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We present a detailed analysis and design of a neutral atom quantum logic device based on atoms in optical
traps interacting via dipole-dipole coupling of Rydberg states. The dominant physical mechanisms leading to
decoherence and loss of fidelity are enumerated. Our results support the feasibility of performing single- and
two-qubit gates at MHz rates with decoherence probability and fidelity errors at the level of 10−3 for each
operation. Current limitations and possible approaches to further improvement of the device are discussed.
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I. INTRODUCTION

Motivated by the discovery that quantum algorithms can
provide exponential gains for solving certain computational
problems, numerous proposals have been advanced for ex-
perimental realization of a quantum computer �1�. While a
useful processor remains far off, ground breaking experi-
ments have demonstrated controlled evolution of a few qu-
bits and implemented basic quantum algorithms for compu-
tation and error correction �2–8�. Among the range of
physical systems that have been identified as candidates for
implementing quantum logic the most extensive laboratory
results so far have been obtained with cold trapped ions �9�
and nuclear magnetic resonance �NMR� in macroscopic
samples �10,11�.

Within the last few years neutral atoms have emerged as a
possible route to experimental quantum logic. The most ob-
vious distinguishing feature between neutral atom and
trapped ion schemes is the absence of strong Coulomb forces
in the former. Coulomb forces between ions couple strongly
the motional degrees of freedom. This can be utilized to
entangle any two of a linear string of ions, as was first elu-
cidated in the work of Cirac and Zoller �12� and demon-
strated experimentally in Boulder �13� and Innsbruck �14�.
The lack of a strong Coulomb interaction in neutral atoms is
advantageous as regards decoherence, since coupling to stray
fields is weaker for atoms than for ions. The drawback, and
indeed the central difficulty in constructing a large scale
quantum processor, is the need for strong qubit to qubit cou-
pling, while maintaining weak coupling to the environment.
Neutral atom coupling based on ground-state collisions, light
mediated dipole-dipole coupling, and dipole-dipole coupling
of highly excited Rydberg states have all been proposed in
the last several years �15–20�. In particular dipole-dipole
coupling of Rydberg states provides a strong interaction suit-
able for the implementation of fast gates �21�, and this paper
is devoted to a detailed study of this approach.

While the theoretical foundations of the Jaksch et al. Ry-
dberg state dipole-dipole coupling approach to quantum
logic have been presented �21�, the question of how to imple-
ment this scheme in a practical and scalable fashion has not
been solved �22�. Regardless of how logical operations are to
be performed, there are two primary obstacles that must be

surmounted. The first is how to create a large number of
trapping sites, and load a single atom into each site. This
amounts to initialization of the quantum computer. The sec-
ond difficulty is that in order to be useful for generic models
of quantum computation the sites must be individually acces-
sible for logical operations, and state readout. In this paper
we do not discuss the problem of creation and loading of a
large number of addressable single atom sites. A number of
possible solutions to these questions have been discussed in
the literature �23–30�.

Our goal here is to examine in detail the use of two
closely spaced sites, each containing a neutral atom qubit, for
high fidelity quantum operations. Far-off-resonance optical
traps �FORTs� are defined by tightly focusing laser light in a
set of chosen locations. Single atoms are loaded into the
optical traps after precooling in a magneto-optical trap
�31,32�. Single-qubit operations are performed using two-
photon stimulated Raman transitions, and a two-qubit condi-
tional phase gate is realized using dipole-dipole coupling of
atoms excited to high lying Rydberg states �21�. Qubit mea-
surement is performed by counting resonance fluorescence
photons.

The ability to perform many operations with high fidelity
and low decoherence is a prerequisite for scaling up to a
larger number of qubits. As will be shown in what follows,
our calculations lead to the conclusion that a set of logically
complete qubit operations can be performed with high fidel-
ity at MHz rates. This would suggest that qubit storage in
optical traps with coherence times of much less than a sec-
ond will be sufficient for large computations. However, the
necessity of implementing error correction implies that a
computation will also require a large number of state mea-
surements, which are projected to be several orders of mag-
nitude slower than the logical operations. We therefore ex-
amine closely the feasibility of T1 and T2 coherence times of
several seconds in optical traps.

