/dopant radial distribution functions,
respectively, where gPD�r� reflects the distribution of per-
turber atoms around the ground-state dopant molecule. Using
a canonical distribution, the probability of sampling a par-
ticular polarization energy W, then, is given by �24,31–38�

P�W� =	 ¯	 
„W − w+�r1, . . . ,rN�…

� e−�U�r1,…,rN��
i

dri�	 ¯	 e−�U�r1,…,rN��
i

dri,

�11�

where �=1/ �kBT� �kB is Boltzmann’s constant� and
U�r1 ,… ,rN� is the multidimensional potential energy of the
system prior to ionization. Assuming two-body spherically
symmetric interactions, U�r1 ,… ,rN� can be approximated by
a sum of intermolecular pair potentials, or

U�r1,…,rN� = �
i=1

N

UPD�ri� + �
i,j=1
i�j

N

UPP�
ri − rj
� , �12�

where UPD�r� and UPP�r� are, respectively, the perturber/
dopant and perturber/perturber intermolecular potentials.
Reininger et al. �24,31–38� assumed Lennard-Jones 6-12 po-
tentials for both UPD�r� and UPP�r� for all of the dopant/
perturber systems studied. A moment analysis of the Fourier
transform of Eq. �11� yields the first moment
�24,31–38,41,42�

m1 = − 4��P	
0

�

gPD�r�w+�r�r2dr �13�

after some �tedious� algebra. This moment represents the
shift in the dopant ionization energy resulting from the aver-
age polarization of the perturber by the ionic core at the
moment of excitation; or in other words, P+��P�m1��P�.

Obviously, Eqs. �8�–�13� depend on the method used to
calculate gPP�r� and gPD�r�. For their calculations, Reininger
et al. �24,31–38� chose a coupled homogeneous Percus-
Yevick model �43�,

gPD�r� = r−1e−�UPD�r�YPD�r� ,

gPP�r� = r−1e−�UPP�r�YPP�r� , �14�

where

YPD�r� = 	
0

r

dt
dYPD�t�

dt
,

YPP�r� = 	
0

r

dt
dYPP�t�

dt
, �15�

with

d

dr
YPD�r� = 1 + 2��P	

0

�

dt�e−�UPD�t� − 1�YPD�t�

� �e−�UPP�r+t�YPP�r + t� −
r − t


r − t

e−�UPP�
r−t
�

�YPP�
r − t
� − 2t� ,

d

dr
YPP�r� = 1 + 2��P	

0

�

dt�e−�UPP�t� − 1�YPP�t�

� �e−�UPP�r+t�YPP�r + t� −
r − t


r − t

e−�UPP�
r−t
�

�YPP�
r − t
� − 2t� . �16�

Equations �14�–�16� are only valid when �D�P. �Examples
of the perturber/dopant and perturber/perturber radial distri-
bution functions gPP�r� and gPD�r� determined from Eqs.
�14�–�16� using a Lennard-Jones 6-12 potential for C2H5I in
Ar are shown in Fig. 2�.
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Reininger et al. �24,31–38� were able to obtain V0��P�
from Eq. �4� using the experimental data for �D��P�, and
P+��P� from Eq. �13�. The results �cf. Fig. 3� were consonant
with those obtained from photoinjection measurements �cf.
Fig. 1�. Thus, field ionization can be used to determine
V0��P� experimentally without the complications present in
photoinjection experiments. This permits one to test various
theoretical calculations of V0��P� for accuracy across the en-
tire density range.

III. THEORETICAL CALCULATION OF V0

The first model of the behavior of V0 started from the
solution to the one-electron Schrödinger equation �44�

�−
�2

2m
�2 + V�r� − E�� = 0, �17�

where V�r� is the one-electron potential exerted by the neat
fluid and E is the energy of the system. Unlike solids, where
the symmetry of the potential is determined by the lattice
structure, liquids have only an average symmetry. Therefore,
most models assume that the potential is spherically symmet-
ric about the perturber, and that the potential �neglecting
fluctuations� has an average translational symmetry
�7,8,10,11,24,44–51�

V�r� = V�r + 2rs� , �18�

where rs is the Wigner-Seitz �WS� radius �44,52,53�

rs =�3 3

4� �P
. �19�

The requirement that the first derivative of the wave function
be continuous at the WS boundary leads to
�7,8,10,11,24,44–51�

�� ��0

�r
��

r=rs

= 0. �20�

Thus, V0 is obtained by solving

�−
�2

2m
�2 + V�r���0  V0�0 �21�

under the boundary condition of Eq. �20�. In the original
model presented by Springett, Jortner, and Cohen �SJC� �44�,
the potential V�r� was divided into two parts: Vin, the poten-
tial due to the perturber inside the WS sphere, and Vout, the
contribution of all of the perturbers outside the sphere. Vout
was approximated by its value in the center of the WS
sphere, or �44�

Vout = −
3�Pe2

2rs
4 �1 +

8

3
��P�P�−1

. �22�

Vin was defined as the sum of an attractive polarization po-
tential Vp and a repulsive atomic pseudopotential Va. To

FIG. 2. Example perturber/dopant and perturber/perturber radial
distribution functions gPD�r� and gPP�r�, respectively, calculated us-
ing Eqs. �14�–�16�, plotted as a function of distance from the central
atom r. These RDF functions are for C2H5I /Ar and Ar/Ar at an Ar
number density �Ar=8.00�1021 cm−3. The Lennard-Jones param-
eters used are �PP=3.409 Å, �PP/kB=119.5 K, �PD=4.394 Å, and
�PP/kB=138.1 K. See text for discussion.

FIG. 3. V0��P� obtained from various field ionization measure-
ments of dopant Rydberg states, plotted as a function of perturber
number density �P. �a� P is Ar; ��� D is CH3I and ��� D is H2S. �b�
P is Kr; ��� D is CH3I and ��� D is �CH3�2S. All data are taken
from �11,24�. �——� represents a fit to experiment using V0��P�
=a0+a1��P−a2�+ �a3 /a4�ln�cosh�a4��P−a2��� �1,6�. For �a� P is Ar
�24�, a0=−0.262 eV, a1=0.0180�10−21 eV cm3, a2=16.4�1021

cm−3, a3=0.0905�10−21 eV cm3, and a4=0.0510�10−21 cm3. For
�b� P is Kr �24�, a0=−0.521 eV, a1=0.0414�10−21 eV cm3, a2

=19.3�1021 cm−3, a3=0.166�10−21 eV cm3, and a4=0.0480
�10−21 cm3.
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evaluate Vp, the authors assumed that the electron distribu-
tion is uniform in the region rs /2�r�rs, which led to �44�

Vp�r� = 	
rs/2

rs

−
�Pe2

2r4 d3r�	
rs/2

rs

d3r = −
12�Pe2

7rs
4 , �23�

where the term −�Pe2 /2r4 is the electron-induced dipole po-
larization potential. Equation �23� tends to underestimate the
effect of Vp�r� at low density and overestimates the effect at
high density. However, this approximation does allow one to
obtain an analytical solution for Eq. �21�. The potential V�r�
in Eq. �21� can now be written �44�

V�r� = Va�r� + Up��P� , �24�

where Up��P� is a constant defined by

Up��P� = −
3�Pe2

2rs
4 �8

7
+ �1 +

8

3
� �P�P�−1� . �25�

By defining Va�r� as a simple hard-core potential �i.e.,
Va�r�=0 for r�rh and Va�r�=� for r�rh, where rh is the
hard-core radius�, Eq. �21� becomes �44�

�−
�2

2m
�2 + Up��P���0 = V0��P��0,

rh � r � rs, �26�

with the boundary conditions

�0�rh� = 0,�� ��0

�r
��

r=rs

= 0. �27�

Under these boundary conditions, Eq. �26� has the simple
solution

�0 =
1

r
sin k0�r − rh� , �28�

where

tan k0�rs − rh� = k0rs. �29�

The value of V0��P�, therefore, is given by �44�

V0��P� = Ek��P� + Up��P�, Ek��P� =
��k0�2

2m
. �30�

However, while the formalism in Eqs. �17�–�30� is easily
computed, the comparison with experiment is not good, as is
shown in Fig. 4.

Other calculations of V0��P� involving the Wigner-Seitz
sphere differ only in the choice of potential �i.e., Eq. �24��.
For instance, Plenkiewicz et al. �45–50,54� used an atomic
pseudopotential which more successfully reproduced the
low-energy electron-atom scattering data in the gas phase,
but underestimated V0��P� for high-density atomic fluids.
However, the calculated values differed from the experimen-
tal values by a minimum of 0.05 eV. Iakubov et al. �9,55�
also modified the SJC model by changing the pseudopoten-
tial. Their pseudopotential was based on known atomic pa-
rameters and the radial distribution function in the liquid.

