
Final-state probabilities for �−-decaying light atoms

Alexei M. Frolov and James D. Talman
Department of Applied Mathematics, University of Western Ontario, London, Ontario, Canada N6A 3K7

�Received 9 May 2005; published 22 August 2005�

The general theory of atomic processes stimulated by the nuclear �− decay is considered. The final-state
probabilities are determined for a number of �−-decaying light atoms �He-Ar� with the use of sudden
approximation.

DOI: 10.1103/PhysRevA.72.022511 PACS number�s�: 36.10.Dr, 13.35.Bv, 14.60.Ef

I. INTRODUCTION

In the process of nuclear �± decay a nucleus with atomic
number �or nuclear charge� Z emits an electron e− �or posi-
tron e+� and a neutrino � �or antineutrino �̄�. The energy
released in the �− decay is shared between the outgoing elec-
tron and the neutrino �antineutrino�. The nuclear recoil is
negligible because of the very large nuclear mass. The inci-
dent nucleus is transformed into the daughter �or secondary�
nucleus with the electric charge Z±1. A large number of
nuclear �± decays have been studied since the middle of the
1930s �see, e.g. �1�, and references therein�. Currently, the
nuclear � decay is of great interest in various applications to
modern technology. Let us mention only a few widely known
�−-decaying nuclei, which are of paramount importance for
nuclear technology: 3H, 233Th, 239U, and 247Pu. The three last
isotopes are used to produce the fissionable 233U, 239Pu, and
247Cm nuclei. Many other �−-decaying nuclei are of increas-
ing interest for medical applications. Note also that more
than 80% of all nuclei which form in nuclear reactors and
nuclear explosions are �± decaying isotopes �2�. The ioniza-
tion of inner-shell electrons leads to Auger transitions and to
optical radiation that may be important for remote diagnos-
tics in reactors.

The general equation of the �− decay can be written in the
form

Q → �Q + 1�+ + e− + � �1�

where Q is the nuclear charge of the incident nucleus, while
e− and � are the emitted �fast� electron and neutrino, respec-
tively. The Lorentz � factor ��=E /mec

2� of the electron
emitted in the �− decay is usually bounded between 2 and
10. In some cases, the Lorentz � factor can be �15–18. This
means that the momentum of the emitted electron �or �−

electron� is significantly larger ��103–104 times� than the
momenta of atomic electrons. This forms a basis for appli-
cation of the sudden approximation �see below� to describe a
number of processes in electronic shells of incident atoms
which are stimulated by the nuclear �− decay.

In general, the nuclear �− decay proceeds in many-
electron atoms/ions, rather than in bare nuclei. This means
that the emitted �− electron interacts with the atomic elec-
trons. The electron density distribution in the original atom/
ion is also affected by a sudden change of the nuclear charge.
These two effects produce excitations and even ionization of
the outer and internal electrons in the considered atomic sys-

tem. In other words, the ion which is formed after the nuclear
�− decay in the original atom can be found in various excited
states, including unbound states. A number of experiments
have been performed to measure the final-state probabilities
for many �±-decaying isotopes �3–5�. The work �5� contains
an extensive review of experimental literature related to vari-
ous atomic phenomena observed during the nuclear �± de-
cays in atoms.

The main goal of this study is to determine the final-state
probabilities for a large number of �−-decaying atoms. These
probabilities are of interest in a number of applications. Be-
low, such probabilities are determined with the use of sudden
approximation. The sudden approximation for the nuclear �−

decay in atoms has been proposed by Migdal �6�. In fact, the
sudden approximation can be also used to describe many
other atomic processes stimulated by the nuclear �− decays
in atoms and molecules. The present work has the following
structure. In the next section we discuss the sudden approxi-
mation which plays an important role for the consideration of
the nuclear �− decays in atoms. In the third section the sud-
den approximation is applied to compute the final-state prob-
abilities in one-electron atoms/ions, i.e., for the hydrogenlike
systems. In this case the closed analytic expressions for the
final state probabilities can be produced. In this section we
also discuss the approximate calculations of the ionization
probabilities for the K electrons and final state probabilities
for transitions which include the outermost electrons in the
negatively charged ions and many-electron atoms. The fourth
section contains analogous results for some many-electron
atoms. The concluding remarks can be found in the last sec-
tion.