The remainder of this paper is structured as follows. In
Sec. II we estimate the decoherence times for storage of
individual atoms in FORTs. We specifically include the con-
tributions due to collisions with hot background atoms �Sec.
II B�, photon scattering from the trapping laser �Sec. II C�,
spin flips due to the trapping laser, and heating rates due to
laser noise �Sec. II D�. Decoherence due to fluctuations in the
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trapping lasers is considered in Sec. II E and due to back-
ground fields in Sec. II F.

In Sec. III we discuss the operation of single-qubit gates
based on two-photon stimulated Raman transitions. In par-
ticular we calculate decoherence probabilities due to excited-
state spontaneous emission �Sec. III A� and expected gate
fidelities due to ac Stark shifts �Sec. III B� and motional ef-
fects �Sec. III C�. Leakage out of the computational basis due
to imperfect optical polarization is estimated in Sec. III D
and limitations imposed by the laser stability are estimated in
Sec. III E. The ability to rapidly interrogate the atomic state
is crucial to the usefulness of this approach. We discuss
single atom state detection using collection of resonance
fluorescence in Sec. III F. Included in Sec. III F is a discus-
sion of heating during readout, and its amelioration using
red-detuned molasses for the interrogation beams.

In Sec. IV we discuss the implementation of a two-qubit
conditional phase gate which can serve as a logical primitive
for arbitrary computations. We consider two different re-
gimes of operation: Rabi frequency large compared to
dipole-dipole frequency shift �Sec. IV A� and dipole-dipole
frequency shift large compared to Rabi frequency �Sec.
IV B�.

Two-qubit operations involving Rydberg states have
larger errors and higher decoherence rates than single-qubit
operations. We optimize the parameters of a phase gate in the
two limits of weak dipole-dipole interaction �Sec. IV A� and
strong dipole-dipole interaction �Sec. IV B�. In both cases
the performance depends critically on the Rydberg state life-
time which we calculate for relevant experimental param-
eters in Secs. IV E and IV F. An additional aspect of the
Rydberg state interactions that needs to be addressed is the
rate of heating due to differences in the ground-state and
excited-state polarizabilities. We show how to minimize this
effect at the expense of some additional decoherence in Sec.
IV D.

The results of the calculations of fidelities and decoher-
ence rates provide a picture of the feasibility of a quantum
logic device capable of executing a large number of sequen-
tial gate operations. We discuss the expected overall perfor-
mance of this approach to quantum computing in Sec. V, and
highlight the areas that are most troublesome. Possible ex-
tensions to the techniques discussed here that have the po-
tential for improved performance are discussed.

II. OPTICAL TRAPS FOR SINGLE ATOMS

In this section we recall some basic features of far off
resonant optical traps. A number of distinct physical mecha-
nisms limit the coherence of atoms stored in FORTs. Some
of these decohering effects are intrinsic to the operation of
the FORT, and some are due to technical imperfections of the
apparatus used. As shown in Table I these mechanisms con-
tribute to an effective decoherence time of diagonal �T1� or
off-diagonal �T2� density-matrix elements. We discuss the
physics behind each of these decohering mechanisms in the
following subsections. All numerical estimates of decoher-
ence rates will be calculated for 87Rb atoms using the param-
eters listed in Table I.

A. FORT trap parameters

In its simplest form an optical FORT trap can be created
by focusing a single laser beam of wavelength � f to a waist
wf0 �33,34�. The ground-state ac Stark shift due to a far-
detuned trapping beam is

Uac = −
1

4
�E f�2�* · �i��̂�i� · � , �1�

where E f is the amplitude of the optical field, the laser inten-
sity is If =�0c�E f�2 /2, and � is the trapping laser polarization.
The polarizability is in general the sum of scalar, vector, and
tensor parts �35�. For a J=1/2 ground state with a linearly
polarized trapping beam we need only consider the scalar
polarizability which we calculate numerically using Cou-
lomb wave functions to be �0=114 Å3 for a trapping laser at
� f =1.01 �m.

The maximum depth of the potential well at the center of
the focused beam expressed in temperature units is Um=
−�0�E f�2 /4. The spatial dependence of the trapping potential
is then

Uf�x,y,z� = Um
e−2�x2+y2�/wf

2�z�

1 +
z2

Lf
2

, �2�

where for a FORT beam propagating along z ,wf
2�z�=wf0

2 �1
+z2 /Lf

2�, with the Rayleigh length Lf =�wf0
2 /� f. For the pa-

rameters of Table I a laser power of 60 mW gives Um
=1 mK.

