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We study the possibility of associating metastable Efimov trimers from three free Bose atoms in a tight trap
realized, for instance, via an optical lattice site or a microchip. The suggested scheme for the production of
these molecules is based on magnetically tunable Feshbach resonances and takes advantage of the Efimov
effect in three-body energy spectra. Our predictions of the energy levels and wave functions of three pairwise
interacting 8Rb atoms rely upon exact solutions of the Faddeev equations and include the tightly confining
potential of an isotropic harmonic atom trap. The magnetic field dependence of these energy levels indicates
that it is the lowest-energetic Efimov trimer state that can be associated in an adiabatic sweep of the field
strength. We show that the binding energies and spatial extents of the trimer molecules produced are compa-
rable, in their magnitudes, to those of the associated diatomic Feshbach molecule. The three-body molecular
state follows Efimov’s scenario when the pairwise attraction of the atoms is strengthened by tuning the

magnetic field strength.
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I. INTRODUCTION

Since the early days of quantum mechanics, the under-
standing of the complexity of few-body energy spectra has
been the subject of numerous theoretical and experimental
studies. Already in 1935 Thomas [ 1] predicted that three par-
ticles may be rather tightly bound even when their short-
ranged pairwise interactions support only a single, arbitrarily
weakly bound state. The energy of the tightly bound three-
body state was found to diverge in the hypothetical limit of a
zero-range binary potential. Thomas’ discoveries were later
generalized by Efimov [2], predicting that the number of
bound states of three identical bosons increases beyond all
limits when the pairwise attraction between the particles is
weakened in such a way that the only two-body bound state
ceases to exist. Such an excited three-body energy state that
appears under weakening of the attractive pairwise interac-
tion is called an Efimov state. Conversely, under strengthen-
ing of the attractive part of the binary potential an Efimov
state disappears into the continuum. This remarkable quan-
tum phenomenon of three-body energy spectra is usually re-
ferred to as Efimov’s scenario.

The existence of Efimov states in nature has still not been
finally confirmed. Likely candidates may be found among
the systems of identical bosons, whose binary interaction po-
tential supports only a single, weakly bound state. Already in
1977 Lim et al. [3] predicted the existence of an excited state
of the helium trimer molecule *He, which followed Efimov’s
scenario. This discovery was later confirmed by independent
theoretical studies [4—11] using more accurate helium dimer
potentials. From the experimental viewpoint, the observa-
tions of Ref. [12] clearly reveal that the helium dimer “He, is
indeed weakly bound. Even the helium trimer molecule has
been detected by diffracting a helium molecular beam [13]
from a microfabricated material transmission grating. While
state-selective diffraction experiments with helium trimers
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may, in principle, be possible [14], there is still no conclusive
evidence for the existence of their exited state.

The possibility of manipulating the low-energy inter-
atomic interactions, using magnetically tunable Feshbach
resonances, has provided new perspectives for the observa-
tion of Efimov’s effect. Recent experiments with cold gases
of fermionic atoms [15,16] as well as bosonic species
[17-20] have demonstrated that adiabatic sweeps of the mag-
netic field strength can be used to associate highly excited
diatomic Feshbach molecules with an arbitrarily weak bond.
While all these experiments were performed in atom traps
under comparatively weak spatial confinement, there have
been suggestions to produce molecules in the tightly confin-
ing light potential of an optical lattice [21]. Since tight lat-
tices suppress number fluctuations between different sites
[22], the molecular association may, in principle, be per-
formed with two or even three atoms per site. A similarly
tight or even stronger harmonic confinement of atoms may
be achieved in microchip traps [23]. The energy levels of a
pair of interacting atoms in a tight microtrap have been de-
termined in Refs. [24-26]. The universal properties [27,28]
of three-body energy spectra in the presence of a confining
harmonic potential have been studied in Ref. [29], using an
adiabatic approximation to solve the stationary Schodinger
equation in hyperspherical coordinates [30].

In this paper we exactly solve the Faddeev equations [31]
to determine the magnetic field dependence of the energy
levels of three identical Bose atoms, whose pairwise interac-
tions are tuned, using the technique of Feshbach resonances,
in a harmonic microtrap realized by an optical lattice site or
a microchip. Our results show that linear sweeps of the mag-
netic field strength can be used to populate the lowest-
energetic metastable Efimov trimer molecular state, largely
in analogy with the association of diatomic Feshbach mol-
ecules. We show that the properties of the trimers produced,
with respect to the strength of their bonds, are comparable to
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those of the associated diatomic Feshbach molecule. We il-
lustrate all our general findings for the example of the 155-G
Feshbach resonance of °Rb Bose atoms.

The paper is organized as follows: In Sec. II we discuss
those universal properties of near-resonant diatomic bound
states that are crucial for the association of Efimov trimers.
We then introduce the particular requirements on the type of
Feshbach resonance under which universality can be attained
over a wide range of magnetic field strengths. Our results
indicate that broad, entrance-channel-dominated Feshbach
resonances may be best suited to produce the trimers and
preserve their stability on time scales sufficiently long to
study their properties. We provide a general criterion that
shows why the 155-G resonance of °Rb meets these require-
ments [32-34].

In Sec. III we first illustrate the occurrence of the Thomas
and Efimov effects in the energy spectra of three Bose atoms
in free space, whose binary interactions are tuned using the
technique of Feshbach resonances. Our discussion reveals, in
particular, why all Efimov trimer states in such systems are,
in general, intrinsically metastable. We then show how the
three-body energy spectrum is modified due to the presence
of the harmonic confining potential of an isotropic atom trap.
These considerations allow us to identify the lowest-
energetic Efimov state as the molecular trimer state that can
be associated in an adiabatic sweep of the magnetic field
strength.

Section IV illustrates the energy levels and wave func-
tions of three ®°Rb atoms under the tight confinement of an
optical lattice site or a microchip trap. We show that, under
realistic conditions, the trimer molecules produced, when re-
leased from the lattice, are sufficiently confined in space that
they can be identified as separate entities of a dilute gas. We
then suggest a general scheme for their detection that directly
takes advantage of the periodic nature of an optical lattice.

All the details of our calculations are given in the appen-
dixes: Appendix A introduces the separable binary potential
[35-37] that we have used to accurately describe the low-
energy scattering properties of a pair of 5°Rb atoms. We
show, furthermore, how the separable potential approach can
be extended to determine the two-body energy levels, in the
presence of an isotropic harmonic atom trap, over a wide
range of trap frequencies. We apply these techniques in Ap-
pendix B to derive a general scheme to exactly solve the
Faddeev equations for three pairwise interacting atoms in-
cluding the confining trapping potential. Since our approach
differs considerably from the known techniques for the solu-
tion of the Faddeev equations in free space, we provide a
detailed description of their numerical implementation. To
demonstrate its predictive power with respect to three-body
energy spectra, we provide estimates of the accuracy of our
separable potential approach through comparisons with ab
initio calculations [10] of the helium-trimer ground- and
excited-state energies.

II. ENERGY LEVELS OF A TRAPPED ATOM PAIR

In this section we introduce the concept of universal two-
body scattering and bound-state properties characteristic of
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cold-collision physics in the vicinity of zero-energy reso-
nances. These universal properties are crucial for the exis-
tence of the Thomas and Efimov effects in three-body energy
spectra. We describe the conditions under which the univer-
sality of binary physical observables can be attained over a
wide range of magnetic field strengths in experiments using
Feshbach resonances to tune the interatomic interactions. We
provide the relevant physical parameters of the microscopic
binary potential that determine the energy spectra of an atom
pair in free space as well as under the spatial confinement of
an atom trap. We then show how the variation of the energies
under adiabatic changes of the magnetic field strength can be
used to associate diatomic molecules. Throughout this paper
we discuss applications for the example of the 155-G Fesh-
bach resonance of *Rb (1 G=10"T). The underlying
physical concepts, however, are quite general and can be
applied to cold collisions of other species of Bose atoms
involving what we shall identify as entrance-channel-
dominated resonances.

A. Resonance-enhanced scattering

1. Magnetic-field-tunable Feshbach resonances

Binary collisions in cold gases involve large de Broglie
wavelengths which typically very much exceed all length
scales set by the interatomic interactions. At low collision
energies the microscopic potential enters the description of
scattering phenomena only in terms of a single length scale:
the s-wave scattering length a. The experimental technique
of Feshbach resonances employs a homogeneous magnetic
field of strength B to manipulate the scattering length, taking
advantage of the fact that the pairwise interaction depends on
the coupling between the atomic Zeeman levels. Each Zee-
man state is determined by the pair of total angular momen-
tum quantum numbers (f,m) of the hyperfine level with
which the Zeeman state correlates adiabatically at zero mag-
netic field. In our applications to cold gases of Rb the at-
oms are prepared in the magnetically trapped hyperfine state
with total angular momentum quantum number f=2 and ori-
entation quantum number m,=-2 with respect to the direc-
tion of the magnetic field. The interaction between the atoms
is usually described in terms of the binary scattering chan-
nels associated with the pairs of Zeeman levels of the indi-
vidual atoms. The relative energies between the dissociation
thresholds associated with the channels can be tuned using
the Zeeman effect. We shall denote the open s-wave channel
of a pair of asymptotically separated atoms of the gas as the
entrance channel.

The typically weak interchannel coupling can be grossly
enhanced by tuning the energy E..(B) of a closed-channel
vibrational state |} (the Feshbach resonance level) in the
vicinity of the dissociation threshold of the entrance channel.
General considerations [38,39] show that a virtual energy
match between E,.(B) and the threshold leads to a zero-
energy resonance in the entrance channel—i.e., a singularity
of the scattering length—described by the formula
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Here ay, is usually referred to as the background scattering
length, AB is the resonance width, and B is the position of
the zero-energy resonance.

2. Universal properties of near-resonant bound-state
wave functions

The emergence of the zero-energy resonance indicates the
degeneracy of the binding energy E,(B) of the highest ex-
cited vibrational multichannel molecular bound state |i4,)
(the Feshbach molecule) with the threshold for dissociation
of the entrance channel at magnetic field strength B,. The
magnetic field dependence of E,(B) is due to the perturbation
of the physically relevant multichannel energy levels by the
strong coupling between the entrance-channel and closed-
channel Feshbach resonance states. The energy Ey(B) ap-
proaches the entrance-channel dissociation threshold from
the side of positive scattering lengths, while beyond the reso-
nant field strength B, at negative scattering lengths, the
bound state |¢4) is transferred into a virtual state. At mag-
netic field strengths in the close vicinity of the zero-energy
resonance, all low-energy binary collision properties are thus
dominated by the properties of the bound state | ), whose
wave function becomes universal in the limit a —ce. This
implies that the admixture of the Feshbach resonance level to
the molecular bound state |¢4,) vanishes in accordance with
the following asymptotic formula [39]:

1 ay,ABma®
|<¢res|¢b>|2 ~ 1/ 1+ _lures_bL_z . (2)
a—w 2 a ﬁ

Here w.,=dE,/dB is the virtually constant magnetic mo-
ment of the resonance level |i.,) and m is the atomic mass.
We note that, in general, the physically relevant Feshbach
molecular state |¢,) and the Feshbach resonance level |t/
are considerably different with respect to their magnetic mo-
ments and their spatial extents. The state |¢,) binds the at-
oms, while |#,.,) may have only a short lifetime, in particu-
lar, when the interchannel coupling is strong.

