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Classical-trajectory Monte Carlo calculations of the electronic stopping cross section for keV
protons and antiprotons impinging on hydrogen atoms
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Using the classical-trajectory Monte Carlo (CTMC) method, the electronic stopping cross sections of hy-
drogen atoms by protons and antiprotons impact are calculated. The results show that the CTMC method
compares fairly well with previous quantum mechanics calculations of the stopping cross sections for the same
colliding pairs. It turns out therefore that the CTMC method constitutes a reliable and, computationally
speaking, convenient alternative to calculate the stopping of ions in matter. The present results also show that
the stopping appears to be particularly sensitive to the angular momentum (L) of the electron orbit. In the case
of protons, the highest sensitivity to L becomes evident around the energy of the maximum stopping. While for
antiprotons the largest sensitivity of the stopping to L is observed down at low bombarding energies, i.e., below

10 keV.
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I. INTRODUCTION

Although classical mechanics is not expected to accu-
rately describe the response of the electronic system during
the scattering of atomic species, classical models frequently
appear in the atomic collision literature [ 1-5] (and references
therein). In the case of stopping the situation appears to be
even more striking, since a model as simple as the classical
harmonic oscillator (CHO) has been recurrently utilized
since it was first introduced by Bohr in 1913 [6] and used to
calculate the stopping cross section,
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where e is the elementary charge, m is the electron mass, v is
the projectile velocity, €, is the vacuum permittivity, and w is
the frequency of the harmonic oscillator.

The success of the CHO seems to be, however, well jus-
tified, because this model is observed to account for the stop-
ping of high-energy ions in matter to within a remarkable
degree of accuracy and, as recent calculations showed [7], it
also seems to work fairly well down at low energies.

Admittedly, the advantage of a classical over a quantum
approach is clear. This stems from the fact that the motion of
a classical particle can be readily solved, whereas on the
quantum side, not only are more elaborate numerical tech-
niques required, but also several approximations have to be
introduced to calculate the time evolution of the electron
wave function. See, for example, the Bethe-Born expression
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where Z; is the atomic number of the target atom, I is the
mean ionization potential of the target electrons, and C is a
numerical constant associated with the shell structure of the
target atom. This equation was obtained by Bethe and Jackiw
[8] using the first-order Born approximation. Therefore it
may be accurate at large ions velocities but fails when the
ion velocity becomes similar to or lower than that of the
more external electrons in the target atom. On the low veloc-
ity regime the situation is not better either. Apart from early
papers [9-11] which produced estimates of the stopping
cross section from simple arguments, recent calculations,
though more elaborate, are based on the assumption that the
target electrons are part of a homogeneous Fermi condensate,
i.e., the electron gas [12—14]. Thus these models may be
appropriate for solid materials but one cannot expect them to
be accurate enough in the case of atomic targets.

Curiously enough, it was not until recently that the stop-
ping was calculated by solving the Schrodinger equation
[15,16] in such a way that one can regard them as the quan-
tum equivalent of the classical simulations. To this end, Schi-
wietz [15] projected the electron state into a complete base of
atomic orbitals and, then, solved the Schrodinger equation
using the so-called time-dependent close-coupling method,
whereas Trujillo er al. used a computational quantum-
mechanics approach known as the time-dependent varia-
tional principle (see Ref. [17] and references therein).

Going back to classical calculations, one finds that no
attempt at going beyond the CHO model and calculating the
stopping cross section using a potential other than the har-
monic has been reported. Therefore as yet it is not clear
whether the apparent success of classical calculations of the
stopping is nothing other than the result of a fortuitous can-
cellation of errors, i.e., those introduced by the use of clas-

©2005 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.72.022708

E. R. CUSTIDIANO AND M. M. JAKAS

sical mechanics on the one hand and the harmonic potential
on the other.

In order to investigate along such a direction, this paper
presents a comparison of the results of calculating the stop-
ping cross section of hydrogen atoms by collision with pro-
tons and antiprotons using the CTMC method, and those of
previous quantum calculations for the same colliding pairs in
Refs. [15]and [16]. According to the present calculations, the
classical approximation appears to reproduce available quan-
tum calculations fairly well. Moreover, the difference pre-
dicted by quantum calculations for protons and antiprotons
are nicely reproduced by the classical model. It turns out
therefore that the so-called classical-trajectory Monte Carlo
method [1] seems to be a quite reliable technique for calcu-
lating the stopping cross section of a hydrogen atom by pro-
ton and antiproton impact.