The FORT can be directly loaded from a Magneto-optical
trap �MOT� provided that the product of the capture volume
and the MOT density is larger than unity. A first approxima-
tion for the capture volume assumes that all atoms in the
region where �Uf /kB��Tc are captured, while those outside
this region are lost �in the rest of the paper we will express
all energies in temperature units and put kB=1�. We expect
that the capture temperature Tc will be similar to Ta, the
kinetic temperature of the atoms in the MOT, provided Ta is
smaller than �Um�. We define a relative trap depth �

TABLE I. Physical mechanisms limiting ground-state coherence
of qubit basis states �a�= �F=1,mF=0� and �b�= �F=2,mF=0�. Val-
ues listed are for P=1�10−10 mbar, Um=1 mK, Ta=50 �K, � f

=1.01 �m, and wf0=2.5 �m, and �0�	 f�=114 Å3. See text for de-
tails and additional parameters.

Mechanism Section T1 �sec� T2 �sec�

Background gas collisions II B 55

Rayleigh scattering II C 97

Raman scattering II C 151

Laser noise heating II D 20

ac stark shifts, intensity noise II E 12

ac stark shifts, motional II E 2.6

Background B field II F 56

Combined 12 2.1
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= �Um� /Ta, so that the capture volume vanishes for �=1, and
increases monotonically with increasing �. A simple calcula-
tion then results in an expression for the capture volume,

V = 2�
0

zm

dz �rm
2 �z� = �wf0

2 �
0

zm

dz	1 +
z2

Lf
2
ln	 zm

2 + Lf
2

z2 + Lf
2 


=
4�

3
wf0

2 zm +
2�

9

wf0
2

Lf
2 �zm

3 − 6Lf
3tan−1	 zm

Lf

� �3�

with zm=Lf

�−1. Using numerical values from Table I we

get a capture volume of 8.6�10−9 cm3. We have found in
unpublished experiments that a MOT density of a few times
108/cm3 is sufficient to load single atoms as was demon-
strated by several groups in recent years �31,32�.

In the context of quantum logic it is important that the
atoms are well localized in position and momentum. We can
estimate the variances of the atomic position and momentum
by making a parabolic expansion of the FORT potential
about the origin. The effective spring constants of the trap
are found to be


x = 
y = 4
�Um�
wf0

2 , �4a�


z = 2
�Um�
Lf

2 �4b�

and the corresponding oscillation frequencies are

	x = 	y =
2

wf0
	 �Um�

m

1/2

, �5a�

	z =

2

Lf
	 �Um�

m

1/2

, �5b�

with m the atomic mass. For the above parameters and 87Rb
we find 	�x,z� / �2��= �39,3.6� kHz. At Ta=50 �K many vi-
brational levels will be excited and we can use Boltzmann
factors to estimate the time averaged variances of the posi-
tion and momentum as

�xa
2� = �ya

2� =
wf0

2

4

Ta

�Um�
, �6a�

�za
2� =

�2wf0
4

2� f
2

Ta

�Um�
, �6b�

�vxa
2 � = �vya

2 � = �vza
2 � =

Ta

m
. �6c�

Note that the spatial localization along z can be written in
terms of an anisotropy factor � f =

x /
z=
2�wf0 /� f such
that �za

2�=� f
2�xa

2�.

B. Background gas collisions

Collisions with untrapped background atoms in the
vacuum chamber result in heating and loss of atoms from the

FORT and therefore limit the storage time and T1 that can be
achieved. The characteristic energy change for which diffrac-
tive collisions must be accounted for is �2.8 mK for Rb
�36�. As we are considering a shallow FORT of depth �Um�
=1 mK we will neglect diffractive and heating effects and
approximate the FORT lifetime due to background collisions
mediated by a van der Waals interaction as �36�

1

�c
=
3Tb

m
nb
Rb-Rb �7�

with Tb=300 K the temperature of the thermal background
atoms of density nb. Using 
Rb-Rb=2.5�10−13 cm2 �36� we
find �c=55 s at a pressure of 1�10−10 mbar. Even without
resorting to cryogenic vacuum systems pressures as low as
10−11 mbar are achievable, which would imply collisional
lifetimes of order 10 min. These estimates are consistent with
observations �31� of FORT decay times using Cs atoms of 50
sec at pressures of about 10−10 mbar.