In the vicinity of the magnetic field strength B, the long-
range molecular bound state |¢4,) consists mainly of its com-
ponent in the entrance channel, which is given by the usual
form of a near-resonant bound-state wave function [39,40]:

—rla

(1) = (3)

r\'27m.

Its mean interatomic distance—i.e., the bond length—then
diverges like the scattering length in accordance with the
relationship

(ry= J &r r|¢b(r)|2 =al2. (4)

The associated binding energy is also determined solely in
terms of the scattering length by the universal formula

E, =~ —h*/(ma®). (5)
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3. Entrance- and closed-channel-dominated Feshbach
resonances

The possibility of magnetically tuning the scattering
length using Feshbach resonances is unique among all physi-
cal systems. The universal properties of the near-resonant
bound-state wave function described by Egs. (3), (4), and
(5), however, are not directly related to the interchannel cou-
pling and apply equally well, for instance, also to the deu-
teron in nuclear physics [41] and to the weakly bound helium
dimer 4He2 van der Waals molecule [12]. Since our applica-
tions to the association of Efimov trimer molecules crucially
depend on the single-channel nature of the bound state |4,
of the Feshbach molecule, we shall briefly outline the re-
quirements of the Feshbach resonance that assure the validity
of the universal considerations over a significant range of
magnetic field strengths. To this end, we consider the general
properties of long-range alkali-metal van der Waals mol-
ecules that are determined, to an excellent approximation, by
the scattering length in addition to the asymptotic form
—C¢/7° of the binary potential at large interatomic distances
r. In accordance with Ref. [42], we shall describe the depen-
dence of the molecular energy level on the van der Waals
dispersion coefficient Cy in terms of a mean scattering length
a, which is given by the formula

Law '(3/4)
V2 T(5/4)°

a= (6)
Here [ gw= %(mC()/ #i2)14 is usually referred to as the van der
Waals length and I" denotes Euler’s gamma function. The
binding energy of an alkali-metal van der Waals molecule is
then determined by the formula [42]

E,=-t*[m(a-a)?]. (7)

As discussed in detail for the examples of *Na and 3°Rb
in Ref. [33], a variety of Feshbach resonances can be classi-
fied on the basis of the properties of their associated Fesh-
bach molecules: Throughout this paper, we shall denote a
Feshbach resonance as entrance channel dominated when the
binding energy E,(B) is well approximated by Eq. (7) in
some range of magnetic field strengths about B and, at the
same time, the contribution of the mean scattering length a
of Eq. (6) improves the universal estimate of Eq. (5): i.e.,
h? h?

ma

m(a —a)*

The bound state |¢,) then describes a van der Waals mol-
ecule which implies that its properties are determined mainly
by the entrance-channel potential rather than the resonance
level. In fact, the general considerations of Ref. [39] show
that the admixture of the closed-channel resonance state
|hes) to the Feshbach molecular state |¢4,) is negligible as
soon as Eq. (7) applies to its energy (cf., also, Fig. 3 of Ref.
[33]). A general criterion for the applicability of Eq. (7) can
be derived from the two-channel approach of Ref. [39] which
leads to the following inequality [43]:

a 12(ma?)

9
abg lu'resAB ( )
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Under the conditions of Eq. (9), the reason for the sup-
pression of the closed-channel contribution to the Feshbach
molecule is the large detuning of the Feshbach resonance
level from the dissociation threshold of the entrance channel
at the position B, of the zero-energy resonance [39]. The
parameters for the 155-G Feshbach resonance of ®Rb—i.e.,
Mo/ h==3.12 MHz/G [44], C¢=4703 a.u. [45] (I a.u.
=0.095734X 107" J nm®), AB=10.71 G [46], and a,
=—-443q (ay=0.052 918 nm) [46]—give the quantity in Eq.
(9) to be 4 X 1072. The 155-G Feshbach resonance of *Rb is
therefore entrance channel dominated. Similar conclusions
were reached in Refs. [32,34].

There is also a variety of closed-channel-dominated
Feshbach resonances, like, e.g., those in Na [33], whose
Feshbach molecular states |¢,) become universal [cf. Eq. (3)]
only in a small region of magnetic field strengths about the
zero-energy resonance at B(. These states are not intermedi-
ately transferred into a van der Waals molecule away from
the resonance. Closed-channel-dominated resonances do not
satisfy the criterion of Eq. (9), and the bound states |¢4,) are
thus significantly influenced by the resonance level |¢/,.,) im-
mediately outside the region of universality. Our consider-
ations of three-body energy spectra take into account just a
single-scattering channel. We shall therefore focus in the fol-
lowing just on the entrance-channel-dominated Feshbach
resonances of alkali-metal Bose atoms.

B. Adiabatic association of diatomic molecules
in a tight atom trap

Recent experiments have demonstrated the possibility of
producing translationally cold diatomic Feshbach molecules
using linear downward ramps of the Feshbach resonance
level across the dissociation threshold of the colliding atoms.
These studies of molecular association have been performed
in quantum-degenerate Fermi gases [15,16], consisting of an
incoherent mixture of two-spin states, as well as in dilute
vapors of cold Bose atoms [17-20].

The highly excited Feshbach molecules produced can be
quite unstable with respect to deexcitation upon collisions
with surrounding atoms. Exact calculations of the deexcita-
tion rate constants are challenging and have been performed
only for transitions between tightly bound states [47]. Most
of the current knowledge, therefore, relies upon experimental
evidence. For fermionic species it has been predicted [48]
that the deexcitation mechanism is particularly efficient
when the bond length of the Feshbach molecule is suffi-
ciently small for its wave function to have a significant spa-
tial overlap with more tightly bound molecular states. The
experimental studies of Ref. [49] confirm this trend.

The observation of large collisional deexcitation rate con-
stants of Feshbach molecules consisting of Bose atoms has
been reported in Ref. [50]. The ZNa resonance studied in
these experiments, however, is closed channel dominated
[33]. The properties of the **Na, Feshbach molecules of Ref.
[50] are thus rather different from those that we shall discuss
in the following applications [33]. The general experimental
trends for both the fermionic [15] and the bosonic [20] spe-
cies suggest that broad, entrance-channel-dominated Fesh-
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bach resonances may be best suited to associate a large por-
tion of the atoms to Feshbach molecules and stabilize them.
Most of the currently known entrance-channel-dominated
Feshbach resonances have been found, however, in fermionic
gases [15,51].

Inelastic deexcitation collisions with background atoms
may be efficiently suppressed when the molecules are pro-
duced in the tight microtraps of an optical lattice with an
average occupation of two or three atoms per site, respec-
tively. Since the production of diatomic Feshbach molecules
and Efimov trimers in tight harmonic atom traps can be per-
formed in similar manners, we shall first discuss the under-
lying physical concept for the simpler case of the association
of a pair of atoms.

The association of diatomic Feshbach molecules using
magnetically tunable Feshbach resonances is closely related
to the variation of the two-body energy spectrum under adia-
batic changes of the magnetic field strength. Figure 1 shows
such an energy spectrum versus the magnetic field strength B
for a pair of °Rb atoms in a tight spherically symmetric
harmonic atom trap, whose high frequency of »,,=300 kHz
may be realized in a microchip trap [52] or in an optical
lattice [25]. The details of the underlying calculations are
explained in Appendix A. In Fig. 1 the binding energy of the
Feshbach molecule in free space is shown for comparison.
The spherical symmetry of the atom trap allows us to sepa-
rate the center of mass from the relative coordinates of the
atoms [24-26], and only the relevant levels of the relative
motion are depicted in Fig. 1. We have chosen the zero of
energy, for each magnetic field strength, at the dissociation
threshold of the entrance channel in free space. Following
the adiabatic curves of the energies clearly reveals that a pair
of 3Rb atoms occupying the level closest to the threshold on
the low-field side of the zero-energy resonance is transferred
into the level of the Feshbach molecule when the magnetic
field strength is varied adiabatically across the resonance.
The energy of the trapped molecular level and the free space
binding energy E, approach one another as the magnetic
field strength is increased. A similar statement applies to
their wave functions. This reflects the physical concept of the
adiabatic association of diatomic molecules in tight atom
traps.

The two-body trap level closest to the dissociation thresh-
old can, in principle, be prepared by loading a Bose-Einstein
condensate adiabatically into an optical lattice. In the case of
%Rb the negative background scattering length of Ape=
—443a, prevents such a condensate from being stable on the
low-field side of the resonance. To produce *’Rb, Feshbach
molecules via an adiabatic sweep of the magnetic field
strength, the Bose-Einstein condensate needs to be prepared
on the high-field side of the resonance before it is loaded into
the lattice. The resonance then needs to be crossed as quickly
as possible to reach its low-field side and, at the same time,
avoid a significant heating of the atomic cloud [33]. Such a
sequence of magnetic field sweeps is described in Ref. [20]
in the context of the adiabatic association of **Rb, Feshbach
molecules in a cold gas.

III. THOMAS AND EFIMOYV EFFECTS

In this section we discuss the Thomas and Efimov effects
in the three-body energy spectra of interacting Bose atoms.
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FIG. 1. (Color online) Magnetic field dependence of the vibra-
tional energy levels E,p of a pair of %Rb atoms in a Vho
=300 kHz trap (upper part) as compared to the binding energies of
the highest excited vibrational state of the 85Rb2 dimer molecule in
free space (lower part). The circles in the upper part indicate nu-
merical solutions of the two-body Schrodinger equation for a mi-
croscopic interaction potential explicitly incorporating the exact
scattering length as well as the exact asymptotic —Cq/7° interaction
energy, while the solid curves indicate calculations using the sepa-
rable potential approach of Appendix A. The diamonds in the lower
part are experimental binding energies obtained from Ref. [46], and
the squares indicate results of the full coupled-channels calculations
of Kokkelmans [44]. The solid curve indicates the dimer binding
energies obtained from the separable potential approach, while the
dash-dotted curve corresponds to their near-resonant approximation
of Eq. (5). The inset of the lower part of the figure shows the
singularity of the scattering length at the magnetic field strength
By=155.041 G [46].

We show that these phenomena occur when the binary scat-
tering length is tuned by a magnetic field in the vicinity of a
zero-energy resonance. We then describe how the Efimov
spectrum is modified in the presence of a trapping potential.
Our results indicate that it is the lowest-energetic Efimov
trimer state that can be populated by adiabatic changes of the
magnetic field strength.

A. Three-body energy levels in free space

Throughout this section, we consider three Bose atoms
that interact pairwise through their binary potential. This as-
sumption is justified for the description of weakly bound
molecules, like the Efimov trimers in the present applica-
tions, whose interatomic separations very much exceed the
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van der Waals length. Tightly bound trimer molecules may
be significantly influenced by genuinely three-body forces,
which we shall neglect in the following. We assume further-
more that the binary potential supports at most a single
bound state: the Feshbach molecule |¢,). We thus neglect all
tightly bound diatomic states, whose spatial extents are typi-
cally much smaller than the van der Waals length. In view of
the large separation of the length scales between Efimov tri-
mers and the Feshbach molecule on the one hand and the
tightly bound dimer states on the other hand, we believe that
this treatment provides an excellent approximation to the
three-body states and their low energies we consider in this
paper. We note, however, that any trimer state with an energy
above the two-body ground level can, at least in principle,
decay into a dimer bound state and a third free atom in ac-
cordance with energy conservation. As in free space the
binding energies of three atoms are thus strictly limited from
above by the two-body ground-state energy, the trimer mol-
ecules under consideration are all in metastable states. Their
associated lifetimes may depend sensitively on the details of
the binary and three-body interactions.