II. SUDDEN APPROXIMATION

As mentioned above the momentum of the emitted �−

electron is significantly larger than the maximal momentum
of atomic electrons. In other words, the velocity of this fast
electron is much larger than the usual velocities of atomic
electrons. Therefore the emitted �− electron leaves the exter-
nal shells of an atom for time which is approximately ��

�a0 /c=��a, where � is the fine structure constant, a0 is the
Bohr radius, c is the speed of light in vacuum, and �a
=� / �e4me��2.418884�10−17 s is the atomic time �or one
atomic second, for short�. For internal atomic shells the cor-
responding passing time decreases with the radii of these
shells. This means that the sudden approximation �6� can be
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applied to determine the final-state probabilities in various
atoms. The goal of this section is to discuss the sudden ap-
proximation and its applications to the �− decay in various
atomic systems.

The principal question for the �− decaying atoms/ions is
to explain the mechanism of excitation and ionization of
atomic electrons. In general, the atomic electrons can be ex-
cited �and even ionized� due to the two following processes:
�1� excitation due to the direct electron-electron interaction,
and �2� excitation �ionization� related to the sudden change
of nuclear charge Q. Following �7� and �8� we shall show
below that only the second mechanism plays a noticeable
role in actual applications. In other words, the electron exci-
tation �ionization� due to the direct electron-electron interac-
tion is very small and even negligible in most cases. We
consider the single-particle excitation from a state �m to a
state �n with the beta electron in a plane wave state k scat-
tering to an outgoing state k�. The probability for this pro-
cess in first order perturbation theory is

W = �Vnm�k − k��
En − Em

�2

, �2�

where

Vnm�k − k�� =
1

�2	�3 � ei�k−k��·r�r − r��−1�n�r��*�m�r��drdr�

=
2

	

1

�k − k��2 � ei�k−k��·r�n�r�*�m�r�dr . �3�

The excitation probability is obtained by integrating over the
direction of k�. We note that

� f��k − k���d
k� = 2	�
−1

1

f��k2 − 2kk�t + k�2�1/2�dt

=
2	

kk�
�

�k−k��

k+k�
f�s�s ds

=
2	

kk�
�F��k − k��� − F�k + k���

	
2	

kk�
F��k − k��� �4�

where F��s�=sf�s�.
Since kk� is proportional to the beta decay energy, it can

be concluded that the probability of excitation by this mecha-
nism is negligible. However, this assertion must be qualified
since the outgoing electron is relativistic, and the wave num-
ber should be replaced by c. The probability is therefore
proportional to e4 /c2, i.e., to �2.

Consider now the excitation of atomic electrons due to the
sudden change of nuclear charge Q. As follows from the
general theory of sudden processes, in this case, the probabil-
ity amplitude equals the overlap integral between the initial
and final wave functions, i.e., Ai,f = 
�i�Q ;r� �� f�Q+1;r��.
Indeed, the time for which the emitted �− electron leaves the
atom is significantly shorter than the corresponding atomic
time. This means the electron density distribution cannot

change during the process and the initial atom suddenly finds
itself in the different nuclear field. For many-electron atoms/
ion this means that the initial wave function is projected to
the system of final stationary states �or final wave functions�
which correspond to an atom/ion with the different nuclear
charge Q+1. Note that the corresponding partial probabili-
ties Pi,f = �Ai,f�2 do not contain any small parameter. In gen-
eral, such probabilities are the factors close to unity �more
accurately: each of them varies between zero and unity�.

Below, our main goal is to determine such probabilities
numerically for a number of many-electron atomic systems.
In the next section, however, we consider some simplified
models in which the final state probabilities can be deter-
mined analytically, or numerically with the use of very
simple formulas.

III. RESULTS FOR SINGLE-ELECTRON SYSTEMS

In some cases the final-state probabilities during the
nuclear �− decay in atoms/ions can be evaluated numerically
and even analytically. Such cases include the one-electron
atomic systems, e.g., the tritium atom and various one-
electron ions. In other cases the electron density distribution
of the internal electrons �e.g., the K and L electrons� can be
approximated by some simple analytic functions �e.g., hy-
drogenic functions� and this simplifies significantly all calcu-
lations at the following steps.