C. Photon scattering

Scattering of FORT light by the qubit atoms causes some
heating and leads to a small amount of decoherence. The
scattering can be separated into two contributions. Elastic or
Rayleigh scattering of the FORT light does not change or
dephase the qubit spin but does heat the external degrees of
freedom of the atoms. Inelastic or Raman scattering occurs at
a much reduced rate but, since it changes the spin state of the
qubit atom it does contribute to decoherence, albeit at a small
rate.

The elastic scattering cross section is


e =
8�

3
kf

4��0�2 = 1.6 � 10−24 cm2, �8�

where kf =2� /� f. To get the numerical value we have used
the parameters given in Table I. This scattering produces a
heating rate

dE

dt
=

�2kf
2

2m


eIf

�	 f
=

�	 f
eIf

2mc2 . �9�

Since both the heating rate and the trap depth U scale with
intensity, their ratio gives the characteristic heating time for
an atom in the FORT

�Um�
dE/dt

=
2�0m� f

�
e
= 1950 s. �10�

A more conservative definition of the T1 due to Rayleigh
scattering is the time for the atom to double its motional
energy, which gives T1=97 s for the parameters of Table I.

The inelastic scattering cross section can be expressed in
terms of the vector polarizability �1 as


ie =
4�

3
k4��1�2 = 2.3 � 10−27 cm2, �11�

where we have used �1�−6 Å3. The smallness of the inelas-
tic cross section comes from the small coupling of the FORT
light to the electron spin of the atom which scales with the
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ratio of the fine-structure splitting of the Rb P levels to the
detuning of the FORT laser.

Since the inelastic scattering destroys the qubit state, it is
a source of decoherence. It is proportional to FORT intensity,
so it can be reduced if necessary by operating at low trap
depths. The qubit longitudinal relaxation time due to inelas-
tic scattering is

T1ie =
1


ieIf/��	 f�
=

3�� f
3��0�

16�3�Um��1
2 =

1

�Um� �mK�
� 151 s,

�12�

which is very long even for a robust 1-mK trap depth.

D. Laser noise induced heating

Laser intensity and pointing fluctuations can cause unde-
sirable heating in FORTs �37�. The heating rate due to inten-
sity noise is

dTa

dt
= �2�2Si�2��Ta, �13�

where � is the trap oscillation frequency, and Si�2�� is the
one-sided power spectrum of the fractional intensity fluctua-
tions. These fluctuations are usually far above the shot-noise
limit Si=2h� / P=4�10−18/Hz at the 1–100-kHz frequencies
of interest here. As indicated above a 1-mK FORT depth
requires 60 mW of � f =1.01-�m laser power which can be
readily supplied by a small diode laser. A typical fluctuation
level for an unstabilized diode laser is Si=10−12/Hz. The
characteristic time for an atom to be heated out of the trap is

T1 =
1

�2�2Si�2��
ln	 �Um�

Ta

 . �14�

Using the values given in Table I and �=39 kHz gives T1
�50 s. If necessary, feedback can be used to reduce the laser
noise and extend the heating time.

Fluctuations in the laser beam position are also a source
of heating. The characteristic heating time can be written as

T1 =
�xa

2�
�2�2Sx���

ln	 �Um�
Ta


 , �15�

where Sx is the frequency spectrum of the position fluctua-
tions. The parameters of Table I and Eq. �6a� give 
�xa

2�
=0.28 �m. To obtain T1=50 s requires 
Sx=5.6
�10−7 �m/
Hz which is feasible with careful attention to
mechanical construction.

Finally for an anisotropic trap there is also heating from
beam-steering fluctuations. This implies, for a highly aniso-
tropic trap of aspect ratio � f, a heating time of

T1 =
1

�2�2� f
2S����

ln	 �Um�
Ta


 , �16�

where S� is the spectrum of angular fluctuations of the FORT
laser beam. For the parameters we are using � f �8 so there is
a strong sensitivity to beam-steering noise. Nonetheless, it
should be feasible using fiber optic delivery of the trapping
beam to achieve T1�50 s.

To summarize this section, estimates of storage times due
to technical noise induced heating are of order 50 s, for three
different mechanisms. Without appealing to extraordinary
technical developments we can set the total contribution due
to technical laser noise as T1�20 s. Ultimately this number
could be improved by several orders of magnitude before
reaching limits set by quantum fluctuations.