Given that the binary interactions support just a single,
arbitrarily weakly bound state, it has been predicted, in terms
of a rigorous variational treatment by Thomas [1], that three
particles can be comparatively tightly bound. The three-body
ground state can persist even when the binary interactions
are weakened in such a way that their only bound state
ceases to exist. Such three-body bound states that exist in the
absence of any bound two-body subsystem are usually re-
ferred to as Borromean states [53].

The Thomas scenario of Borromean states has been sub-
sequently generalized by Efimov [2], in a striking way, pre-
dicting that the number of three-body bound states of iden-
tical bosons increases beyond all limits when the energy of
the only two-body bound state is tuned towards the dissocia-
tion threshold. Efimov’s effect is closely related to the spatial
extent of the near-resonant two-body bound-state wave func-
tion, which is determined by the scattering length in accor-
dance with Eq. (4). According to Efimov’s treatment, it is
indeed the scattering length, rather than the range of the po-
tential, that sets the scale of the range of the effective three-
particle interactions at the low collision energies under con-
sideration. When the two-body binding energy reaches the
dissociation threshold these interactions therefore acquire a
long range. In contrast to a short-range binary potential,
however, long-range interactions can support infinitely many
bound states [54]. All these Efimov states are spherically
symmetric, and their energies accumulate at the three-body
dissociation threshold. Their number is predicted to follow,
in the limit |a|— o, the asymptotic relationship

1
Nifimoy = ;ln(pclal/h). (10)

Here p. is a momentum parameter related to the range of the
binary interactions. Efimov’s remarkable results have been
subsequently confirmed by Amado and Noble [55].
Efimov’s scenario can be realized, using the technique of
Feshbach resonances, by magnetically tuning the binary scat-
tering length of three Bose atoms in the vicinity of a zero-
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FIG. 2. (Color online) Magnetic field dependence of the vibra-
tional energy levels of 85Rb3 trimers relative to the binding energy
E, of the ®Rb, Feshbach molecule (using E,=0 for B<By) in free
space (cf. Fig. 1). The first Efimov states, whose energies are indi-
cated by the solid and dashed curves, emerge at about 154.4 G and
155 G, respectively. The energies of the other Efimov states are not
resolved even on the logarithmic energy scale. The second Efimov
state (dashed curve) ceases to exist at about 155.5 G.

energy resonance. Figure 2 shows the energy levels of three
85Rb atoms in free space versus the magnetic field strength in
the vicinity of the 155-G Feshbach resonance. The exact
three-body binding energies have been determined using the
momentum-space Faddeev approach [56] and the separable
binary potential of Appendix A. According to Eq. (10), the
number of Borromean Efimov states at negative binary scat-
tering lengths increases beyond all limits when the pairwise
attraction is strengthened in such a way that the two-body
bound state emerges at the dissociation threshold. Two of
their energies—i.e., the solid and dashed curves—are re-
solved on the logarithmic scale of Fig. 2. The dot-dashed
curve is associated with the energy of the comparatively
tightly bound Borromean state predicted by Thomas [1] on
the low-field side of the zero-energy resonance at By
=155.041 G (vertical solid line).

It turns out that, as the bond of the dimer state is strength-
ened any further, the energies of the Efimov states succes-
sively cross the two-body binding energy and become un-
bound. Beyond the crossing point, the Efimov states can
decay into a bound two-body subsystem—i.e., the Feshbach
molecule and a free particle—in accordance with energy
conservation. This explains why the number of three-body
bound states decreases as the attractive pairwise interactions
are strengthened in the presence of a two-body bound state.
In Fig. 2 we have chosen the zero of energy to be the three-
body dissociation threshold—i.e., the binding energy E, of
the Feshbach molecule. The energy E; of the second Efimov
state thus crosses the dimer binding energy at a magnetic
field strength of 155.5 G.

Following the rigorous proof of Efimov’s effect by
Amado and Noble [55], the parameter p, of Eq. (10) may be
estimated, using the separable potential approach to the low-
energy spectrum of a pair of alkali atoms of Appendix A, to
be
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FIG. 3. (Color online) Magnetic field dependence of the vibra-
tional energy levels Esp of three interacting ®Rb atoms in a low-
frequency vy,,=200 Hz trap as compared to the energies of the free
space Efimov states of Fig. 2. The energies of the trapped atoms are
shown relative to EZB+%thO, where we have chosen E,p as the
lowest energy of a pair of trapped 8Rb atoms—i.e., the two-body
level that correlates adiabatically—in the limit 1,,— 0, with the
binding energy E;, of the Feshbach molecule of Fig. 1. In analogy,
we have subtracted the dimer binding energy E, from the Efimov
trimer energies in free space for the purpose of comparison.

Do = 2h/(ma). (11)

In agreement with Thomas’ [1] and Efimov’s [2] original
suggestions, Eq. (11) recovers the order of magnitude of
fil regs, Where reffzi[r(1/4)/l"(3/4)]25z 2.9a is the effec-
tive range of the interaction between a pair of alkali-metal
atoms in the limit of large scattering lengths [57,58]. Equa-
tion (11) thus confirms that, in contrast to the associated
two-body problem, the low-energy physics of three Bose at-
oms crucially depends on the range of the binary potential. In
fact, in the hypothetical limit of a zero-range potential, not
only does the number of three-body bound states become
infinite, but also the three-body ground-state energy diverges
[1]. This singular behavior clearly reveals that the low-
energy three-boson problem is unsuited for a treatment in
terms of pairwise contact interactions in the absence of en-
ergy cutoffs.

B. Adiabatic association of Efimov trimers in an atom trap

The spatial confinement of an atom trap restricts the bond
length of the Feshbach molecule. This, in turn, implies that
the energy levels of three trapped atoms, unlike those in free
space, do not have any accumulation point even when the
magnetic field strength is tuned across a singularity of the
binary scattering length. Figure 3 reveals, however, that the
energy spectrum of three °Rb atoms depends sensitively on
the magnetic field strength, largely in analogy to the two-
body spectrum of Fig. 1. The energy levels in Fig. 3 have
been obtained from exact solutions of the Faddeev equations,
in the presence of a spherically symmetric trapping potential,
using the approach of Appendix B.
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We have chosen the low frequency »,,=200 Hz of a typi-
cal magnetic atom trap in Fig. 3, which allows us to directly
compare the energy levels of three 85Rb atoms in the pres-
ence of the trap with those of the Efimov states in Fig. 2.
This comparison shows that the trapped three-body energy
level E, (solid curve), closest to the three-body dissociation
threshold in free space (dotted horizontal line), correlates
adiabatically, in the limit v,,— 0, with the energy of the first
Efimov state. A magnetic field pulse sequence similar to the
one discussed in Sec. I B and in Ref. [20] can, in principle,
be used to populate the trapped three-body energy level as-
sociated with the solid curve in Fig. 3 on the low-field side of
By. An adiabatic upward sweep of the magnetic field strength
across the three-body zero-energy resonance of Fig. 2 at
about 154.4 G then transfers the trapped state into the first
Efimov state. The physical concept underlying the adiabatic
association of Efimov trimers in atom traps is, therefore,
completely analogous to the considerations on the production
of diatomic Feshbach molecules in Sec. II B.

IV. TRIMER MOLECULES IN AN OPTICAL LATTICE

In this section we describe three interacting *’Rb atoms in
a tight microtrap of an optical lattice site or in a microchip
trap with a realistic oscillator frequency. Our results indicate
that the spatial extent of the wave function of the first Efimov
state can be tuned in such a way that it is smaller than real-
istic mean interatomic separations of dilute gases. We dis-
cuss, furthermore, how the periodicity of an optical lattice
can, in principle, be used to detect the trimer molecules.

A. Three-body energy levels and wave functions in tightly
confining atom traps

The sites of an optical lattice, in general, confine the at-
oms much more tightly than usual magnetic traps for cold
gases. Their harmonic frequencies differ by several orders of
magnitude, from tens to hundreds of kHz in the case of a
lattice [25] or a microchip trap [23,52] as compared to about
100 Hz for a conventional magnetic trap. During the course
of our studies, we have calculated the energy levels of three
85Rb atoms for a variety of trap frequencies extending from
200 Hz in Fig. 3 to 1 MHz. Our results indicate that, despite
the pronounced differences in the spatial confinement, all
spectra follow the same trends in their dependence on the
magnetic field strength. The variation of the trap frequencies
mainly affects the spacings between the energy levels. In
fact, all our considerations with respect to the association of
Efimov trimer molecules depend just on the possibility of
trapping exactly three atoms rather than on the tightness of
the spatial confinement.

As a typical example of our results, Fig. 4 shows the
energy levels of three **Rb atoms versus the magnetic field
strength in a tightly confining atom trap with a frequency of
Vh,=300 kHz. We note that in Fig. 4 the energies are given
relative to the zero-point energy of three hypothetically non-
interacting trapped atoms, while in Figs. 2 and 3 we have
chosen the zero of energy at the three-body dissociation
threshold in free space—i.e., at the binding energy E, of the
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FIG. 4. (Color online) Magnetic field dependence of the vibra-
tional energy levels Esp of three S°Rb atoms relative to the zero-
point energy gh vy, Of three hypothetically noninteracting atoms in a
tightly confining »,,=300 kHz trap.

Feshbach molecule. The solid curve of E, in Fig. 4 thus
correlates adiabatically, in the limit »,,—0, with the first
Efimov state of Figs. 2 and 3. Figure 2 reveals that the
trapped first Efimov state is transferred into a metastable tri-
mer molecule, within a range of magnetic field strengths
from 154.4 G to at least 160 G, when it is adiabatically
released from the trap. The modulus of its binding energy is
always slightly larger than |E,|. These predictions suggest
that the adiabatic association of the first Efimov trimer state
is, in principle, feasible and leads to reasonably strong
bonds. We note that the production of the weakly bound
85Rb2 Feshbach molecules has been observed over a wide
range of magnetic field strengths [20].

Weakly bound molecules, such as Efimov trimers, are
characterized by a large spatial extent of their wave functions
[40]. In order to identify them as separate entities in a dilute
gas, it is crucial for the size of the molecules to be much
smaller than the mean spacing between their centers of mass.
As discussed in Appendix B, even the isotropic wave func-
tions of the Efimov trimers depend on three parameters and
can therefore not be directly visualized. To give an impres-
sion of the spatial structure of their wave functions, Fig. 5
shows the hyperradial probability densities P(R) of the three
lowest-energetic ®’Rb trimer states, at a magnetic field
strength of 158.1 G, for trap frequencies decreasing from 1
MHz down to 50 kHz. In analogy to the case of diatomic
molecules, the number of zeros of P(R) is related to the
degree of excitation of the three-body energy state. The solid
curves are associated with the first Efimov state, which can
be produced through an adiabatic upward sweep of the mag-
netic field strength. The wave function of this state extends
over a few hundreds of Bohr radii in the 1-MHz trap and
completely decays at about 2000 a.u. in the case of the 50-
kHz trap. The sizes of the trimer states produced are thus
comparable to the single-particle oscillator lengths (ay,
=[h/(mvy,)]"?~=1000 a.u. for *’Rb atoms in a 50-kHz trap).
This indicates that the three atoms occupy a volume compa-
rable to the size of the single-atom oscillator ground state.
Although these length scales very much exceed the spatial
extent of even the most loosely bound observed diatomic
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FIG. 5. (Color online) Hyperradial probability densities P(R) of
the lowest-energetic vibrational states of three %Rb atoms at B
=158.1 G for the trap frequencies v,,=1 MHz, 1,,=300 kHz, and
vho=50 kHz. The legends show the associated energies of the inter-
acting atoms relative to the zero-point energy of three hypotheti-
cally noninteracting atoms—i.e., E3B—ghvh0. The hyperradius is
given on a logarithmic scale.

ground-state molecule (the helium dimer [12]), realistic cold
gases are usually sufficiently dilute that the wave functions
of these Efimov trimers do not overlap each other once they
are adiabatically released from the lattice (cf., e.g., Ref. [59]
for an estimate of the remarkably large bond lengths of 6L12
Feshbach molecules produced in a dilute gas).