First, consider the one-electron, hydrogenlike atom/ion.
For one-electron systems the corresponding results can be
obtained in closed analytic form. First, it can be shown that
the angular momentum � and its z projection m are con-
served during the nuclear �− decay in the one-electron atom/
ion �7�. This follows from the central symmetry of electric
field �apart from a negligible possible change in a hyperfine
interaction� which is created by the atomic nucleus. More-
over, the final-state probabilities Pn1n2

� for one-electron sys-
tems can be obtained analytically. In these cases, the initial
and final systems are the one-electron or H-like ions/atoms.
The corresponding analytic formulas for Pin,fi

� can be easily
obtained by applying the radial parts of the reduced hydro-
genlike wave functions in the form �8�:

�n,��Q,r� =
1

n
�Q�n − l − 1�!

�n + l�! 
1/2�2Qr

n

l+1

� �
k=0

n−l−1
�− 1�k

k!
� n + l

2l + k + 1
��2Qr

n

k

exp�−
Qr

n
� ,

�5�

where Q is the nuclear �i.e., positive� charge. By applying
this formula one finds an analytic finite sum express-
ion for the transition probability Pn1,n2

� which corresponds
to the �± decay from the initial �Q1 ,n1 , l� to the final
�Q2=Q1±1 ,n2 , l� states. The final analytic formula for An1,n2

�

takes the form
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An1,n2

� =
1

n1n2
�Q1Q2�n1 − l − 1� ! �n2 − l − 1�!

�n1 + l� ! �n2 + l�! 
1/2

��4Q1Q2

n1n2

l+1

�
k1=0

n1−l−1

�
k2=0

n2−l−1
�− 1�k1+k2

k1 ! k2!
� n1 + l

2l + k1 + 1
�

�� n2 + l

2l + k2 + 1
��2l + k1 + k2 + 2� !

�� n1n2

Q1n2 + Q2n1

2l+k1+k2+3

. �6�

The numerical calculation of different transition probabilities
with the use of Eq. �6� is straightforward and obtained results
�9,10� agree very well with the known probabilities for the
�− decay in the tritium atom. The overall probability to de-
tect the resulting He+ ion in one of its bound states is more
than 98%.

The second example is related to the ionization of internal
K shell in the �−-decaying many-electron atom. The ioniza-
tion of an electron from the K shell produces a vacancy
which is later filled by an electron from outer shells with the
emission of soft X rays. This explains why the ionization of
the electron from the K shell is so important. From a theo-
retical point of view the involvement of K electron in the
ionization process allows one to obtain the closed analytic
formulas for its probability. Indeed, the wave function of a K
electron can be approximated to a good accuracy by the
wave function of the ground state of a hydrogen atom with
the nuclear charge Q, i.e., Ri

Q�r�=Q�Q /	 exp�−Qr� in
atomic units ��=1,e=1,me=1�. The final wave function of
the continuous spectrum is �8�

Rf
Q+1�r� =� 8	

��1 − exp�− 2	���
exp�− ipr� 1F1�i�

+ 1,2;2ipr� , �7�

where �= �Q+1� / p, p is the momentum of outgoing electron
and 1F1�a ,b ;x� is the confluent hypergeometric function.
The overlap integral between Ri

Q�r� and Rf
Q+1�r�, i.e., the

probability amplitude Ai;f, can be computed analytically

2Q�2Q
���1 − exp�− 2	���

�
0

�

Ri
Q�r�Rf

Q+1�r�r2dr

=
4Q�2Q

���1 − exp�− 2	���
exp�− 2� cot−1 ��
�Q2 + p2��Q + ip�

. �8�

The expression for the probability takes the form

Pi;f = �Ai;f�2 =
32Q3p

�Q + 1��1 − exp�− 2	���
exp�− 4� cot−1 ��

�Q2 + p2�3 .