E. ac Stark shifts

In the preceding sections we have discussed decoherence
mechanisms that to an excellent approximation affect the qu-
bit ground states equally. Therefore no dephasing of the qubit
basis states is incurred and there is no contribution to a finite
transverse relaxation time, T2. As will be discussed in Sec.
III we will use the states �a�= �F=1,mF=0� and �b�= �F
=2,mF=0� as our computational basis. In the absence of any
applied fields these states have a hyperfine splitting
Uhf�0� /h�6.83 GHz. In the presence of a static electric field
there is a correction to the hyperfine splitting in 87Rb given
by �38�

Uhf�E� � Uhf�0��1 − �s�0�E2� 1

2�Un=5,L=1 − Un=5,L=0�

+
1

Un=4,L=2 − Un=5,L=0
�� , �17�

where �s�0� is the static polarizability and E is the electric-
field amplitude. For a far detuned trapping laser with a pho-
ton energy that is small compared to the term differences that
appear in Eq. �17� we can estimate the shift by making the
replacement �s�0�E2→�s�	 f��E�2 /2 so that Eq. �17� can be
written as Uhf�E�=Uhf�0�−�Uac where �=2Uhf�0��¯�, with
�¯� the term in square brackets in Eq. �17�. For 87Rb we find
�=4.1�10−5. At a trap depth of �Um�=1 mK the correction
to Uhf is �Uac�1500 Hz.

If the trapping laser had no intensity fluctuations and there
was no atomic motion this small correction to the hyperfine
shift would be time independent and would only give an
unimportant correction to the hyperfine splitting. However,
intensity noise and atomic motion result in a time-dependent
shift which gives a finite T2. We consider first the effect of
intensity noise which results in state dependent dephasing
due to fluctuations in Uhf�E�. When the averaged fluctuation
vanishes over the time scale of interest there will be no ad-
ditional decoherence, and indeed intensity fluctuations are
not expected to be problematic for �s time scale gate opera-
tions. However, as regards storage of quantum information
during a long calculation it is necessary to consider slow
drifts in laser intensity that will give qubit dephasing. We
define an effective T2 due to dephasing by

T2 =
2��

�Uhf�E�
=

2��

�Uac

I

�I
, �18�

where �I / I is the fractional intensity fluctuation. The relative
intensity noise is a function of frequency. In an actively sta-
bilized system the fluctuations will be very small at high
frequencies. We are most concerned about finite fluctuations
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on the time scale of tens of seconds corresponding to the
effective T1 given in Table I.

The effective T2 is shown in Fig. 1 as a function of the
fractional laser intensity fluctuation. At a FORT depth of
�Um�=1 mK and a relative intensity fluctuation of 10−4,
which is feasible with active stabilization and well above the
limit set by quantum noise for mW power FORT beams,
T2�12 s.

Atomic motion within the FORT volume leads to a time
varying trapping potential, and hence dephasing of the qubit
states. This problem also arises in the context of precision
measurements of optically trapped atoms �39,40�. A rough
estimate says that since the atomic position spread is ap-
proximately �Ta / �Um��1/2wf0 /2, the fractional variation in
trapping intensity due to the transverse motion is
�Ta /2�Um��0.025 for the parameters of Table I. The same
fractional variation is also found for the axial motion. This
implies a motional variation in the hyperfine splitting of or-
der 38 Hz. The maximum phase perturbation in one axial
vibrational period is thus �2��38 Hz/3 kHz�0.08 rad.
We can also express this shift as an effective transverse re-
laxation time T2�1/38 Hz=0.026 s.

This time is far shorter than the T1 and T2 times due to the
other mechanisms discussed above. As has been demon-
strated experimentally in Ref. �41�, it is possible to cancel
the differential ac Stark shift of the hyperfine states by intro-
duction of a weak beam tuned between the hyperfine states
that has the same spatial profile as the FORT beam. The
intensity of the additional compensation beam can be very
low such that the decoherence rates due to photon scattering
will not change significantly. Kaplan et al. �41� demonstrated
a reduction in transverse broadening by a factor of 50, and
we assume that a factor of at least 100 is realistic, in order to
arrive at the estimate of 2.6 s given in Table I. Additional
discussion of motional effects in the context of single qubit
operations is given in Sec. III.

F. Background magnetic and electric fields

The amount of dephasing caused by trapping and back-
ground field fluctuations depends on the qubit basis states
that are used �13,39�. As shown in Fig. 2, for atoms with
nuclear spin I=3/2 there are three possible choices of basis
states that are first-order free of Zeeman shifts. In this sub-

section we consider the three possible choices and will con-
clude that set �a� is optimal for achieving long storage times
with low decoherence.