B. Detection of Efimov trimer molecules in an optical lattice

A variety of present day detection techniques for weakly
bound Feshbach molecules in cold gases relies upon direct rf
photodissociation spectroscopy [15], atom loss and recovery
measurements [16,20], or the spatial separation of the mo-
lecular cloud from the remnant atomic gas [17-19]. While all
these techniques may be applicable, in one way or another,
also to Efimov trimers, an optical lattice lends itself to a
rather different approach to their detection: the mass spec-
trometry using the periodic light potential as a diffracting
device. We shall focus in the following on the perspectives of
the diffraction technique.

The crucial coherence properties of Bose-Einstein-
condensed atomic gases loaded into optical lattices have
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been studied in detail in Ref. [22]. These experiments indi-
cate that the possibility of diffraction depends on the weak-
ness of the light potential. Contrary to this, the association of
Efimov trimers requires high tunneling barriers between the
individual sites to protect the molecules against inelastic col-
lisions. In accordance with Ref. [22], we expect that adia-
batically releasing the lattice depth transfers the gas of the
Efimov trimers produced from their insulating phase back
into the superfluid phase. Superfluid gases in optical lattices,
however, can be diffracted [22].

The spatial periodicity of the optical lattice implies that
the momenta of the cold molecules, when released from the
light potential, are determined by multiples of the reciprocal
lattice vectors with a negligible spread under the conditions
of superfluidity. The associated quantized velocity transfers
obtained from the lattice, and consequently also the diffrac-
tion angles, are therefore inversely proportional to the mo-
lecular mass. The principle of this mass selection technique
has been demonstrated in several earlier experiments on the
spatial separation of weakly bound helium dimers [12,13]
and trimers [13] as well as sodium dimers [60] from molecu-
lar beams. The freely expanding ®*Rb Efimov trimers of the
present applications may then be dissociated and imaged us-
ing the methods of Refs. [16-20]. The mass selection detec-
tion technique suggested in this paper is general and could be
applied, for instance, also to diatomic Feshbach molecules.

We expect that the most serious constraint on the produc-
tion and detection of Efimov trimers in optical lattices is
their intrinsic metastability. In the special case of 85Rb3 mol-
ecules there are two mechanisms that can lead to their spon-
taneous dissociation: The first mechanism consists of the de-
cay into a fast, tightly bound dimer molecule and a fast atom.
The second decay scenario involves spin relaxation of a con-
stituent of the trimer molecule in analogy to the studies of
Refs. [20,61]. While the present considerations do not allow
us to estimate the molecular lifetimes associated with the
first decay mechanism, it has been shown in Refs. [20,61]
that spin relaxation can be efficiently suppressed by increas-
ing the spatial extent of the molecules. It can be ruled out
completely for other atomic species, in which the individual
atoms are prepared in their electronic ground state. We are,
however, not aware of other well-studied entrance-channel-
dominated Feshbach resonances of identical Bose atoms be-
sides ®Rb.

V. CONCLUSIONS

We have studied in this paper the association of weakly
bound metastable trimer molecules from three free Bose at-
oms in the ground state of a tight microtrap of an optical
lattice site or of a microchip. Our approach takes advantage
of a remarkable quantum phenomenon in three-body energy
spectra, known as Efimov’s effect. Efimov’s effect occurs
when the binary scattering length is tuned in the vicinity of a
zero-energy resonance and involves the emergence of infi-
nitely many three-body molecular states. We have shown that
this scenario can be realized by magnetically tuning the in-
teratomic interactions using the technique of Feshbach reso-
nances.
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The association scheme for trimer molecules, suggested in
this paper, involves an adiabatic sweep of the magnetic field
strength across a three-body zero-energy resonance and can
be performed largely in analogy to the well-known associa-
tion of diatomic molecules via magnetically tunable Fesh-
bach resonances. Our results indicate that the predicted bind-
ing energies and spatial extents of the Efimov trimer
molecules produced are comparable in their magnitudes to
the associated quantities of the diatomic Feshbach mol-
ecules. We have illustrated our general considerations for the
example of 3Rb including a suggestion for a complete ex-
perimental scenario and a possible detection scheme.

Once the metastable trimer molecules are produced, the
possibility of tuning the interatomic interactions using Fesh-
bach resonances may, in principle, be exploited to study the
Efimov property of the trimer state. Since according to the
predictions of this paper it is the first Efimov state that gets
associated in an adiabatic sweep of the magnetic field
strength, the trimer molecules are expected to dissociate as
the pairwise attraction between the atoms is strengthened.
This, at first sight, counterintuitive scenario can be realized
by tuning the magnetic field strength away from the zero-
energy resonance on the side of positive scattering lengths.
Once the energy of the diatomic Feshbach molecule crosses
the binding energy of the trimers, the Efimov states dissoci-
ate into the Feshbach molecule as well as a third free atom.
In this way, the technique of Feshbach resonances could pro-
vide a unique opportunity to finally confirm this predicted [2]
but as yet unobserved fascinating quantum phenomenon in
the energy spectrum of three Bose particles.
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APPENDIX A: SEPARABLE TWO-BODY INTERACTION

In this appendix we provide a convenient effective binary
interaction potential that well describes the relevant low-
energy vibrational levels of an atom pair, both in free space
and under the strong spatial confinement of a tight microtrap
of an optical lattice site or of a microchip. We determine the
parameters of the effective potential in terms of the s-wave
binary scattering length a and the van der Waals dispersion
coefficient C4, which characterizes the interaction energy at
asymptotically large interatomic distances.

1. Overview of the separable potential approach in free space
a. Hamiltonian

We first consider a pair of identical Bose atoms of mass m
at the positions r; and r,, respectively, which interact via the
microscopic potential V in the absence of a confining atom
trap. The associated free-space binary Hamiltonian is then

given by the formula
Hipee = Hy™ + V. (A1)

Here the noninteracting Hamiltonian
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(A2)

accounts for the kinetic energy, where R=%(r1+r2) and r
=r; -1, denote the center of mass and relative coordinates of
the atom pair, respectively. We assume in the following that
the center of mass is at rest and focus only on the relative
motion of the atom pair. The noninteracting Hamiltonian in

free space then reduces to H=—%2V2/m.

b. Transition matrix

In our subsequent applications to three-body systems it
will be convenient to represent all bound and free-energy
levels of the binary subsystems in terms of their transition

matrix 7(z) associated with the relative motion of the atoms,
whose singularities as a function of the continuous variable z
determine the two-body energy spectrum. In general, the
transition matrix associated with the interaction potential V
can be obtained from the Lippmann-Schwinger equation [62]

T(z) = V+ VG (2)T(z). (A3)

Here égee(z)= (z—ﬁ{;ee)-l is the Green’s function of the rela-
tive motion of the atoms in the absence of interatomic inter-
actions.

c. Low-energy physical observables

The solution of the two-body Lippmann-Schwinger equa-
tion (A3) for the microscopic interatomic potential V(r) is a
demanding problem in its own right. The full binary interac-
tion, however, describes a range of energies much larger than
those accessible to cold-collision physics. We shall therefore
introduce a simpler effective potential which properly ac-
counts just for the relevant low-energy physical observables.
Considerations [39] beyond the scope of this paper show that
all physical observables associated with cold binary colli-
sions can be described by a single parameter: the s-wave
scattering length a. The T matrix determines the scattering
length by its plane-wave matrix elements in the limit of zero
energy:

1 4xmh?
(2wh)?

The very existence of the Thomas and Efimov effects
clearly reveals that cold collisions of three Bose atoms are
sensitive also to the spatial range of the interaction. At large
distances r the asymptotic form of the interatomic potential
is given by V(r) ~ —C4/r°, where Cg is the van der Waals

(p' =0|7(0)|p=0) = a. (A4)

r—o
dispersion coefficient. We shall thus determine the effective
binary potential of alkali-metal atoms in such a way that it
provides a straightforward access to the full 7 matrix and, at
the same time, recovers the exact scattering length a as well
as those low-energy physical observables that are sensitive
also to Cg, such as, for instance, the energies of the trapped
atom pairs in Fig. 1. As shown in Ref. [42], the Cy coefficient
enters these measurable quantities in terms of the mean scat-
tering length of Eq. (6). In our applications to energy spectra
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in the vicinity of a zero-energy resonance the mean scatter-
ing length a determines the binding energy of the highest
excited diatomic vibrational state (cf. Fig. 1) at positive scat-
tering lengths a by Eq. (7).

d. Solution of the Lippmann-Schwinger equation

To efficiently solve the two-body and three-body
Schrodinger equations, it is convenient to choose a (nonlo-
cal) separable potential of the general form (see, e.g., Refs.
[35-37])

Vsep = |g>A<g| (A5)

as an effective replacement of the full microscopic binary
interaction V(r). Here |g) is usually referred to as the form
factor that sets the scale of the spatial range of the potential,
while the amplitude A determines the interaction strength.
For convenience, we choose the form factor to be a Gaussian
function in momentum space [39]:

0,2 3/4 20,2
g<p>=<p|g>=(ﬁ) exp(—”zﬁz).

To adjust the amplitude A and the range parameter o in
such a way that V., recovers the scattering length a as well
as the mean scattering length a of the microscopic interaction
potential V(r), we determine the full two-body energy spec-
trum associated with the separable potential via its transition
matrix. We thus solve the Lippmann-Schwinger equation
(A3) formally, by iteration, in terms of its Born series:

(A6)

Trp(@) = 2 [ Vi 6550) [ Vi (A7)
=0

A simple derivation then shows that the 7 matrix f‘sep(z)

associated with V., is given by the formula

Toep(2) =€) Tree(2) g (A8)

Here the function 7¢..(z) can be determined from a geomet-
ric series to be

Tiee(2) = [A7" = (g|G*(2)| )] 7. (A9)

e. Adjustment of the separable potential

Evaluated at zero energy, Tee.(z=0) is related to the
s-wave binary scattering length a through Eq. (A4). Given
the Gaussian form of |g) in Eq. (A6), a spectral decomposi-
tion of the Green’s function égee(z) in terms of plane-wave
momentum states shows that its matrix element in Eq. (A9)

can be evaluated at zero energy to be (g|égee(0)|g)=
—2ma?/h?. This leads to the relation

AT 12(2ma?)

— B (Al())
1 —Vmola

which can be used to eliminate the amplitude A in favor of
the range parameter o and the scattering length a.