�9�

The analytic methods can be also successfully applied to
determine the final state probabilities for the transitions
which include the outermost electron�s�. In many cases in
�−-decaying many-electron atoms/ions the overall changes
of internal electron density are relatively small. In contrast
with this, the distribution of the outermost electron�s�

changes drastically, if the nuclear charge Q increases by +1.
In particular, this is the case for the negatively charged ions,
e.g., for the T− and O− ions, and also for the neutral atoms of
alkali metals, e.g., for the Na and K atoms. As is well-known
�see, e.g., �11�� the radial wave function of an arbitrary
atomic system at large r has the following asymptotic form:

Ri
Q�r� 	 rb1−1exp�− t1r� = rQ*/t1−1exp�− t1r� , �10�

where t1=�2I1, b1=Q* / t1, and Q*=Q−N+1. An analogous
expression can be written for the wave function �at large r�
of the final atomic system

Rf
Q�r� 	 rb2−1exp�− t2r� = rQ*/t2−1exp�− t2r� , �11�

where t2=�2I2, b2=Q* / t2, and Q*=Q−N+2.
Note that the last two equations represent the asymptotic

forms of the actual wave functions at large r. To compute the
final-state probabilities for the �−-decaying atom/ion one
needs to know the wave function in the whole space, rather
than its long-range asymptotic. Nevertheless, to perform ap-
proximate evaluations we can assume that Eqs. �10� and �11�
represent the actual wave functions everywhere. The corre-
sponding unit-norm wave functions are

RN;i
Q �r� =

�2t�b�2t
�
�2b + 1�

rQ*/t−1exp�− tr� , �12�

where b=b1, b2 and t= t1, t2. By using these expressions one
finds the following formula for the final ground-to-ground
state probability:

Pgg =
�2t1�2b1+1�2t2�2b2+1


�2b1 + 1�
�2b2 + 1�

2�b1 + b2 + 1�
�t1

2 + t2
2�b1+b2+1 , �13�

where b1 and t1 are defined above, while b2= �Q−N+2� / t2

and t2=�2I2, where I2 is the corresponding ionization poten-
tial of the secondary atomic system, i.e., the ion/atom which
has been created during the �− decay. This formula also has
a good accuracy for the negatively charged ions and rela-
tively good accuracy for the neutral atoms.

The formula, Eq. �10�, can be used also to determine the
ionization probability in the case of �−-decaying negatively
charged ions. In general, the nuclear �− decay in the nega-
tively charged ions is of interest in some astrophysical prob-
lems. The probability amplitude takes the form

C� 2

	k
�

0

�

exp�− t1r�sin�kr�dr = C� 2

	

1

�2I + 2E�
,

�14�

where k=�2E and C is the normalization constant for the
original wave function of the outermost electron. For the
ionization probability, one finds

Pi =
C2

2	�I + E�2 . �15�

IV. RESULTS FOR MANY-ELECTRON ATOMS

In general, the analytic methods described above can be
applied to a very restricted number of actual problems. To
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determine the final-state probabilities in �−-decaying many-
electron atoms/ions one needs to use the numerical methods
based on the self-consistent field model.

As shown above the final-state probabilities for the
�−-decaying atoms are expressed as the overlap integrals be-
tween the initial- and final-�bound� state wave functions. In
this study, for many-electron atoms/ions we shall use the
relativistic atomic structure program GRASP �12�, although
for the systems considered here, relativity cannot have a sig-
nificant effect. Since the change in the nuclear potential is a
monopole, only transitions conserving the total J and parity
occur. The GRASP program has been modified by one of us
�13� so that the relativistic orbitals are obtained from a local
central potential constructed so that the energy, or a weighted
average of energies, is stationary with respect to variations in
the potential. This is a generalization to the relativistic case
of the optimized potential model �14� and the multiconfigu-
ration optimized potential model �15�. Although this effec-
tive potential approach is somewhat less general than the
variation of all the orbitals independently, it eliminates the
problem of maintaining orthogonality of the orbitals, and it
appears to have more satisfactory convergence properties.
Results in the single-configuration, nonrelativistic case are
essentially the same as Hartree-Fock results �16�.

The relativistic wave functions are, in the notation of �12�,

�
PJM� = �
r

cr
�rPJM� , �16�

where the cr
 are the mixing coefficients obtained by diago-
nalizing the Hamiltonian. The �rPJM� are configuration state
functions obtained from a particular configuration defined by
a choice of N orbitals from the finite basis:

�rPJM� = �
m1¯mN


rPJM�m1 ¯ mN�

�� 1

N!
det��n1�1m1

�r1� ¯ �nN�NmN
�rN�� .