These calculations tended to overestimate V0��P� by 0.1–0.5
eV, representing an error of around 30%. Stampfli and Ben-
nemann �52� improved the SJC model by avoiding the ap-
proximation used to calculate the central atom polarization
potential �i.e., Eq. �25��. Their calculations also allowed the
hard-core radius of the repulsive pseudopotential Va to be an
adjustable parameter. However, since Up��P� is no longer a
constant, Eq. �26� can only be solved numerically in their
model. Moreover, this model underestimates V0��P� by a
minimum of 0.01 eV �or 3%� for most of the density range.
In the last several years, other theoretical techniques �56–62�
such as path integral molecular dynamics �PIMD� �56–58�,
diffusion Monte Carlo �DMC� methods �61�, the block Lanc-
zos diagonalization �BLD� method �61�, quantum molecular
dynamics �QMD� �61�, and a random-phase approximation
within multiple-scattering theory �62� have been employed
for the evaluation of V0��P� in rare-gas fluids. These methods
all tend to have minimum errors within ±5–10 % of experi-
ment. In general, the WS models are superior to other meth-
ods in terms of accuracy and simplicity. Figure 5 compares
some of the V0 calculation procedures for Ar and Kr with the
experimental data and clearly illustrates that none of the cur-
rent theoretical methods work across the entire density range.

IV. EXPERIMENTAL PROCEDURES

Photoionization spectra were measured with monochro-
matized synchrotron radiation �21� having a resolution of 0.9
Å, or 8 meV in the spectral region of interest. This radiation

FIG. 4. Various V0��P� calculations �24,44� plotted as a function
of perturber number density �P. �a� P is Ar. �b� P is Kr. �—–� is a
nonlinear least-squares fit to the experimental data of Fig. 3 using
an empirical function for V0��P� from �1�. �¯¯�, V0��P� calculated
using Eq. �30� with rh= 
A
 �i.e., A=−0.82 Å for Ar and A=
−1.60 Å for Kr�. �- - - -�, V0��P� calculated using Eq. �30� with rh

adjusted to provide the best possible fit to experiment �i.e., rh

=0.91 Å for Ar and rh=1.04 Å for Kr�.
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entered a copper experimental cell �21�, equipped with en-
trance and exit MgF2 windows, that is capable of withstand-
ing pressures of up to 100 bar. This cell, which possesses two
parallel plate electrodes �stainless steel, 3 mm spacing�
aligned perpendicular to the windows, was connected to an
open flow cryostat and resistive heater system allowing the
temperature to be controlled to within ±0.5°C. The light path
within the cell is 1.0 cm. The intensity of the synchrotron
radiation exiting the monochromator was monitored by mea-
suring the current across a Ni mesh intercepting the beam
prior to the experimental cell. All photoionization spectra are
normalized to this current.

The low field FL and high field FH necessary to obtain the
best field ionization spectra are system-dependent and were
determined by measuring field ionization spectra at various
low fields and high fields for multiple perturber number den-
sities. All data are energetically corrected for the effects of
both the low field and high field using Eq. �7� with c0
=4.3±0.1�10−4 eV cm1/2 V−1/2 for CH3I and c0=3.0±0.5
�10−4 eV cm1/2 V−1/2 for C2H5I. The energy uncertainty
due to the low- and high-field correction was obtained by
measuring the field ionization spectra of pure CH3I and
C2H5I at different low and high fields and was determined to
be ±5 meV and ±6 meV, respectively, for CH3I and C2H5I.
The energy of a field ionization peak was found using a
nonlinear least-squares analysis with a Gaussian fit function

having a goodness of fit error determined within a 95% con-
fidence level. The total error range for any experimental
point, therefore, is given by a sum of the field correction
error, the goodness of fit error, and the error arising from the
energy uncertainty due to the resolution of the monochro-
mator �i.e., ±4 meV�. This total error averages to ±0.015 eV
for the measurements involving CH3I and to ±0.020 eV for
the measurements involving C2H5I.