II. CTMC CALCULATIONS

Calculations in this paper are based on a computer simu-
lation technique known as classical trajectory Monte Carlo
(CTMC). It works by numerically solving the motion of the
classical electron in the target atom during the passage of the
bombarding ion (see Ref. [18]). By repeating such an event
or history a number of times, the stopping cross section can
be readily obtained. Such a number is normally the result of
a compromise between the running time and the requested
statistical error. In this paper, one thousand to one hundred
thousand histories are normally required to reach uncertain-
ties of the order of 10%, or smaller. Depending on the case,
execution times may take between a few minutes up to a
couple of hours running on a 1.2-GHz Pentium based PC. As
is often the case in the CTMC method, one history differs
from the other by the initial position and velocity of the
electron in the target atom. In this paper, the initial velocity
and position of the electron are picked at random following
the procedure that is described in Ref. [19]. Accordingly,
electrons are prepared in such a way that they are found
initially moving on randomly oriented orbits with a binding
energy Uy=-13.6 eV, and an eccentricity & picked at ran-
dom assuming that &> is a random, uniformly distributed
variable.

It must be mentioned that no energy transfer between the
nuclei is assumed in the present calculations. Actually, the
possibility of exchanging energy between the projectile and
target nuclei is included in this CTMC code, but it turned out
to be negligibly small even at the lowest bombarding energy
studied in this paper. As a matter of fact, except for small
impact parameters, the Coulomb repulsion (attraction) be-
tween the incoming proton (antiproton) and the target
nucleus is observed to produce negligible deflections. There-
fore as far as the stopping is concerned and within the bom-
barding energy range in this paper, one can readily conclude
that the so-called straight-line approximation works remark-
ably well.

III. RESULTS AND DISCUSSION

The stopping cross sections for protons impinging on hy-
drogen are plotted in Fig. 1. It shows experimental data from
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FIG. 1. Stopping cross section for protons impinging on hydro-
gen. Symbols show the experimental data from Refs. [20] (X), [21]
(O), [22] (¢), [23] (A), and [24] (*). Lines are quantum-mechanics
calculations after Schiwietz [15] (continuous) and Cabrera et al.
[16] (dotted). The classical Bohr predictions [6] are plotted as a
dashed line. Open squares indicate the results of the present CTMC
calculations.

Refs. [20-24], theoretical results using quantum mechanics
from Schiwietz [15] and Cabrera-Trujillo et al. [16], and the
present CTMC calculations. As one can readily see, the
CTMC results compares fairly well to both experimental
data and quantum results. This is particularly so at energies
larger than E,,,,, i.e., the energy at which the stopping cross
section reaches its maximum value (S,,,.). As a matter of
fact, in this high-energy regime quantum calculations and
CTMC results compare to experimental data remarkably
well. At energies smaller than E,,,, theoretical results deviate
from the experiments. However, this is not at all unexpected,
since at low ion velocities protons turn into neutral hydrogen
after a few collisions and therefore the contribution of neu-
tral hydrogen to the total stopping has to be included. This is
something, however, which is not included in the present
CTMC results or in the quantum calculations that appear in
Fig. 1. In addition to this, it must be taken into account that
the experiments use H, as a target, and not atomic hydrogen
as assumed in the calculations. This may also account for the
observed discrepancy, but, unfortunately, the present CTMC
code is not prepared to deal with both neutral projectiles or a
molecular target.

It should be noted that below the energy of the maximum
stopping the theoretical results in Ref. [15] become fairly
large. The origin of such a discrepancy can be attributed to
the fact that calculations in Ref. [15] are based on an expan-
sion of the electron wave function in terms of the eigenfunc-
tions of the target atom. Since at low bombarding energies
the stopping proceeds mainly from collisions where the elec-
tron is captured by the incoming ion (see below), it is clear
that using atomic orbitals centered on the target cannot ad-
equately describe an electron that moves away with the ion.
Thus it is to some extent to be expected that the results in
Ref. [15] fail at low bombarding energies. Interestingly
enough, the present CTMC calculations show an excellent
agreement with those in Ref. [16] a result that must be em-
phasized, since calculations in Ref. [16] were obtained using
a numerical technique that is assumed to be an accurate
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FIG. 2. Stopping cross section for antiprotons (p) impinging on
hydrogen. The continuous line shows experimental data for p on H,
in Ref. [25]. The dotted line denotes the theoretical results for p on
H from Ref. [26] and the dashed line shows the classical results of
Bohr [6]. Full squares show the present CTMC calculations.

method of solving the time-dependent Schrodinger equation
(see Ref. [17]).

The stopping cross sections for antiprotons (p) impinging
on H and H, targets are plotted in Fig. 2. The agreement
between experimental data and theoretical results appears to
be fairly good. Admittedly though, at low bombarding ener-
gies deviations between experiments and theoretical calcula-
tions are clearly observed. As electron capture has to be dis-
regarded this time, such discrepancies can be attributed to
the fact that the stopping is measured on a H, target, whereas
calculations are performed for atomic hydrogen. Of course
this may not necessarily be the case but, again, the present
simulations cannot be used to rule out such a hypothesis. It
must be noted thoughout that the CTMC results compare
remarkably well with the quantum calculations in Ref. [15].