The single pole of 74..(z) at positive scattering lengths
determines the energy E, of the highest-excited near-
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resonant vibrational bound state (cf. Fig. 1). The adjustment
of the energy Ey to Eq. (7) has been performed in Ref. [39]
and determines the remaining unknown range parameter to
be

(A11)

o=\ mal2.

In our application to °Rb we use 0=69.58 a.u. which cor-
responds to C4=4703 a.u. [45]. The amplitude A depends on
the magnetic field strength B via the scattering length a in
accordance with Eq. (A10).

2. Energy levels of a trapped atom pair

a. Energy levels of the relative motion in the absence
of an interatomic interaction

In the following applications we describe the microtrap by
a three-dimensional spherically symmetric harmonic poten-
tial. The linear confining force then allows us to separate the
center-of-mass motion from the relative motion of a trapped
atom pair [24-26]. In the absence of an interatomic interac-
tion the Hamiltonian of the relative motion is thus given by

. #2 1<m>
Hy=— V2~ 2w p2.
0T T m2) r T2\ 7 )Pt

(A12)

Here wy, is the angular trap frequency. Throughout this ap-
pendix we choose energy states |<Pk1m,> of the harmonic os-
cillator with a definite orbital angular momentum, where [ is
the angular momentum quantum number and m;, is the orien-
tation quantum number. The associated energies are given by
Ey=hoy,(2k+1+3/2), where k=0,1,2, ... labels the vibra-
tional excitation of the atom pair [63]. We denote the spheri-
cally symmetric vibrational energy states by |¢;)=|¢00) and
their energies by E;=E,,. Their wave functions are given by

— e P PL(BR), (A13)

where Lf{”z) is an associated Laguerre polynomial. The pa-

rameter B=mawy,/(2%) is related to the harmonic oscillator
length a;, for a single atom—i.e., the trap length—by S
=1/(2a},).

b. Separable potential approach in the presence
of a trapping potential

The spherical symmetry of the trap allows us to determine
the energy levels of the relative motion of a pair of interact-
ing trapped atoms in complete analogy to their counterparts
in free space [24-26]. The associated Hamiltonian is then
given by

H=Hy+ V(r), (A14)

where V(r) is the spherically symmetric microscopic inter-

atomic potential and H, is the Hamiltonian of Eq. (A12). In

the following, we shall denote the energies associated with H
by EZB'
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Given that typically the trap length a;,, very much exceeds
the van der Waals length /4y, the full microscopic interac-
tion can be replaced by the separable potential of Appendix
A 1 to describe the limited range of energies involved in the
adiabatic association of molecules. The associated 7" matrix

f“sep(z) of the relative motion of a pair of trapped interacting
atoms can then be determined in analogy to Appendix A 1.
This yields

Toep(2) =) 7(2)(s].
The function 7(z) can be obtained from Eq. (A9) by replac-

(A15)

ing the Green’s function égee(z) in free space by its counter-

part Go(z)=(z—H,)™" in the presence of the trapping poten-
tial. This leads to the relation

-1
T(z)={[ﬂree(0)]' —4< )02/712 <g|Go(z)|g>} :

(Al6)

The poles of 7(z) determine the energy levels of the Hamil-
tonian (A14) in the separable potential approximation; i.e.,
the poles are located at the energies z=FE,g.

We have evaluated the function 7(z) in terms of the oscil-
lator states |¢,) of Eq. (A13) using the spectral decomposi-

tion of the Green’s function éo(z). The matrix element rel-
evant to Eq. (A16) is given by

(glGo(2)lg) = 5 Koot '<"°"'g>' .

(A17)
=0 2—Ex

During the course of our studies, we have compared the
separable potential approach to the two-body energy spec-
trum to predictions obtained with a microscopic potential
V(r) for a variety of scattering lengths and trap frequencies.
Figure 1 shows such a comparison for a rather tight
=300 kHz atom trap, which clearly reveals the applicability
of the separable potential approach in the range of energies
relevant to the adiabatic association of Efimov trimer mol-
ecules.

APPENDIX B: THREE-BODY ENERGY LEVELS
AND WAVE FUNCTIONS

In this appendix we derive the Faddeev equations that
determine the exact energy levels of three interacting Bose
atoms in the confining potential of a spherical trap. We then
describe a practical method to exactly solve these equations
in the separable potential approach.

1. Faddeev approach
a. Three-body Hamiltonian and Jacobi coordinates

Throughout this appendix, we assume that the atoms in-
teract pairwise via the potential V(r). The complete Hamil-
tonian is then given by

H=Hy+ V(ry) + V(ry) + V(rp,). (B1)

Here the noninteracting Hamiltonian
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FIG. 6. Jacobi coordinates of the relative motion of three atoms.
The set of coordinates p and r is selected in such a way that it is
suited to describe the hypothetical situation of an interacting pair of
atoms (2,3) with atom 1 playing the role of a spectator.

R, 1
Hy= > (— 2—V2 + = mwﬁ0r2> (B2)

i
i=1

accounts for the kinetic energy and the harmonic trapping
potential of each atom, while V(r; ) describes the interaction
between the atoms i and j (i,j=1, 2 ,3) in dependence on their
relative coordinates r;=r;—r;. In the following, we employ
the Jacobi coordinates R=(r;+r,+r3)/3, p=r,—(ry+r3)/2,
and r=r,-r; of Fig. 6 to separate out the three-body center
of mass. In analogy to the case of a pair of trapped atoms, the
harmonic force then allows us to divide the noninteracting
three-body Hamiltonian of Eq. (B2) into three harmonic os-
cillator contributions associated with the Jacobi coordinates.
The binary potentials involve only the relative coordinates p
and r. The complete three-body Hamiltonian can thus be
represented by

h? 5 h? 5
2(3 )V + = (3m)ooh0 - va
2 gm

(2 K2 1
+5(5m)wﬁ0p2— V2+—(ﬂ>wﬁor2

1 1
+V(r)+V<p+ Er>+V<p—5r>. (B3)

b. Faddeev equations for three trapped atoms

The Faddeev equations for the energy levels of three pair-
wise interacting atoms in the confining potential of a trap can
be derived largely in analogy to their counterparts in free
space [31]. To this end, we introduce the Green’s function

Go(2) = (z= Hy)™! (B4)

associated with the noninteracting Hamiltonian of Eq. (B2)
and denote the binary potential associated with the atom pair
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(i,j) by Vy=V(r;) for each of the three possible combina-
tions of atomic indices:

(ijk) = (1,2,3),(2,3,1),(3,1,2).

The stationary Schrodinger equation H|)=E|i) for a three-
body energy state |¢) can then be represented in terms of the
matrix equation

)= Go(E)(V: + V2 + V3)|i). (BS)
Introducing the Faddeev components
|4 = Go(E)Vil1h). (B6)

the three-body energy state is given by |¢) =) +| i) +|).
Inserting this Faddeev decomposition into Eq. (B5) on the
left-hand side and rearranging the terms yields

[1-Go(E)V ] l¢h) = Go(E)V([¢) + |4h3)). (B7)

Equation (B7) can then be solved formally for |¢;) by mul-
tiplying both sides with [1-Gy(E)V,]™! from the left. This
leads to the Faddeev equation

[ =[1=Gy(E)V T'Gy(E)V, () + |3)).  (BB)

The kernel of Eq. (B8) can then be expanded into the power
series associated with the inverse matrix [1-Gy(E)V,]™L.
This expansion yields

[1 - Gy(E)V,]'Go(E)V; = Gy(E) 2, [V, Go(E)FV,.
j=0
(BY)

In analogy to Eq. (A7), the sum on the right-hand side of Eq.
(B9) can be identified as the Born series associated with the
Lippmann-Schwinger equation

T] (Z) = Vl + Vl GO(Z)TI (Z) . (B 10)

Representing Eq. (B8) in terms of the T matrix T,(E) for the
interacting pair of atoms (2,3) then recovers the Faddeev
equation for |¢,) in its original form [31]

l1) = Go(E)T,(E)(|4) + |43)).

The Faddeev equations for |i,) and |¢3) are obtained by
cyclic permutations of the atomic indices. The resulting set
of three coupled matrix equations for [i), |1), and |i)
determines all energy levels of three interacting atoms in a
trap. We note that the formal derivations leading to Eq. (B11)
do not refer to the specific nature of the confining potential.
This is the reason for the general validity of the Faddeev
approach in free space as well as in the presence of an atom
trap.

(B11)

c. Faddeev approach for three identical Bose atoms

In the special case of systems of three identical Bose at-
oms, such as 85Rb3, the three Faddeev components depend
on each other through cyclic permutations of the atoms.
These permutations can be represented by a unitary operator
U—i.e., |gn)=U|) and |ifs)=U>| i) )—which transforms the
three-body wave functions in accordance with the formula
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UPY)(R,p,r) = H(R,p".r").

Here the primed coordinates are determined by (’r')=.7(’r'),
where

(B12)

13
--1 =1
2" 4
J= | (B13)
-1 -1
2

is a 6 X 6 matrix satisfying [>=1. The first Faddeev compo-
nent of Eq. (B11) is thus determined by the single Faddeev
equation:

|1y = Go(E)T(E)U +UP)|ipy). (B14)

d. Basis set expansion approach

In the following, we employ a basis set expansion ap-
proach to solve the Faddeev equation (B14), which provides
an extension of the momentum-space Faddeev approach [56]
to systems of trapped atoms. Since according to Eq. (B3) the
free Hamiltonian H,, can be divided into a sum of three in-
dependent harmonic oscillators, we choose the basis of prod-
ucts

i1, By i) = P krsa )| b N Prim))  (BLS)

of the energy states of the individual oscillators with a defi-
nite angular momentum; i.e., |Pgry, ), [Py, ). and |<pk,ml) are
the oscillator energy states associated with the Jacobi coor-
dinates R, p, and r, respectively.

The kernel of the Faddeev equation (B14) is diagonal in
the noninteracting energy states | KLML). The component
|4,) can thus be chosen in such a way that it factorizes into a
center-of-mass part and a relative part—i.e.,

|¢) = |(I)KLML>|lr/frlel>-

The relative part |¢/") then satisfies a reduced Faddeev equa-
tion at the shifted energy E;g=E—Eg;:

W) = G5 (Esp) T (Esp) U+ UPY 9.

Here G'(Esp) and T'F/(E;p) can be interpreted in terms of a
reduced noninteracting Green’s function and a reduced 7" ma-
trix, respectively, which depend only on the Jacobi coordi-
nates p and r describing the relative motion of the three
atoms.

In order to solve Eq. (B17), the basis set expansion ap-
proach takes advantage of the convenient diagonal represen-
tation of the reduced noninteracting Green’s function in
terms of the chosen basis states:

(B16)

(B17)

A

2 EZ | ¢K)\,u}\’ (Pklml>< ¢K)\,U.)\’ (Pklml|
Esg—En—Ey
(B18)

joe]

1
Gy'(Esp) = 2
K,kNI=0 ==\ m=-I

Since the reduced T matrix T'F'(E;p) includes just the inter-
action between the pair of atoms (2, 3), it is related to the T
matrix 7(z) of the relative motion of this atom pair by the
formula
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1
<¢K)\,u,)\» (Pklm1|Trle (E3B)|¢KI)\',LL;\’ @k’l’m;>

= <(pk]m]|T(Z)|qu’l’ml’>5KK’5}\)\'5/.L)\,LL)’\' (B19)
Here z=FE;3—E,, accounts for the energy of atom 1. The
kernel of Eq. (B14) is thus completely determined by the
solution of the two-body Lippmann-Schwinger equation in
the presence of the trapping potential.
The complete three-body energy state can be factorized in
analogy to Eq. (B16)—i.e.,
|¢/’> = |(DKLML>|¢re1>- (B20)
Given the solution of Eq. (B17), the reduced Faddeev com-
ponent |¢/%) determines |, by the relationship
| = (1 +U+ L)), (B21)
Equations (B17), (B18), and (B19) set up our general ap-
proach to the energy spectrum of three interacting atoms in a

trap, while Egs. (B20) and (B21) yield the associated three-
body energy states.