CH3I �Aldrich, 99.45%�, C2H5I �Sigma, 99.1%�, argon
�Matheson Gas Products, 99.9999%�, and krypton �Matheson
Gas Products, 99.998%� were used without further purifica-
tion. Absorption spectra were measured for CH3I �0.1 mbar�
and C2H5I �0.5 mbar� to verify the absence of impurities.
Absorption spectra of argon and krypton were measured at
low number density and at high number density to check for
the presence of trace impurities. No trace impurities were
observed in argon. In krypton, however, we observed a small
xenon impurity ��5 ppm from Matheson lot analysis�. This
impurity did not effect the determination of field ionization
spectra for either dopant at any krypton number density. The
number densities of both argon and krypton were calculated
from the Strobridge equation of state �63� using a standard
iterative technique. �The coefficients for the Strobridge equa-
tion of state for argon and krypton were obtained from Gos-
man et al. �64� and from Streett and Staveley �65�, respec-
tively.� The error in the number density calculated using the
Strobridge equation of state was estimated to be ±0.2% of
the density over the entire density range for both argon and
krypton �64,65�.

Both the gas handling system and the procedures em-
ployed to ensure homogeneous mixing of the dopant and
perturber have been described previously �21�. The base
pressure in the gas handling system was in the low 10−8 Torr
range. In order to ensure no perturber contamination by the
dopant, the gas handling system was allowed to return to the
low 10−7 Torr range before the addition of the perturber.
Cross contamination between dopant/pertuber systems was
prevented by baking the gas handling system until the pres-
sure was in the low 10−8 Torr range before introducing a new
dopant/perturber system.

V. RESULTS AND DISCUSSION

While experimental data exist for the energy of a quasi-
free electron V0��P� in Ar and Kr �cf. Figs. 1 and 3�, we
chose to obtain new experimental data along isotherms in
order to evaluate temperature effects. Figure 6 presents the
perturber induced shift of the dopant ionization energy
�D,EXP��P� of CH3I �solid markers� and C2H5I �open mark-
ers� in dense Ar and Kr plotted as a function of perturber
number density �P. The data in Fig. 6�a� �i.e., P is Ar� were
taken along the noncritical isotherms −114.8±0.6 °C and
−117.6±0.7 °C as well as at various other noncritical tem-
peratures for the higher densities �since at T�Tc, the density
does not vary much over the pressure range of 0–80 bar
along any given isotherm�. Similarly, the data in Fig. 6�b�
were obtained along the noncritical isotherms −57.1±0.9 °C
and −60.0±0.5 °C as well as at other temperatures for the
higher densities.

FIG. 5. Comparison of the experimentally determined
conduction-band energy V0��P� plotted as a function of perturber
number density �P, represented by �——�, to various calculated
values. �a� P is Ar and �b� P is Kr. �—--� is a nonlinear least-squares
fit to the experimental data of Fig. 3 using an empirical function for
V0��P� from �1�. �¯ ¯� is calculated using more accurate pseudo-
potentials �49,50�. �---� is obtained by assuming that Up��P� is non-
constant and rh is adjustable �51�. �-·-·-� is determined using a
random-phase approximation within multiple scattering theory �62�.
��� and ��� are calculated using quantum molecular dynamics
�57�, and ��� is determined using path integral molecular dynamics
�58�. See text for discussion. This figure is adapted from �24�.
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In order to determine V0��P� experimentally from Eq. �4�,
the average ion/perturber polarization energy P+��P� must be
obtained. We chose to calculate P+��P� using Eqs. �8�–�13�
with the radial distribution functions determined from Eqs.
�14�–�16� and the intermolecular potentials given by �66�

Uij�r� = 4�ij���ij

r
�12

− ��ij

r
�6� −

1

r6 ��i�j
2 + �j�i

2�

+
�i�j

r3 �sin 	i sin 	j cos��i − �j�− 2 cos 	i cos 	j� ,

�31�

where ij is PP or PD. In this general form of Eq. �31�, with
indices omitted, � and � are the standard Lennard-Jones 6-12
potential parameters, � is the polarizability of the perturber
or dopant, � is the dipole moment of the perturber or dopant,
and 	 and � are the angles of the perturber/perturber or
perturber/dopant dipole moments oriented relative to local
coordinates with coincident z axes. We chose Eq. �31� as the
general intermolecular potential because of its applicability
to a wide variety of dopant/perturber systems. For the case of
the systems presented here, however, where the perturber is a
rare gas but the dopant is a polar molecule, Eq. �31� simpli-
fies to