The simplest choice �Fig. 2�a�� is to use �a�= �F=1,mF
=0� and �b�= �F=2,mF=0�. Using the Breit-Rabi formula the
second-order shift of the energy interval expressed as a fre-
quency is

	ba = 	hf�1 + 	 �gS − gI��B�B

�	hf

2�1/2

, �19�

where 	hf is the zero-field hyperfine clock frequency be-
tween the mF=0 states, �B is the Bohr magneton, gS ,gI are
the electron spin and nuclear Landé factors, and �B is the
magnetic-field fluctuation. The frequency deviation �	ba
=	ba−	hf implies a transverse relaxation time T2
=2� /�	ba which evaluates to T2=1740 s for �B=1 mG.
While it is in principle possible to shield magnetic-field fluc-
tuations to an even lower level it is difficult to do so in an
experiment that requires substantial optical access to the
atom trapping region. Recent work �42� has demonstrated
suppression of static and fluctuating magnetic fields to the
level of 300 �G using an active feedback scheme. We will
assume 1 mG as a conservative estimate of the fluctuation
level that can be achieved.

Alternatively we can use the states shown in Fig. 2�b�:
�a�= �F=1,mF=−1� and �b�= �F=2,mF=1�. At a bias field of
B0�3.23 G the frequency separation is quadratically depen-
dent on fluctuations about B0. A fluctuation of 1 mG about
the bias point gives T2=2320 s and frequency separations
between the qubit basis states and neighboring Zeeman states
of about 2.3 MHz.

Finally we could also use the states shown in Fig. 2�c�:
�a�= �F=1,mF=−1� and �b�= �F=2,mF=−1�. At a bias field
of B0=�	hf / �2�gS−gI��B� the frequency separation is qua-
dratically dependent on fluctuations about B0. Defining �B
=B−B0 we have

	ba =

3

2
	hf�1 +

4

3
	 �gS − gI��B�B

�	hf

2�1/2

. �20�

Apart from a factor of 2 /
3 larger sensitivity to fluctuations
we retain the quadratic dependence of Eq. �19� at a very
large bias field. For 87Rb we find B0�1219.3 G and T2
=1500 s for �B=1 mG. At this large bias field the separation
between neighboring mF levels is hundreds of MHz. This
large detuning will effectively suppress unwanted transitions
during logic operations, but has the disadvantage of mixing

FIG. 1. Effective T2 due to differential ac stark shift of hyperfine
levels for trap depths of 1, 0.5, and 0.1 mK.

FIG. 2. �Color online� Possible choices of qubit basis states that
have a magic bias field B0 for which the relative Zeeman shift is a
quadratic function of field fluctuations.
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the hyperfine states so that there no longer will be a clean
cycling transition between the 2S1/2�F=2,mF=2� and
2P3/2�F�=3,mF�=3� states that can be used for qubit mea-
surement. One possibility would be to use a bias field that is
applied during logic operations, and turned off adiabatically
for state measurements.

The use of mF�0 basis states requires that we account for
mF dependent shifts due to the ground-state vector polariz-
ability that couples to nonzero ellipticity of the trapping laser
�39,43,44�. The energy shift can be written as

Uac
�1� = −

1

4
�E f�2�1gFmF


1 − �2, �21�

where gF= �F�F+1�+S�S+1�− I�I+1�� / �F�F+1��, mF is the
total spin projection along the FORT beam propagation di-
rection ŷ, and the laser polarization is �= �1/
2��x̂
1+�
+ iŷ
1−��. Basis states with mF=0 have no vector shift, and
in addition the field insensitive states �0�= �F=1,mF=−1�
and �1�= �F=2,mF=1� both have gFmF=1/2 so there is no
differential shift and no decoherence due to the vector polar-
izability. On the other hand, the choice �0�= �F=1,mF=−1�
and �1�= �F=2,mF=−1� leads to a transverse decoherence
time of T2= ��0 /�1��I /�I�2�� / �kBTm


1−�2�. Using the pa-
rameters given in the caption of Table I, �=0.999, and a
fractional intensity fluctuation of �I / I=0.001, we find a short
coherence time of T2=38 ms. We see that it is important to
avoid decoherence due to the vector polarizability so that the
preferred choice is the qubit states shown in Figs. 2�a� and
2�b�.