2. Solution of the Faddeev equations in the separable
potential approach

a. Faddeev equations in the separable potential approach

We shall show in the following that the separable poten-
tial approach to the two-body T matrix, in combination with
the basis set expansion, provides a practical scheme to ex-
actly solve the Faddeev equation (B17) in the presence of a
trapping potential. To this end, we apply Egs. (A15) and
(B19) to Eq. (B17). This yields

© o A
|l70rlel> = GBCI(ESB)E 2 2 |¢K)\M)\’g>T(E3B - EK)\)
k=0 N=0 u\=—\
X B 8l[U+ UL (B22)

Equation (B22) reveals that |") is of the general form

) = G5 (Esp)lf.8).

As only the unknown amplitude f o, =(b,nu, | /) needs to be
determined, the separable potential approach significantly
simplifies the Faddeev equation (B17) by reducing its dimen-
sionality from 6 to 3. We shall show in the following that due
to the spherical symmetry of the form factor |g), the number
of dimensions reduces even further to only 1 provided that
the three-body energy levels under consideration have
s-wave symmetry.

(B23)

b. Basis set expansion

In accordance with the basis set expansion approach, we
consider the projected amplitude 'fK)\:U“}\. The ansatz of Eq.
(B23) for the solution of the Faddeev equation (B22) then
determines the amplitude f, o by the matrix equation
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o o N

Jinu, = MEsp = E) > > > ICK)\M}\,K’)\',LL;\(E:iB)fK’)\’M)’\'

K'=0 N'=0 g/ =\

(B24)

In accordance with Eq. (B18), the reduced kernel matrix as-
sociated with this equation for f,, , is given by the formula

U+ UG (Esp)| s 8)-
(B25)

’CK)\ILL)\,K/)\I,LL;\(E?)B) = <¢K}\/L)\’g

The complete kernel also involves the function H(Esz—E,,)
which we have discussed in detail in Appendix A 1. Inserting
the spectral decomposition of the Green’s function of three
noninteracting trapped atoms of Eq. (B18) then determines
the reduced kernel matrix to be

4

[ [ [
ICK}\,LL}\,K’}\’,U,;\= E E 2 E

kk'=0 L1"=0 ==Ly =

XA Brengsy> Pram | (U + U2)|¢K'>\',L;, Purtrm)-
(B26)

<g|(toklml><¢k’l’m;|g>
E3B - EK,)\, - Ek/l/

c. Symmetry considerations

The spherical symmetry of the form factor |g) of Eq. (A6)
implies that only the spherically symmetric basis states | @)
=|@;00) contribute to the summation in Eq. (B26)—i.e., [
=/"=0 and m,:m[:O. As, moreover, the total angular mo-
mentum operator £=A+1 associated with the three-body
state |¢,) commutes with the permutation operator U, the
off-diagonal elements N # N’ and u# u, of the kernel van-
ish; i.e., the kernel does not couple solutions of different
angular momenta A. Furthermore, the Hamiltonian H com-
mutes with &/ which implies that the matrix element of (U
+UP) in the reduced kernel matrix of Eq. (B26) is nonzero
only if

k+k=Kk"+k'. (B27)
This is a consequence of energy conservation.

We shall focus in the following on those energy states of
three trapped interacting atoms that correlate adiabatically, in
the limit of zero-trap frequency, with the three-body s-wave
Efimov states. We thus restrict the discussion to three-body
states with zero total angular momentum £=0. In this case
all angular momentum quantum numbers are zero and may
be omitted. This implies that the kernel matrix in Eq. (B24)
reduces to

gk<¢K’ ¢k|(u+ u2)| ¢K”(Pk’>gk’
Eg - E. —E;

ICKK' (ESB) = 2
kk'=0

(B28)

and the amplitude f,,=(¢,|f) satisfies the matrix equation
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fK = T(ESB - EK) E ]CKK’(E3B)fK’ . (B29)

k'=0

In accordance with the ansatz of Eq. (B23), the first Faddeev
component is then given in terms of the amplitude f, and the
form factor g; by the formula

(Do ¥y = - LS (B30)

- E—E

3. Determination of the kernel matrix

A main difficulty in the numerical determination of the
amplitude f, from Eq. (B29) consists in calculating the re-
duced kernel matrix K,/ (Esg) for the variety of trap fre-
quencies studied in this paper. While in tight atom traps
(¥ho>>100 kHz) the discrete nature of the energy levels is
most significant, the opposite regime of low trap frequencies
(¥ho <1 kHz) involves a large range of vibrational quantum
numbers « leading to a continuum of modes in the limit
Vo — 0. To obtain a stable scheme for the determination of
the reduced kernel matrix in the limits of both high and low
trap frequencies, we have performed separate treatments of
the regimes of low and high vibrational quantum numbers «.
Since these aspects of the studies of trapped systems of three
interacting atoms differ significantly from the known tech-
niques to solve the Faddeev equations in free space [56], we
shall outline in detail the numerical procedure we have ap-
plied.

a. Kernel matrix at low vibrational excitations

In the limit of small « the determination of the reduced
kernel matrix /C,,s consists mainly of the calculation of the
matrix elements

Crarir =P ol [U+ U b 1)

We perform this calculation in the configuration-space repre-
sentation. To this end, it is convenient to introduce the aux-
iliary function

(B31)

B T(k+1)

2 3
m F<k+ —)
2

h(B3x) = L (). (B32)

This function is related to the spherically symmetric har-
monic oscillator states (cf. Appendix A 2) associated with the
Jacobi coordinates p and r by the formulas

b(p) = (B,: B0, (B33)

ou(r) = (B3 B, (B34)

respectively. Here the parameters ,Bp=§mwh0/ h and B,
=%mwho/ f account for the different masses associated with
the individual harmonic oscillator contributions to the three-
body Hamiltonian (B3). The matrix element involving the

permutation operator can then be represented by
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CK](,K/](/ :fd3p d3r lr//K(ﬁp;:Bppz)lj"k(ﬁr;ﬁrrz)

X [wK'(Bp;Bpp,z) l/lk’(ﬂr;ﬁrr,z)
+ ¢K’(ﬁp;ﬂpp,,2) lﬂk’(ﬂr;ﬁrruz)] .

Here the permutation operators I and U2 transform the co-
ordinates p and r into primed and double-primed coordinates
(f)=j(’:) and (f)=j2(f) respectively, in accordance with
the transformation matrix 7 of Eq. (B13). The transforma-
tion with 7 yields

gpretp 23 [3 . (B36)
P _4ﬁpp +4ﬁrr 4'8Pﬂrp r,

3 1 3
Bir'? =2 Bop® + B+ \  Bp ¥ (B3T)

This implies the relationship
Bop'+ B’ = Bop + B,

Similar relations hold for the double-primed coordinates with
the reversed signs in front of the square roots. The integrand
on the right-hand side of Eq. (B35), therefore, depends only
on the variables p and r in addition to the variable x
=p-r/(pr), which involves the angle between the coordi-
nates p and r. The integration over the remaining three vari-
ables is readily performed and leads to the formula

(B35)

(B38)

CKk,K’k’ = 4(277)2f Pzdpf I’zd}’ wx(ﬁp;ﬂppz) ¢k(ﬂr;ﬁr'r2)
0 0
X f] d < l 2 2 2 é )
B X WK' :Bp’4:8pp +4ﬂrr - \/ 4:8pﬂrprx
3,1, 3
X (//k’ Br;Z:Bpp + ZIBrr + Z:Bpﬂrprx . (B39)

This formula can be further evaluated by changing the vari-
ables to u=p3,p* and v=R,r* and using the explicit form of
the harmonic oscillator wave functions of Eq. (B32). This
evaluation yields

CKk,K'k’

I'k+1) T(k+1) T(«"+1) T'(k'+1)

= IK](,K'k"
3 3 3 3
N+ )Tlk+=- T\ "+ ||k + =
2 2 2 2

(B40)

The coefficients 1,y ;s that involve the associated Laguerre
polynomials read

IKk,K’k’ = f du ul/ze—uLE(l/Z)(u)f dv Ul/Ze—vL](cl/Z)(v)
0 0

|
Xf dx Py (u,0,x). (B41)
-1

Here the function
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I 3 3
Py (u,0,x) = L<1,/2)<—u +-v- —uvx)
< 4" 74" Ny
3 1 /3
XL;{I,/Z)(ZM + Zv + Zuvx) (B42)

is a polynomial of degree «’+k’ in the variable x. These
derivations reveal that the matrix element in Eq. (B40) is
independent not only of the interatomic interaction potential
but also of the frequency of the atom trap. The trap fre-
quency enters Eq. (B29) through the projections of the form
factor onto the basis states and through the energy denomi-
nator.

To further evaluate Eq. (B41), we represent the function
P (u,v,x) by the sum

k' +k'
Py (u,v,x) = 2 Pz,k,(u,v)x“y. (B43)
y=0
Here the coefficients PY,,,(u,v) depend on the variables u
and v. Equation (B43) then allows us to perform the integra-
tion over the variable x in Eq. (B41). Only the even powers
x7 of the variable x contribute to this integral, while all terms
involving the odd powers vanish. When v is even, however,
it turns out that the coefficients P?,,,(u,v) themselves are
bivariate polynomials in the variables # and v and can also
be expanded in powers of u# and v with expansion coeffi-
cients PZ?,{,. This expansion thus yields

K'+k" K k' -1

Pl (wo)= > X PTuv. (B44)
=0 =0
The representation of the expansion coefficients

PZ,k,(u,v) in Eq. (B44) in terms of a polynomial allows us to
take advantage of the general formula

f du MI/Ze—uLE(l/Z)(M)MT
0

0, 0=71<k,

oo <o

to perform the remaining integrations in Eq. (B41) over the
variables u and v. Here (;) is a combinatorial. Equation

(B45) thus determines the coefficients 7,y .+ of Eq. (B41) to
be

(B45)

K +k' ) K +k' 3 r
IKkK'k’:(_ 1)K’+k, 2 2 F<T+ _)< )
’ w0 Y+l = 2/ \k
(y even)

K +k' -7 3 "
X > F<t+ —)( )PZQ,. (B46)
t=k 2/ \k
The limits of the different sums in Eq. (B46) lead to a
further simplification in the determination of [, .+ as fol-
lows: The summation over the index 7 is limited by the con-
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dition k'+k'—7=k, which, together with the condition 7
=k for the index 7, implies the inequality «'+k' = k+k.
Similar considerations show that also the inequality «’+k’
< k+k is fulfilled, which, in summary, leads to the restriction
k+k=«'+k'. These explicit derivations simply recover Eq.
(B27), which we have obtained independently from general
symmetry considerations. Consequently, the summations
over 7and 7 in Eq. (B46) reduce to a single term determined
by 7=k and r=k. This gives the coefficient /4 ;s to be

Kk+k
3 3 2
IK,{,K,,(,=(_1)K+kr<,<+—)r<k+—) > ——PI.
2 2) 5 y+1
(y even)
(B47)

The remaining, as yet, undetermined expansion coeffi-
cients PZf,f, of Eq. (B44) can be obtained from the explicit

form of the associated Laguerre polynomials—i.e., Lfcllz)(x)
=27 C.¥'—and their expansion coefficients

S k+=
CKV:(_l) _‘ 2
V.