UPP�r� = 4�PP���PP

r
�12

− ��PP

r
�6� �32�

for the perturber/perturber interactions and

UPD�r� = 4�PD���PD

r
�12

− ��PD

r
�6� −

1

r6�P�D
2 �33�

for the dopant/perturber interactions. Equation �33� can be
rearranged into standard Lennard-Jones form, namely

UPD�r� = 4����

r
�12

− ��

r
�6� , �34�

where �66�

�  �PD�1 +
�P�D

2

4�PD�PD
6 �2

,

�  �PD�1 +
�P�D

2

4�PD�PD
6 �−1/6

. �35�

In order to obtain �PD and �PD, we used the Sikora combin-
ing rules �67� with �DD and �DD determined using the critical
point data �68,69� for the various dopants. The information
necessary to obtain the intermolecular potential parameters is
given in Table I, and the intermolecular potential parameters
used in all of the calculations presented here are given in
Table II.

The average ion/perturber polarization energies P+��P� for
CH3I and C2H5I in Ar and in Kr, calculated from Eq. �13�,
are shown as a function of perturber number density �P in
Figs. 7�a� �P is Ar� and 7�b� �P is Kr�. Subtracting P+��P�
from �D��P� leads to the experimental determination of
V0��P�, which is presented in Fig. 8 as a function of �P.
Clearly, the experimentally determined V0��P� in Fig. 8 is
similar to that previously reported from earlier field ioniza-
tion measurements �cf. Fig. 3� and from photoconduction
measurements �cf. Fig. 1�. The small differences between the
data of Fig. 3 and those of Fig. 8 can be attributed to the
change in the average ion/perturber polarization energies be-
cause of the choice of intermolecular potentials. The experi-
mentally determined V0��P� also shows little to no tempera-
ture dependence along noncritical isotherms. The behavior
along the critical isotherm around the critical point of the

FIG. 6. The experimental perturber-induced shift of dopant ion-
ization energies �D,EXP��P� plotted as a function of perturber num-
ber density �P. �a� P is Ar at ��, �� �114.8 °C, at ��, ��
�117.6 °C, and at ��, �� various other noncritical temperatures.
�b� P is Kr at ��, �� �57.1 °C, at ��, �� �60.0 °C, and at ��, ��
various other noncritical temperatures. Solid markers represent D
=CH3I, and open markers represent D=C2H5I. The lines are a non-
linear least-squares fit to experiment using a seventh-order polyno-
mial function and are provided as a visual aid. See text for
discussion.

TABLE I. Dopant and perturber thermodynamic information
used to obtain Lennard-Jones potentials and to calculate radial dis-
tribution functions. � is the polarizability in Å3, � is the dipole
moment in Debye, Tc is the critical temperature, and Pc is the criti-
cal pressure. All data are taken from CRC Handbook of Chemistry
and Physics, 84th ed., edited by D. R. Lide �CRC Press,
2004�.

��Å3� ��D� Tc�K� Pc�bar�

Ar 1.6411 0 150.86 48.98

Kr 2.4844 0 209.46 55.20

CH3I 7.97 1.641 528 65.9

C2H5I 10.0 1.976 554 47.0
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perturber is more complex and will be discussed in later
publications �70–72�.

As explained in more detail below, our theoretical treat-
ment of V0��P� differs from the original SJC model in several
significant ways. First, the translational symmetry for the
system is defined by a local Wigner-Seitz radius determined
from the perturber/perturber radial distribution function, not
from the bulk Wigner-Seitz radius �i.e., Eq. �19��. Second,
the average electron/medium polarization is determined in a
similar manner to the average ion/medium polarization shift
�i.e., Eqs. �6�–�13��. Third, since we have controlled the tem-

perature to ±0.5°C, we include the thermal energy of the
quasifree electron �i.e., �3/2� kBT, which is greater that the
experimental error in these measurements�. Finally, a phase-
shift parameter is added to reflect the scattering of the qua-
sifree electron off of the rare-gas atoms contained within the
solvent shell.