Careful analysis along the lines of that used in Sec. III
shows that the set of Fig. 2�b� presents significant obstacles
to achieving high fidelity single-qubit operations using
stimulated two-photon Raman transitions. The essential
problem is that the choice of Fig. 2�b� involves ground states
separated by ��mF�=2. For large detunings the two-photon
Raman rate for these transitions is proportional to the vector
polarizability which has a selection rule ��mF��1. The Ra-
man rate therefore vanishes so it is necessary to use two
Raman beams with opposite helicities. In this situation the
effective Raman rate scales as �e /�1

2 where �e is the
excited-state hyperfine splitting, and �1 is the one-photon
detuning of the Raman beams. However, the Raman beam
induced ac Stark shifts scale as 1 /�1 so that in the limit of
large detuning the ground-state ac Stark shifts become large
compared to the Raman rate between ground states. It is not
possible, without resorting to more complex polarization
states, to balance the ac Stark shifts of the qubit basis states,
which leads to entanglement of the qubit spin state with the
atomic center-of-mass motion. This entanglement represents
an undesired decoherence mechanism.

We are thus led to the choice shown in Fig. 2�a� for the
qubit basis states. While the mF=0 states are insensitive to
magnetic fluctuations they are not optimal as qubit basis
states at low magnetic fields. Atomic motion in a region of
near zero magnetic field is subject to Majorana transitions
between Zeeman sublevels. Transitions can be suppressed by
Zeeman shifting the states with a bias magnetic field. Unfor-
tunately a large bias field converts the small field quadratic

dependence of Eq. �19� to a linear dependence on the field
fluctuations about the bias point. For example, a bias field of
1 G, which gives MHz scale Zeeman shifts, with a fluctua-
tion of 1 mG about the bias point would give T2=0.87 s. We
can do considerably better with a small 15-mG bias field,
which is sufficient to suppress Majorana transitions, yet
small enough such that with 1 mG of field fluctuations the
coherence time is T2=56 s. In the remainder of this paper we
will analyze the implementation of quantum logic using the
mF=0 basis states.

Finally we note that dephasing due to dc electric fields is
completely negligible. The T2 due to differential ac Stark
shifts calculated from Eq. �18� results from a peak electric
field at the center of a mK deep optical FORT of
O�106�V/m��. Since we expect low-frequency field fluctua-
tions to be much less than 1 V/m, the dc Stark shift can be
neglected.

III. SINGLE-QUBIT OPERATIONS

A two-site FORT with a single atom loaded in each site
provides a setting for studying basic one- and two-qubit op-
erations. In this section we start with a study of the fidelity
and decoherence properties of one-qubit operations at each
site. Of particular concern will be the requirement of high
fidelity operations at a targeted site without unintended dis-
turbance of the neighboring site. Simply increasing the sepa-
ration of the sites to reduce crosstalk will imply slow two-
qubit conditional operations, so there is inevitably a
performance tradeoff between one- and two-qubit gates. We
discuss balancing the conflicting requirements in Sec. V be-
low.

Single-qubit rotations between ground-state levels can be
performed in several ways. Microwave fields that are reso-
nant with 	ba can be used, but do not allow direct single site
addressing. By combining a microwave field with an
electric- or magnetic-field gradient a selected site can be
tuned into resonance �45�. The drawback of such an ap-
proach is that neighboring sites will be subjected to off-
resonant perturbations.

Here we analyze an alternative approach using stimulated
two-photon Raman transitions induced by tightly focused ad-
dressing beams, as shown in Fig. 3. Two-photon Raman
techniques for laser cooling of neutral atoms were pioneered
by Kasevich and Chu �46�, and have been used recently in
optical lattices by the group of Jessen �47� and others �48�.
Raman techniques are also an important ingredient in
trapped ion experiments �13�. As the physics of coherent-
state manipulation with stimulated Raman pulses is well un-
derstood our aim here is to analyze a number of contribu-
tions to nonideal behavior that arise in the context of
optically trapped atom experiments. The physical mecha-
nisms contributing to nonideal single-qubit operations are
summarized in Table II and discussed in Secs. III A–III E. In
addition to qubit rotations fast state measurements are a re-
quirement for error correction in a quantum processor. In
Sec. III F we examine the speed and fidelity of single site
state measurement using resonance fluorescence.