K—7V

(B48)

To this end, we consider the function Pz,k,(u,v) of Eq.

(B43), whose explicit form can be determined from Eq.
(B42) to be

3 Y2
PZ!kr(’/hU) = (Z) (uv)«//z

min(v,y)

K’ k'
14
XE CK’VE Ci'n E (_])a< )
=0 n=0 a=max(0,y-n) «

( i )(1 3 )V_a<3 l )nm_y
X —u+-—v —u+-v .
y—a/\4 4 4 4

(B49)

Equations (B44) and (B49) then give the remaining expan-
sion coefficients PZi‘,f, to be

min(x’,)
wck /12— k—k
PZ’](’ =4Vx Crt ! Clr k! E

a=max(0,y—k")

min(x’—a,k—y/2) < —a

m=max(0,k’ —k—a+y/2) 7

k'+a—vy
X 4

k-2 —
B n

3K—K’+0{+277'

(B50)

In order to summarize our results in a concise form, we
introduce the coefficients
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ykk
~ Vk!
P = — = ()T + DIk + 1PV,
Cx' k' Cr' k!

(B51)

which are obtained simply by dividing PZ',‘:, of Eq. (B50) by
the expansion coefficients CK/K/=(—1)K’/F(K'+1) and cprpr
=(—1)k'/ I'(k'+1) of the associated Laguerre polynomials.
An analysis of its summation limits shows that the sum over

7 in Eq. (B50) vanishes unless the conditions y<2k and y
<2k are fulfilled. In accordance with Eq. (B47), we thus

obtain
F<K+§>r<k+§) min(k+k,2 k,2k)
= 2 2 2 ! Lﬁw‘k
T = P DT + 1) SRS B
(y even)
(B52)

The complete matrix element of Eq. (B35) is then deter-
mined by the formula

3 3
I'(k+1) F<K+E) I'k+1) F<k+5>
F(K’+1)F(K,+§> F(k'+l)r<k,+§>

2 2

min(k+k,2 k,2k)
5yrk
X 2:; mP Z”(k’ . (B53)
r=

(y even)

CKk,K'k’ =

Since the triple summation over «, 7, and vy in Egs. (B50)
and (B53) contains only integer numbers, the calculation of
the matrix element C,y ;s is, in principle, straightforward.
As these numbers can, however, be very large in magnitude
and have alternating signs, we have employed a computer
algebra system to carry out the sum in multiprecision integer
arithmetic. This proved practical for the indices 0=k, «’
=40.

b. Kernel matrix in the limit of high vibrational excitations

The numerical determination of the matrix element
C . using Eq. (B53) becomes impractical in the limit of
large indices « and «’. We shall, therefore, provide a scheme
to directly determine the reduced kernel matrix for these
higher vibrational quantum numbers in terms of its
asymptotic form in the continuum limit. Starting from Eq.
(B25) evaluated at zero angular momenta A=0 and X\’ =0, the
exact reduced kernel matrix is given by the formula

ICKK’(E3B) = <¢K’g|(u+ uz)G{Jel(E3B)| ¢K”g>

_ % <¢)K’g (u+u2)|¢K” ¢k><¢k|g>
oo Eg—-E. —E

. (B54)

It turns out that, due to the permutation operators, the right-
hand side of Eq. (B54) depends just on the oscillator wave
functions ¢,(p), ¢,/ (p), and ¢;(r) in a limited range of radii
p and r set by the width of the form factor g(r). The typical
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length scale associated with the width of g(r) is set by the
range parameter o of Eq. (All) and is thus determined by
the van der Waals length [, 4w. As the van der Waals length is
typically much smaller than the harmonic oscillator length
ape=\h/(may,), the trapping potential is flat within the rel-
evant range of radii p,r =< o and the potential energy is much
smaller than the mean kinetic energy of the highly excited
oscillator states. We can, therefore, replace in Eq. (B54) the
Green’s function G&'(E;p) of the trapping potential by its
counterpart Gh*(Esp) in free space and perform the con-
tinuum limit of the oscillator states |¢,) and |¢@,).

Given that the radius p is limited by the condition p=<ao,
in the continuum limit the harmonic oscillator energy wave
functions ¢,y Mk(p) approach, up to a normalization constant,
the partial waves |g\u,)—i.e., the improper energy states of
the free-space Hamiltonian

A% (B55)

with a definite angular momentum.

These partial waves thus satisfy the Schrédinger equation
Hp|q)\p,)\2)=Eq|q)\M>\), associated with the kinetic energy E,
=q%/ [2(5m)], and are related to the plane waves |q’) by

q'lghmy)y = (=) q?8(g - q")Y{Mq'lq"),  (B56)

where Y4* is a spherical harmonic.
To determine the asymptotic form of the reduced kernel
matrix in the limit of high vibrational excitations, we insert

into Eq. (B54) two complete sets of improper states |g\ )
and |¢'\’ w)). This yields

ICKK’(ESB) -~

K,k —®

X {q00,g

quq2<¢xlq00>f dq’ q'*(q'00|¢,)
0

0

U+UP) G (E3p)|q'00,g).
(B57)

A simple calculation then shows that for high vibrational
quantum numbers « the function ¢*(¢,|q00) is sharply

peaked about the central momentum g at the matched ener-
gies E,=E,. This implies

~ \/4 . (2 3)
=1/= +—.
q 3m Who K 2

A similar relation holds for the central momentum g’ asso-
ciated with the function ¢'*(g'00|¢,/). We may, therefore,
evaluate the slowly varying matrix element (g00,g|(U/
+UP)GI(E45)|q' 00, g) in Eq. (B57) at =g and ¢’ =g". The
remaining integration over ¢ then yields

(B58)
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f dq q*(¢,]q00) = 2<—

0
(B59)

and the integration over ¢’ can be performed in an analogous
way. Using the spectral decomposition of the free-space
Green’s function in terms of plane-wave momentum states
and the explicit Gaussian expression for the form factor in
Eq. (A6), the remaining matrix element (g00,g|(U/
+UP)GE(E5p)|7'00,g) can be determined analytically. In
the limit of high vibrational excitations « and «’ the reduced
kernel matrix is then given by the formula

ICKK’(E3B)
3 3
F(K+ —) F(K’ + —)
1 2) \" "

I'k+1) T'(k'+1)

(%mwhool)3/2
3 h

=
|
K,k —00 NTT

3
X %exp({—(@z +q'%) - mEm} ol/hz)
qq’ 8

X{Ei([mEsg - (*+ 7' — qq')]o°1h?)
-Ei((mEsp - (7° +q'* + 47")]0*h?)}. (B60)

Here Ei denotes the exponential integral Ei(x)=[*_dr " 'e'.

4. Three-body energy wave functions
a. Basis set expansion of a three-body energy state

Once the reduced kernel matrix K, (E;5) has been cal-
culated, the three-body energies E;g and amplitudes f,
=(¢,|f) can be obtained from the numerical solution of Eq.
(B29). According to Egs. (B21) and (B23), each solution
completely determines its associated three-body energy state
by the formula

ey = (1 + U+ UG (E3p)

f.8)- (B61)

The numerical determination of the complete state | ;) re-
quires an expansion of Eq. (B61) into harmonic oscillator
states. Since throughout this paper we focus on three-body
s-wave states, a suitable basis set for the expansion is pro-
vided by the three-body oscillator energy states with zero
total angular momentum £ =A+1. The total angular momen-
tum quantum number of a three-body s-wave state is thus
given by £=0, and M =0 is its associated orientation quan-
tum number. The s-wave basis states are then related to the
oscillator energy states |¢K)‘Mx> and |¢k1m,> with A=/ and u,
=-m; by the formula

1
(_ 1)l—ml
¢K’()D ;L=0,M =0,l,l>= E e ¢Km’()D —m>'
| k c = i1 | b » Phi-m,
(B62)
Here (—1)""/y21+1 is a Clebsch-Gordan coefficient. Al-
though the permutation operator &/ commutes with the total
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three-body angular momentum L, it does not individually
commute with the partial angular momenta A and 1. Despite
the fact that |f) and |g) contain only contributions from the
spherically symmetric harmonic oscillator basis states |¢,)
and |¢y), respectively, the basis set expansion of the com-
plete state |¢,,) thus involves oscillator states |¢K>\u}\> and
|<Pk1m,> with all \,[=0,1,2,... values. This leads to the diffi-
culty that the matrix elements of Eq. (B35) need to be cal-
culated also between these states. While this effort will gen-
erally be inevitable, we shall show that, for the purposes of
this paper, it can be avoided. We utilize the fact that the
determination of matrix elements, in the three-body energy
states, of those quantities that commute with all three opera-
tors U, N, and 1 involves just the spherically symmetric os-
cillator states |¢,) and |@;). This is most evident for the
normalization constant and the orthogonality relation of the
three-body energy states.

b. Orthogonality and normalization

To derive the normalization constant of the fully symme-
trized three-body energy states as well as their orthogonality
relation, we consider a pair of three-body states |i,.) and
IzZre1> with the associated energies E;z and E3B, respectively.
Starting from Eq. (B61) and using the identity =1, the
overlap between these states is given, in terms of their first
Faddeev components, by the matrix element

<l7/rel|l//rel> = 3<le181|(1 +U+u2)|¢,r1el>_

Since both /¢! and |/¢!) can be expanded in terms of the
spherically symmetric oscillator states |¢,) and |¢;), we ob-
tain the formula

(B63)

(‘Zrel|¢rel> =3 E <~1el|¢;<’ (Pk>

K, k=0
Kk+k
X| (bl + 2 (Dl U+1P)
k'=0

X|¢K’?‘Pk’><¢x’9(pk’|l”iel> (B64)

Here we have used Eq. (B27) to eliminate the summation
over k' in favor of the relationship k' =k+k—«’'. Inserting
the ansatz of Eq. (B23) to eliminate the Faddeev components

|e) and | in Eq. (B64) in favor of |f) and |f), respec-
tively, then leads to the orthogonality relation

s - ng
<lr/jrel| lr/jrel> =3 2 ~ .
k=0 (Esp — E, = E)(Esp — E, — Ey)
Kk+k
X| fegkt 2 (b @l U+ U b @i f o i
Kk'=0

(B65)

In the special case of |ie)=|¢er)> Eq. (B65) also yields the
normalization constant of the three-body energy state |)).
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c. Hyperradial probability density

A symmetrized zero-angular-momentum three-body wave
function ¢, (p,r)=(p,r| ;) depends only on three vari-
ables among the six Jacobi coordinates [64]. These variables
may be chosen, for example, as the radii p=|p| and r=|r| and
the angle between p and r [64]. A common way to visualize
the spatial extent of three-body states by a one-dimensional
function involves the transformation of the Jacobi coordi-
nates p and r to hyperspherical coordinates. Among these
coordinates the hyperradius and hyperangle are given by

m 2 1
R(p.r) = \| =/ =p+ =12
(p,1) \/MR\/3P >

and tan ®(p,r)= \/gp/ r, respectively. Apart from R all hyper-
spherical coordinates are angular variables. The “mass” pa-
rameter up in Eq. (B66) ensures that R has the unit of a
length. In Fig. 5 we have chosen it to be up=m. The hyper-
radial probability density associated with the three-body state
|4y is determined, in terms of the projection operator

PR=fd3p &r

by the formula

(B66)

(B67)

p’r>5(R - R(p7r))<p’r 5

P(R) = <¢rel|PR|‘//rel>'

For a normalized three-body state P(R) satisfies the normal-
ization condition [{dR P(R)=1 and provides a measure of
the spatial extent of its wave function.