As is usual, our model begins with the one-electron
Schrödinger equation �cf. Eq. �17��. We also assume that the
potential is spherically symmetric about the perturber and
that the potential �neglecting fluctuations� has an average
translational symmetry. However, we do not assume that the
average distance between atoms in a gas can be determined
by dividing the volume into spheres defined by the bulk
number density �cf. Eq. �19��. In dense gases, one does not
have a uniform distribution of perturbers because of
perturber/perturber interactions. Thus, the translational sym-
metry boundary condition must reflect this nonuniformity.
One way to meet this requirement is to obtain the local num-
ber density from the radial distribution function, since
�73,74�

�P�r� = gPP�r��P, �36�

where �P�r� is the local perturber number density and �P is
the bulk perturber number density. In this case, then, the

TABLE II. Lennard-Jones parameters used in the radial distri-
bution function calculations �i.e., Eqs. �14�–�16� of text� and aver-
age polarization energies �i.e., Eqs. �13� and �39� of text�.

�ij�Å� �ij /kB�K� ��Å�a � /kB�K�a

Ar-Ar 3.409 119.5

Kr-Kr 3.591 172.7

CH3I-CH3I 4.761 402.4

C2H5I-C2H5I 5.413 422.3

CH3I-Ar 4.081 158.8 4.074 162.2

C2H5I-Ar 4.402 135.1 4.394 139.1

CH3I-Kr 4.173 214.1 4.166 218.6

C2H5I-Kr 4.495 187.8 4.487 191.8

aFrom Eq. �35� of text.

FIG. 7. The average ion/perturber polarization energy P+��P�,
calculated from Eq. �13� using the parameters in Table II, plotted as
a function of perturber number density �P. �a� P is Ar at ��, ��
�114.8 °C, at ��, �� �117.6 °C, and at ��, �� various other non-
critical temperatures. �b� P is Kr at ��, �� �57.1 °C, at ��, ��
�60.0 °C, and at ��, �� various other noncritical temperatures.
Solid markers represent D=CH3I, and open markers represent D
=C2H5I. The lines are a nonlinear least-squares fit to experiment
using a seventh-order polynomial function and are provided as a
visual aid. See text for discussion.

FIG. 8. V0,EXP��P�, determined from Eq. �4� by subtracting
P+��P� in Fig. 7 from the experimentally determined perturber-
induced shift of dopant ionization energies �D,EXP��P� in Fig. 6,
plotted as a function of perturber number density �P. �a� P is Ar at
��, �� �114.8 °C, at ��, �� �117.6 °C, and at ��, �� various
other noncritical temperatures. �b� P is Kr at ��, �� �57.1 °C, at
��, �� �60.0 °C, and at ��, �� various other noncritical tempera-
tures. Solid markers represent D=CH3I and open markers represent
D=C2H5I. �—� is a nonlinear least-squares fit to experiment using
V0��P�=a0+a1��P−a2�+ �a3 /a4�ln�cosh�a4��P−a2��� �1,6�. For �a�
P is Ar, a0=0.0347 eV, a1=0.120�10−21 eV cm3, a2=22.9
�1021 cm−3, a3=0.151�10−21 eV cm3, and a4=0.141
�10−21 cm3. For �b� P is Kr, a0=0.0561 eV, a1=0.192
�10−21 eV cm3, a2=21.6�1021 cm−3, a3=0.270�10−21 eV cm3,
and a4=0.106�10−21 cm3.
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translational symmetry is defined by a local Wigner-Seitz
radius

r� =�3 3

4�gmax�P
, �37�

where gmax is the maximum of the radial distribution func-
tion. Thus r��rs, because the local density at the first sol-
vent sphere is larger than the bulk density. The local Wigner-
Seitz radius, therefore, represents one-half the average
spacing between rare-gas atoms in the first solvent shell,
with the translation symmetry of the potential being given by

V�r� = V�r + 2r�� . �38�

Like the SJC model �44�, we assume that V�r� is divided into
two parts: an attractive electron/perturber polarization energy
P−��P�, which is similar to Up��P� in the SJC model �i.e., Eq.
�25��, and a repulsive atomic pseudopotential Va�r�.