For the sake of completeness, however, Bohr’s classical
predictions [6], given by Eq. (1), are also plotted in Figs. 1
and 2. The frequency of the harmonic oscillator (w) in
Bohr’s model is replaced by w=2m/T, where T is the period
of the classical electron in its orbit around the target nucleus,
i.e., T=(e*/2mey)[m/(2|Uy|)]*?, where Uy is the binding en-
ergy of the target electron. Bohr’s predictions seem to work
remarkably well at large bombarding energies. This is not
surprising though, since, except for small corrections,
namely the inner shell or the Barkas effect [27], the CHO
model is recognized for being a highly accurate model above
the energy of the maximum stopping.

Another interesting aspect of the stopping of hydrogen by
p and p collisions is illustrated in Figs. 3(a) and 3(b). There,
one can see S;y,/ S5 Scap!Siors a0 Seyo/ Sy, denoting the
fraction of the stopping cross section that is associated with
trajectories that ended up producing the ionization, the cap-
ture, or the excitation of the electron by the incoming pro-
jectile. It must be noted, however, that, since capture cannot
take place for antiprotons, only the ionization contributions
to stopping appear in this case. As one can readily see, at low
bombarding energies, capture appears to be strongly linked
to the stopping of protons. Actually, below 10 keV about
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FIG. 3. Fraction of the stopping for collisions that resulted in
either ionization (S,,,/S,,,), excitation (S,,./S,,,) of the target, or
capture (S.,,/S,,) of the target electron by the projectile. Open
symbols stand for protons that produced ionization (O), capture (V)
and excitation ([J), whereas full symbols denote the cases of ion-
ization (@) and excitation (Jll) by antiprotons.

70% of the stopping proceeds from collisions that have pro-
duced electron capture, whereas excitation accounts for the
remaining 30% and ionization plays scarcely any role in the
stopping of slow protons. With an increase of the bombard-
ing energy the importance of capture drops and, approxi-
mately around the energy of the maximum stopping, both
ionization and excitation become the two dominating pro-
cesses. As a matter of fact, the contribution of ionization to
stopping appears to reach a maximum at approximately 200
keV and, at larger energies, the stopping is equally shared
between collisions that resulted in the ionization and the ex-
citation of the target electron. And the latter applies to both
proton and antiproton projectiles.

In the case of antiprotons, ionizing collisions amount to
80% of the stopping at 1 keV. With an increase of the energy
such a fraction decreases slowly to reach 60% at 100 keV. At
larger energies it starts dropping at a faster rate, becoming
32% of the total stopping at the largest bombarding energy
calculated in this paper, namely 2.5 MeV. From the results in
Fig. 3 one can also conclude that the fraction of energy that
goes into excitation appears to be, approximately, a monoto-
nouosly increasing function of the bombarding energy. Such
a function, moreover, shows little dependence on the sign of
the projectile charge.

As was mentioned in a previous paper[19], the initial dis-
tribution of the electron has noticeable effects on the CTMC
calculation of the ionization and capture cross sections. In
order to verify whether or not the stopping shows a similar
sensitivity to the initial distribution, the procedure in Ref.
[19] was slightly modified so that, instead of choosing the
eccentricity at random, as in the original version of the algo-
rithm, it may optionally draw orbits with a fixed eccentricity.
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FIG. 4. Influence of the eccentricities of the orbits in the initial
distribution of the target electron upon the stopping cross section
for (a) protons and (b) antiprotons impinging on hydrogen atoms.

In this way, the stopping cross sections are calculated
for eccentricities =0, 0.707, and 1. Here, the case denoted
as £=0.707 stands for the calculations using randomly dis-
tributed eccentricities, that were already plotted in Figs. 1
and 2.

The results of such calculations are displayed in Figs. 4(a)
and 4(b). There, one can see that the influence of the eccen-
tricity on the stopping is evident and in such a way that it
depends on the sign of the projectile charge. In the case of
protons the stopping seems to exhibit a fairly large sensitiv-
ity to & around the energy of the maximum stopping. Actu-
ally, S,,.. is observed to be a decreasing function of . At
energies larger than E,,,, the same dependence upon & seems
to hold, but it becomes attenuated as the energy gets larger.
Below E,,,., however, no sign of sensitivity upon the eccen-
tricity is observed.

In the case of antiprotons the stopping shows a fairly large
dependence on the eccentricity at low bombarding energies.
As a matter of fact, below 10 keV there seems to be three
well-separated curves, that of =0 being the lower one,
and above the three of them is that of e=1. At higher ener-
gies, however, the results for the three eccentricities, i.e.,
=0, 0.707, and 1 grouped into a single curve, thus showing
that eccentricity plays almost no role in the stopping
for antiprotons bombarded with energies greater than, say,
30 keV.