�17�

The index r labels the various PJ states obtained from a
particular configuration. If the complete Hamiltonian is di-
agonalized, the results are independent of how the PJ pro-
jection is performed.

The matrix elements of the overlap are given by



�P�J�M��
PJM� = �
rr�


r�P�J�M��rPJM�

= �
rr�


r�PJM�rPJM��PP��JJ��MM�.

�18�

The configurations are defined by N pairs �n1�1�¯ �nN�N�
and are orthogonal unless �n1�1�¯ �nN�N� is a permutation
of �n1��1��¯ �nN��N� �. To simplify the calculation, the same
configuration set is chosen for the parent and daughter at-
oms; the angular momentum projections are the same, and
the overlaps depend only on the radial function overlaps. The
overlaps are then zero unless the same N orbitals are occu-

pied in configuration state functions r and r�. Then


r�PJM�rPJM� = �
m1¯mN


PJM�m1 ¯ mN�2

�
1

N!
� det��n1��1�m1�

� �r1� ¯ �nN��N�mN�
� �rN��

� det��n1�1m1
�r1� ¯ �nN�NmN

�rN��

�dr1 ¯ drN = det�
�n���
� ��n��� . �19�

The overlaps of the initial- and final-state wave functions are
therefore given by



�PJM�
PJM� = �
rr�

cr�
�cr

r�PJM�rPJM� . �20�

Wave functions for the final state ion are obtained by
minimizing the average energy, as weighted by the statistical
weights 2J+1, over the configurations of interest. For ex-
ample, in the case of O, the configurations included are
2s22p4, 2s2p33p, and 2s2p43s. Thus there may be more than
one final state from a given configuration state. The initial
state is, as noted above, obtained using the same configura-
tion set. However, the states are computed in the potential
obtained from the single configuration ground state calcula-
tion in order to obtain the optimum ground state description.

The results shown are for transitions from the ground
state of the initial atom to the ground state and lowest excited
states of the positive ion. The former are shown in Table I.
Transition amplitudes for the first row elements are given in
Table II, and for the second row elements in Table III. It
appears that, in general, the amplitudes for excitation to low-
lying excited states are very small. The ionization potentials,

TABLE I. Transition amplitudes and probabilities for the
ground-state to ground-state transition for �− decay, together with
their ionization potentials �I.P.� of the initial state.

Atom Ion Amplitude Probability I.P.�eV�

He Li+ 0.855 0.731 24.59

Li Be+ 0.736 0.541 5.39

Be B+ 0.762 0.581 9.32

B C+ 0.794 0.630 8.30

C N+ 0.820 0.673 11.26

N O+ 0.842 0.709 14.53

O F+ 0.858 0.736 13.62

F Ne+ 0.871 0.759 17.42

Ne Na+ 0.873 0.762 21.56

Na Mg+ 0.791 0.625 5.14

Mg Al+ 0.797 0.635 7.65

Al Si+ 0.802 0.643 5.99

Si P+ 0.814 0.662 8.15

P S+ 0.828 0.685 10.49

S Cl+ 0.839 0.704 10.36

Cl Ar+ 0.849 0.722 12.97

Ar K+ 0.845 0.715 15.76
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which are also an indication of the atomic stability, are also
shown in Table I.

V. DISCUSSION AND CONCLUSION

The general theory of atomic excitations during the
nuclear �± decay is considered. The final-state probabilities
are determined numerically for a number of many-electron
atoms. In fact, our present results include the ground-ground
transition probabilities Pgg for a number of light atoms He-
Ar. All these probabilities are determined with the use of
sudden approximation �6�. The sudden approximation pro-
vides a sufficient accuracy to describe atomic excitations in
�−-decaying many-electron atoms. Note that the sudden ap-
proximation can be also used to study the �− decay in mol-
ecules �17�.