We calculate the attractive electron/perturber polarization
energy P−��P� in a manner similar to that of the ion polar-
ization energy P+��P� in Eqs. �8�–�13�. The interaction po-
tential used is that originally proposed by Lekner �40�,

w−�r1, . . . ,rN� = −
1

2
�Pe2�

i

N

ri
−4f−�ri� , �39�

where f−�r� is a screening function given by

f−�r� = 1 − �P��P	
0

� 1

s2gPP�s�ds	

r−s


r+s 1

t2 f−�t�	�r,s,t�dt ,

�40�

with 	�r ,s , t� as defined in Eq. �10�. The moment analysis of
the probability distribution �i.e., Eq. �11�� yields the first mo-
ment

m1 = − 4��P	
0

�

gPP�r�w−�r�r2dr  P−��P� , �41�

after some algebra. �Figure 9 shows the calculated average
electron/perturber polarization energy P−��P� plotted as a
function of �P for both Ar and Kr.� Thus, the potential V�r� in
Eq. �21� becomes

V�r� = Va�r� + P−��P� , �42�

where P−��P� is a constant for a fixed perturber number den-
sity. As in the SJC treatment, we define Va�r� as a hard-core
potential �i.e., Va�r�=0 for r�rh and Va�r�=� for r�rh,
where rh is the hard core radius�. However, we set rh equal to
the absolute value of the scattering length A of the perturber.
Thus, the one-electron Schrödinger equation becomes

�−
�2

2m
�2 + P−��P���0 = V0�0,


A
 � r � r�, �43�

with the boundary conditions

�0�
A
� = 0, �� ��0

�r
��

r=r�

= 0. �44�

Under these boundary conditions, Eq. �43� has the solution
�cf. Eq. �28��

�0 =
1

r
sin k0�r − 
A
� , �45�

where �cf. Eq. �29��

tan k0�r� − 
A
� = k0r�. �46�

In Eq. �46�, the phase shift due to s-wave scattering from
the hard-core potential that represents the central rare-gas
atom is −k0
A
 �75�. Outside the first solvent shell, however,
the quasifree-electron wave function can also scatter off of
the rare-gas atoms contained within the solvent shell, which
introduces an additional phase shift. Again for s-wave scat-
tering, and in the limit of small k0, this scattering phase shift
is given by ��, where � is the phase-shift amplitude �76�.
Incorporating this phase shift into Eq. �46� yields

tan�k0�r� − 
A
� + ��� = k0r�. �47�

In this model, � is an adjustable parameter for each perturber
and is evaluated from the field ionization and/or photocon-
duction data for V0��P�. Once the thermal kinetic energy of
the quasifree electron is included, V0��P� becomes

FIG. 9. The average electron/perturber polarization energy
P−��P�, calculated from Eq. �39� using the parameters in Table II,
plotted as a function of perturber number density �P. �a� P is Ar at
��, �� �114.8 °C, at ��, �� �117.6 °C, and at ��, �� various
other noncritical temperatures. �b� P is Kr at ��, �� �57.1 °C, at
��, �� �60.0 °C, and at ��, �� various other noncritical tempera-
tures. Solid markers represent D=CH3I, and open markers represent
D=C2H5I. The lines are a nonlinear least-squares fit to experiment
using a seventh-order polynomial function and are provided as a
visual aid. See text for discussion.
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V0��P� = Ek��P� + P−��P� +
3

2
kBT ,

Ek��P� =
��k0�2

2m
, �48�

where k0 is evaluated from Eq. �47�.
Figure 10�a� presents V0,CAL��P� for Ar obtained from Eq.

�48� with �=0.40 and A=−0.82 Å �21�, plotted as a function
of Ar number density �Ar. Similarly, Fig. 10�b� presents
V0,CAL��P� for Kr calculated with �=0.48 and A=−1.60 Å
�21�, plotted as a function of krypton number density �Kr.
The solid line in Fig. 10 is a nonlinear least-squares fit of the
experimental data from Fig. 8 using an empirical function
from �1�. The error shown at the top of both Figs. 10�a� and
10�b� is the difference between the experimentally deter-
mined V0��P� values �cf. Fig. 8� and the values calculated
from Eq. �48�, represented by the individual markers. The

horizontal dotted lines denote the overall experimental error
limits. Clearly, the error between the calculated and experi-
mental V0��P� values falls within the intrinsic error of these
measurements. It is important to note that the only adjustable
parameter in this model is �, which is perturber-dependent.
Finally, Fig. 11 shows the total perturber-induced shift of
dopant ionization energy �D��P� for both dopants �CH3I and
C2H5I� in both perturbers �Ar and Kr�. The solid �CH3I� and
dashed �C2H5I� lines provide a nonlinear least-squares fit to
the experimental data as a visual aid, and the error between
the calculated and experimental values is provided at the top
of both Figs. 11�a� �Ar� and 11�b� �Kr�. Again, the differ-
ences between the experimental and calculated values fall
well within the experimental error limits.