It must be noted that for both protons and antiprotons
E,.. does not appear to be a function of . Such a result can
be ascribed to the fact that the maximum of the stopping is
expected to occur when the projectile velocity becomes simi-
lar to that of the electron in the target atom and, according to
the procedure used in this paper, the mean-squared value of
the initial electron velocity depends on the binding energy,
but not on e.

Since the eccentricity is connected to angular momentum
(L), ie., L=e}[m(1-&%)/(2|U,|)]"2, the results above show
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FIG. 5. Contribution to stopping from electrons initially orbiting
around the target nucleus with an angular momentum (L,,dL,),
where n=x,y,z [see Eq. (3)]. These results stand for (a) 80-keV
protons and (b) 1-keV antiprotons and, in both cases, initial eccen-
tricities are obtained using the procedure in Ref. [19].

that the stopping cross section is sensitive to L as well. Re-
markably though, a similar effect was already observed
in Ref. [28], where CTMC calculations of the charge-
exchange, ionization, and excitation cross sections showed a
substantial dependence on the initial angular momentum of
the electron. In the case of stopping, one can go further and
analyze the result of calculating F(L,), namely the contribu-
tion to the stopping from electrons that have had an initial
angular momentum within the range (L,,dL,) for n=x,y,z.
This function can be more formally defined as

| AN

F(L)=————
(L) P(L,)SdL,’

3)

where S is the total stopping cross section, and P(L,) is
the probability distribution of the initial angular momentum
L,.

The results of calculating F(L,) for 80-keV protons and
1-keV antiprotons are displayed in Figs. 5(a) and 5(b). These
two cases were chosen because these are, approximately, the
energies at which the stopping of protons and antiprotons
exhibited the largest sensitivity to eccentricity. As is ex-
pected for a classical electron, the angular momentum cannot
be larger than L,,,.=e*[m/(2|Uy|)]""?, therefore no data can
appear beyond such a value. It is worth noting that the de-
pendence of F' upon the initial distribution of & is partially
removed after dividing the results by P(L,) [see Eq. (3)].
However, the removal is not complete and the results plotted
in Figs. 5(a) and 5(b) may still depend on the initial distri-
bution of &, namely that in Ref. [19].
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FIG. 6. Electron moving on orbit with a small eccentricity and a
large, negative L,.

In the case of protons, one can readily see that large val-
ues of L, in an absolute sense, are clearly linked to large
stopping cross sections, whereas small angular momenta
show no correlation to large stopping. In order to understand
these results one must bear in mind that in the simulations
the projectile moves along the x direction and the impact
parameter is on the y axis. Therefore as a large |L,| is asso-
ciated with electrons which are orbiting on the same plane as
that of the proton scattering and, when close to the projectile,
these electrons may possibly have a small relative velocity
with respect to the incoming projectile (see Fig. 6), it is thus
obvious that these orbits are more amenable to absorbing
energy from the bombarding ion than any other.

The results look quite different for 1-keV antiprotons. In
this case, the angular momentum appears to be anticorrelated
to the stopping cross section. Therefore electrons with a large
angular momentum, in an absolute sense, are expected to
produce smaller stopping cross sections compared to those
with a small L. The origin of this behavior is not wholly clear
to the present authors. However, it seems to be connected to
the fact that low-energy antiprotons push the electron away

PHYSICAL REVIEW A 72, 022708 (2005)

from the target nucleus, thus promoting the electron to a
high-energy orbit and, as a result, the electron may become
either excited or ionized. According to this picture, it is ob-
vious that large-L electrons are more amenable to being ex-
cited or ionized compared with those with small L, because
the former are moving, all the time, at a large distance from
the nucleus, whereas in small-L orbits the electron must ap-
proach the nucleus at every turn and at least, then, the elec-
tron may not be as susceptible to being displaced from its
trajectory as might be in the case of a large-L orbit. It must
be noted though that a small enhancement of the stopping for
large |L | is observed, but it does not seem to be as large as in
the case of 80-keV protons.

IV. CONCLUSIONS

Classical-trajectory Monte Carlo (CTMC) calculations of
the stopping cross section of hydrogen by proton and anti-
proton collisions are presented. The results appear to agree
with experiments and previous theoretical calculations fairly
well. It turns out therefore that the CTMC method constitutes
a reliable means to calculate the stopping of hydrogen atoms
by proton and antiproton impact over a wide range of bom-
barding energies. The present results also suggest that the
stopping cross section is sensitive to the eccentricity—or the
angular momentum—of the electron orbit. Such a sensitivity
becomes particularly high at a range of the bombarding en-
ergy which depends on the sign of the projectile charge. For
protons the influence of eccentricity becomes apparent
around the maximum of the stopping, whereas for antipro-
tons the largest sensitivity is observed at low bombarding
energy, i.e., below the energy of the maximum stopping.
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