As follows from our present results for the He, Li, …, Ar
atoms the ground-ground transition probabilities depend

upon the nuclear charge Q and total number of electrons Ne
in the considered system. In general, the ground-ground tran-
sition probabilities are maximal for the inert gases He, Ne,
Ar �Pgg�0.715–0.762� and halogens F, Cl �Pgg

�0.722–0.759�. On the other hand such probabilities are
minimal for alkali metals Li, Na, K�0.541–0.625. In gen-
eral, the maximal difference in the Pgg probabilities de-
creases when the nuclear charge increases, e.g., for the He
and Li atoms ��0.19, while for the Ne and Na ��0.137.

The probabilities for transitions to low-lying excited
states are relatively small. It appears that most of the strength
not contained in the ground state transitions is to ionization
states, probably from the inner shells. This question will be
studied further in the future.

In conclusion, we want to mention that this work opens an
avenue in theoretical atomic spectroscopy—atomic/optical
excitations during the nuclear reactions. In the case of
nuclear �± decays such excitations are produced by the sud-

TABLE II. Transition amplitudes for the lowest single excitations following �− decay.

Atom Ion Excitation Amplitude Atom Ion Excitation Amplitude

He Li+ 1s→2s 0.074 N O+ 2p→3p 0.024

He Li+ 1s→2s 0.042 N O+ 2s→3s −0.013

Li Be+ 2s→3s −0.014 O F+ 2p→3p 0.014

Li Be+ 2s→4s −0.006 O F+ 2p→3p� 0.030

Be B+ 2s→3s 0.060 O F+ 2s→3s 0.020

Be B+ 2s→4s 0.031 F Ne+ 2p→3p −0.026

B C+ 2p→3p 0.025 F Ne+ 2p→3p� −0.043

B C+ 2s→3s −0.033 F Ne+ 2p→3p� 0.015

B C+ 2s→3s� −0.011 F Ne+ 2s→3s� −0.007

C N+ 2p→3p 0.027 F Ne+ 2s→3s� −0.007

C N+ 2s→3s 0.023 Ne Na+ 2p→3p 0.121

C N+ 2s→3s� 0.009 Ne Na+ 2s→3s 0.035

TABLE III. Transition amplitudes for the lowest single excitations following �− decay for the second row
elements.

Atom Ion Excitation Amplitude Atom Ion Excitation Amplitude

Na Mg+ 3s→4s 0.086 P S+ 3s→4s 0.020

Na Mg+ 2p→3p −0.032 P S+ 3s→4s� 0.013

Na Mg+ 2p→3p� −0.044 S Cl+ 3p→4p −0.013

Mg Al+ 3s→4s 0.104 S Cl+ 3p→4p� 0.004

Mg Al+ 2p→3p 0.048 S Cl+ 3s→4s −0.012

Al Si+ 3p→4p 0.016 S Cl+ 3s→4s� −0.009

Al Si+ 3s→4s −0.007 Cl Ar+ 3p→4p −0.002

Al Si+ 3s→4s� 0.007 Cl Ar+ 3p→4p� 0.004

Si P+ 3s→4s −0.010 Cl Ar+ 3s→4p� −0.003

Si P+ 3s→4s� −0.011 Cl Ar+ 3s→4s 0.010

Si P+ 3p→4p 0.002 Cl Ar+ 3s→4s� 0.007

P S+ 3p→4p −0.004 Ar K+ 3p→4p −0.016

P S+ 3p→4p� −0.004 Ar K+ 3p→4p� 0.105

P S+ 3p→4p� 0.009 Ar K+ 3s→4s 0.021
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den nuclear processes/reactions. The observed optical spectra
of the secondary atoms �or daughter atoms� are unique and
can be used to identify the �± decaying isotopes from large
distances. In this study we have restricted ourselves to the
consideration only of nuclear �− decays in atomic systems.
The analysis of analogous �+ decays and sudden neutron
shake can also be performed with the use of the sudden ap-
proximation described in this study. However, the analysis of
nuclear recoil in reactions with neutrons requires the consid-
eration of atomic states with higher values of angular mo-

menta. The analysis of atomic excitations during �-decay,
nuclear fission, �n ; t�-, �n ;��- and �n ; p�-reactions is signifi-
cantly more complicated and requires application of the new
methods. The theory of atomic excitations during such pro-
cesses will be developed in our future studies.
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