As the hyperradius of Eq. (B66) does not depend on the
angular variables and is also invariant with respect to U/, the
probability density P(R) can be calculated, similarly to Eq.
(B64), just in terms of the spherically symmetric oscillator
states |¢,) and |¢;). This yields

(B68)

P(R)=3 X, (W 1Prl b )| (i @il V)

K,k=0

Kk+k

+ 2 <¢K’ (Pk|(u + u2)|¢/<” (Pk’><¢l<’7 P | lvbliel> 5

k'=0
(B69)

where k' is given by the relationship &' =k+k—«'. To deter-
mine the matrix element

(PRl i) = J &p PP (p.r)]

X8R —-R(p,r)d(p)ei(r), (B70)

we first represent the delta function in Eq. (B67) by the for-
mula

12
S(R-R(p,r)) = %5(18;1/2(:8RR2 _ ,3pp2)”2 - 9.

I

(B71)

Here we have introduced the parameter Bp=puzw,,/fi. We
then analytically perform the five integrations over r and
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over the solid angles associated with p and r and substitute
in the remaining integral the variable p in accordance with
B,p*=PBrR*w?. To represent the matrix element in Eq. (B70)
in a concise form, we introduce the function

‘zfrlel(ﬁRRz 5 Wz)

[}

-3

K’ k'=0

T(«"+1) Tk +1) S8

3 3\Esg—E.—E;
F(K’ +—) I‘(k’+—> 3BT k
2 2

XL (BRWALY P (BRRA (1 - w)), (B72)

which can be evaluated numerically. Given the explicit form
of the harmonic oscillator wave functions in Eq. (B32), the
matrix element of Eq. (B70) can then be obtained from the
formula

(PRl b i) = 4BE*(BrR?)*exp(= BrR?)
I'lk+1) T'(k+1)

i)

1
XJ dwy1 - WZWZLLM)(,BRszz)
0

X

XLV (BRRA(1 = w2) P (BrR2 7).
(B73)

In this formula the integration over w lends itself to a nu-
merical evaluation by a Gauss-Chebyshev quadrature rule of
the second kind.

5. Numerical implementation

The analog of the momentum-space Faddeev approach
[56] to three interacting Bose atoms in a trap involves, con-
trary to its free-space counterpart, discrete Faddeev equations
represented by Eq. (B29) in the separable potential approach.
In the limit of low-frequency trapping potentials, however,
the basis set expansion leads to large kernel matrices and the
numerical determination of the fixed points in Eq. (B29) be-
comes impractical.

In order to demonstrate the orders of magnitude of the
kernel matrix, we consider the projection of the form factor
2:={@i|g) onto the harmonic oscillator basis. A simple cal-
culation based on Eq. (A6) shows that this projection is

given by the formula
3
r ( k+— )
N2

4 §3/4 1_§ k
8 ( ) Ck+1) "

SR\ T

(B74)

Here we have introduced the dimensionless parameter ¢
=B,0°=*3mwy,/h. The form factor thus decays like g
~¢2k¢ in the limit of large vibrational quantum numbers k.
In the case of *’Rb atoms the parameter  is on the order of
1.7X 1072 for a v,,=300 kHz atom trap, while it gets as
small as 1.1 X 1073 at a trap frequency of 1,,=200 Hz. If we
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estimated the order of magnitude of a numerical cutoff k,,,,
for instance, by supposing that the form factor is well repre-
sented when its value g, at k=k,,, has decayed to 10~>g,, we
would require only k,,,~?200 basis states in the case of a
300-kHz trap. For a 1-kHz trap, however, this number would
increase to k,,, = 320 000. At low trap frequencies the kernel
matrix would, therefore, become too large for a numerical
solution of Eq. (B29) to be practical.

To account for the discrete nature of the basis set expan-
sion, on the one hand, and the exponential scaling of gy, in
the limit of large k, on the other hand, we have introduced a
linear mesh of length N,=40 covering each of the lowest-
energy states and a connecting exponential mesh of the same
length containing the energetically higher states in the fol-
lowing way:

r J> 0s<j<N,,
TT AN, +|[eUNIE_1YE], N.<j<N,.

Here the symbol |x] indicates the largest integer less than or
equal to x, and ¢<<1 and ¢ are adjustable parameters. The
parameter S can be interpreted as the initial step size at the
transition from the linear to the exponential mesh—i.e.,
ky 11—ky = 6—which we have chosen as 6=2. The param-
eter ¢ is fixed by the requirement th_lzkmaX, leading to a
transcendental equation for ¢ which can be solved numeri-
cally. In our applications the complete mesh then consisted
of N;=80 points. We have generated an equivalent mesh for
the sampling of the vibrational quantum number «;, resulting
in an 80X 80 reduced kernel matrix K, (Esg), which has
been used for the numerical solution of Eq. (B29). Figure 7
shows the reduced kernel matrix for a 1,,=300 kHz atom
trap at a magnetic field strength of B=158.1 G. The solutions
[ of Eq. (B29) for the three lowest-energetic three-body
states obtained with the reduced kernel matrix of Fig. 7 are
illustrated in Fig. 8.

(B75)

6. Accuracy of the separable potential approach with respect
to three-body energy spectra

The range of validity of our exact solutions to the three-
body Faddeev equations is limited by the accuracy of the
interatomic potentials. Figure 1 clearly demonstrates that the
simultaneous adjustment of the separable potential of Appen-
dix A to the scattering length of Eq. (1) and to the formula
(7) for the binding energy of an alkali-metal van der Waals
molecule [42] accurately describes both the measurements of
Ref. [46] and their ab initio theoretical predictions [44]. This
accuracy of the approach with respect to the energies of
85Rb2 Feshbach molecules persists over a wide range of
magnetic field strengths, extending from the position of the
zero-energy resonance of about 155 G up to 161 G, which is
far beyond the range of validity of the universal formula (5).
Our separable potential approach also recovers the excited-
state energy spectra for a pair of °Rb atoms in a 300-kHz
trap which we have determined using a microscopic binary
interaction V(r) (see Fig. 1).

To demonstrate the validity of our separable potential ap-
proach also in its applications to three-body energy spectra,
we shall compare its predictions to the ab initio binding en-
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FIG. 7. The reduced kernel matrix /C, .,/ (E;5) of Eq. (B29), at
low vibrational excitations «, k" <100, for a 1,,,=300 kHz trap and
a magnetic field strength of B=158.1 G. The transition from the
linear to the connecting exponential mesh at k=N,=40 is illustrated
by the logarithmic scale of the axes associated with the vibrational
quantum numbers « and «’ [cf. Eq. (B75)]. In the linear part (0
<k, k' <N,) the reduced kernel matrix was evaluated exactly using
the results of Appendix B 3 while the approximation of Eq. (B60)
was used in the exponential part. The logarithmic scaling of the
axes associated with x and k' prevents the row x=0 and the column
k" =0 from being displayed.

ergies of “He; provided in Ref. [10]. As the low static elec-
tric dipole polarizability of helium and the correspondingly
small van der Waals coefficient of C4=1.461 a.u. [65] do not
allow us to accurately recover the helium dimer binding en-
ergy from Eq. (7), we have used E,/kg=-1.313 mK (kg
=1.380 650 5 X 1072 J/K is the Boltzmann constant) in ad-
dition to the scattering length of a=190.7 a.u. to adjust the

0'6_, e-—e—2411 kHz| |
[ 4 =—a — 425 kHz 1
0.4 +—++298 kHz | -

0.2

« o' e o s 5 3 =
! JUUDRORES S SS00ant
|| P
021 ol -
P
04F | i _
4 |
-0.6% =
: 1 ; ! i ! .
0 10 20 30 40
K

FIG. 8. (Color online) Solutions f,, of the matrix equation (B29),
using the reduced kernel matrix shown in Fig. 7, versus the vibra-
tional quantum number «. The legends show the energies E;p
—ghvho of the associated three-body levels of interacting %Rb at-
oms relative to the zero-point energy of hypothetically noninteract-
ing atoms in the v,,=300 kHz trap.
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parameters A and o of the separable potential of Appendix
A. These particular values of @ and E, correspond to the
Tang-Toennies-Yiu (TTY) helium dimer potential [65] re-
ported in Ref. [10] and determine the range parameter of the
separable potential to be 0=8.02 a.u. This approach predicts
the *He, ground-state energy to be E5P/kp=-96.9 mK, and
for the excited Efimov state we obtain ES"/kz=-2.09 mK.
These predictions only slightly overestimate the exact ener-
gies of E] ¥ /ky=—126.4 mK and E; ¥ /ky=-2.277 mK [10]
with relative deviations of 23% and 8%, respectively.

To study the uncertainties of our approach to determine
the separable interaction, we have also performed a different
adjustment of V., based on the requirement that its effective
range raf=(4o/\m)[1-\Vma/(2a)] exactly recovers the ef-
fective range of r.;=13.85 a.u. of the TTY potential in ad-
dition to the exact scattering length. This determines the
range parameter to be 0=6.31 a.u. The associated potential
Viep vields EyP/kg=~1.285 mK for the helium dimer, while
it predicts the trimer energies to be E}P/kg=—142.6 mK and
EXP/kg=-2.36 mK with relative deviations from the ab ini-
tio results [10] of 12% and 4%, respectively. Both adjust-
ments of the separable potential thus lead to similar degrees
of accuracy, which are comparable to the accuracy of the
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adiabatic hyperspherical approach of Ref. [5].

The small discrepancies between the predictions obtained
from the different separable potentials and the ab initio cal-
culations of Ref. [10] indicate a remnant sensitivity of the
trimer binding energies to properties of the microscopic bi-
nary interactions beyond those accounted for by the second-
order effective range expansion of the two-body scattering
phase shift. Such corrections can, in principle, be exactly
included in our calculations by taking advantage of the uni-
versal properties of low-energy three-body spectra discussed,
e.g., in Ref. [66]. This presupposes, however, that one of the
trimer binding energies is known either from experiment or
from ab initio calculations. For instance, adjusting V., in
such a way that it exactly recovers the trimer ground-state
energy of Ref. [10] in addition to the binary scattering length
yields 0=6.79 a.u., which recovers the exact energy of the
excited Efimov state reported in Ref. [10] to a relative accu-
racy of 0.5%. The studies of Ref. [67] suggest, however, that
the relatively small deviations between the ab initio and the
different approximations employed in the separable potential
approach may be physically insignificant due to the remain-
ing uncertainties of even the comparatively well-known he-
lium dimer interaction potential.
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