Finally, as an additional test of the model leading to Eq.
�48�, we have calculated V0��P� for Xe. The Lennard-Jones
parameters used in the radial distribution function and polar-
ization shift calculations are �Xe-Xe=4.10 Å and �Xe-Xe/kB
=221.0 K. Figure 12 presents a collection of published mea-

FIG. 10. V0,CAL��P�, calculated from Eq. �48�, plotted as a func-
tion of perturber number density �P. �a� P is Ar at ��, ��
�114.8 °C, at ��, �� �117.6 °C, and at ��, �� various other non-
critical temperatures. �b� P is Kr at ��, �� �57.1 °C, at ��, ��
�60.0 °C, and at ��, �� various other noncritical temperatures.
Solid markers represent D=CH3I, and open markers represent D
=C2H5I. �—� is a nonlinear least-squares fit to the experimental
data of Fig. 8 using V0,EXP��P�=a0+a1��P−a2�
+ �a3 /a4�ln�cosh�a4��P−a2��� �1,6�. The error shown is the differ-
ence between the experimental V0��P� in Fig. 8 and the calculated
values. The horizontal dotted lines represent the experimental error
limits. See text for discussion.

FIG. 11. �D,CAL��P�, calculated from Eq. �4� with P+��P� from
Fig. 7 and V0��P�=V0,CAL��P� from Fig. 10, plotted as a function of
perturber number density �P. �a� P is Ar at ��, �� �114.8 °C, at
��, �� �117.6 °C, and at ��, �� various other noncritical tempera-
tures. �b� P is Kr at ��, �� �57.1 °C, at ��, �� �60.0 °C, and at
��, �� various other noncritical temperatures. Solid markers repre-
sent D=CH3I, and open markers represent D=C2H5I. Lines are
nonlinear least-squares fits of the experimental data in Fig. 6 using
a seventh-order polynomial function and are provided as a visual
aid. The error shown is the difference between the experimental
�D,EXP��P� in Fig. 6 and the calculated values. The horizontal dot-
ted lines represent the experimental error limits. See text for
discussion.
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surements �solid markers� of V0��P� for Xe, plotted as a func-
tion of number density �Xe, and compares these to our cal-
culated values �open markers and solid line� obtained from
Eq. �48� with �=0.50 and A=−3.24 Å �21�. The model cal-
culation clearly falls within the scatter of the experimental
points. However, a more comprehensive Xe experimental
data set is needed to explore fully the accuracy of V0��P�
calculated using this new model.

The new local Wigner-Seitz model presented here pro-
vides V0��P� calculations to within ±0.1% of experiment for
Ar and Kr, and falls within the scatter of the experimental
points for Xe, with the use of only one adjustable parameter.
This represents an order of magnitude improvement in accu-
racy in comparison to previously published V0��P� models.

VI. CONCLUSIONS

We have presented experimental data for V0��P� deter-
mined from field ionization of dopant �CH3I and C2H5I� Ry-

dberg states in dense Ar and Kr, along select isotherms that
did not include the critical isotherm. We have shown that
there is little to no temperature dependence in V0��P� along
these noncritical isotherms. We have developed a new local
Wigner-Seitz model that contains only one adjustable param-
eter and that allows one to fit the experimental data to within
±0.1%. This new model differs from the original SJC model
by calculating the polarization energy using a statistical me-
chanical approach, by using a local Wigner-Seitz radius
based upon the local number density instead of the bulk
number density, by including the thermal energy of the elec-
tron, and by introducing a phase shift to represent the scat-
tering of the quasifree electron off of the rare-gas atoms
within the solvent shell. While this model was developed for
Ar and Kr, we also showed that it reproduces the known
V0��P� data for Xe. Future papers will describe the behavior
of V0��P� along the critical isotherm near the critical density
of Ar and Kr, as well as the application of the local Wigner-
Seitz model to these near-critical point systems �70–72�, and
future work will focus on an extension of these techniques to
molecular perturbers and a systematic assessment of the per-
turber dependence of the phase-shift parameter �.
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