M. SAFFMAN AND T. G. WALKER PHYSICAL REVIEW A 72, 022347 �2005�

022347-6



A. Speed and decoherence

As discussed in Sec. II the qubit logical basis states
�a� , �b� will be represented with the 87Rb 5S1/2�F=1,mF=0�
and �F=2,mF=0� ground-state hyperfine levels. Qubit ini-
tialization to the �b� state can be accomplished by driving the
5S1/2�F=2�−5P3/2�F�=2� transition with a beam linearly po-
larized along the magnetic field. An additional repumper
beam returns atoms infrequently lost to the F=1 lower hy-
perfine manifold. When the transition is driven with an in-
tensity several times larger than the saturation intensity
population will accumulate in �F=2,mF=0� at the rate of
� /2, where � /2�=5.98 MHz is the spontaneous decay rate
from the upper level. The characteristic qubit initialization
time will be several transfer time constants, or �0.1 �s. Ex-
periments with atomic beams �49� have demonstrated prepa-
ration purity by optical pumping at the level of 10−4.

Ground-state single qubit manipulations using stimulated
Raman transitions can be performed with high fidelity and
made quite free of decoherence due to spontaneous emission.
The driving fields and atomic level structure are shown in
Fig. 3. We consider two driving fields at frequencies 	1 ,	2

with detunings �1=	1−	1a, �2=	2−	1b, and associated
Rabi frequencies �1,2=d1,2E1,2 /�, with d1,2 the relevant di-
pole matrix elements between the ground states and the ex-
cited state �1�. The fields propagate along the ẑ axis with
polarizations �1,2 so that the total optical field is

E =
e−r2/w2�z�


1 + z2/zR
2 �E1�t�

2
eı�k1z−	1t��1 +

E2�t�
2

eı�k2z−	2t��2� + c.c.,

�22�

where w�z�=w0

1+z2 /zR

2 , zR=�w0
2 /�R, �R=�1, and we have

taken the Rayleigh lengths of the two fields to be equal since
���1−�2� / ��1+�2���1.

Let us assume that the atom is in state �a� at t=0. The
Raman light is tuned in the vicinity of either the 5P3/2 or
5P1/2 excited states. For definiteness we consider tuning near
to the 5P1/2 excited state. In the limit of large single-photon
detuning relative to the excited-state hyperfine structure the
probability for the atom to be in state �b� at time t is

�cb�t��2 =
��R�2

��R�2 + �2sin2	
��R�2 + �2

2
t
 , �23�

where �R=�1�2
* /�, �=�1+�2, and �=	1−	2−	ba

+ ���2�2− ��1�2� / �2��. When ���� ��R�� ��1� , ��2� we have
��2�1 and the effective Rabi frequency is �R
��1�2

* / �2�1�. We assume that �1 ,�2 are small compared
to the 87Rb fine structure splitting of 7120 GHz, so we ne-
glect any contribution from the other 5P state.

The probability of spontaneous emission during a � pulse
of time t�=� /��, with ��=
��R�2+�2 the effective off-
resonance Rabi frequency, is pse=�−1�0

t�dt�cp�t��2, where cp is
the amplitude of the excited state and �=27.7 ns is the 5P1/2
lifetime. Neglecting the two-photon detuning and assuming a
piecewise constant pulse profile it is readily shown that pse

TABLE II. Physical mechanisms contributing to imperfection of
single-qubit operations. The decoherence probability is calculated
for a � rotation, and the fidelity error is calculated with respect to
an ideal � /2 rotation using the metric of Eq. �26�. Values listed are
for Tm=1 mK, Ta=50 �K, � f =1.01 �m, wf0=2.5 �m, and w0

=5 �m. See text for details.

Mechanism Section pdch Error

Spontaneous emission III A 9�10−5

ac stark shifts III B 4.4�10−7

Atomic motion III C 9.4�10−5

Spatial crosstalk III C 2.2�10−5

Polarization leakage III D 9.7�10−5

Laser intensity noise III E 9.4�10−8

Laser phase noise III E 2.5�10−7

Combined 1.9�10−4 1.2�10−4

FIG. 3. �Color online� Single-qubit stimulated Raman
rotations.

FIG. 4. �Color online� Stimulated Raman rotations with two
excited states.
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�� / �2��1���. For 87Rb with �1 /2�=−100 GHz we get pse

=9�10−5.
The speed of two-photon Raman transitions scales with

the optical intensity. In subsequent sections we will be con-
cerned with corrections to the effective Raman frequency
due to the excited-state hyperfine structure shown
in Fig. 4. We work in the limit of ���� ��R�
� ��11� , ��12� , ��21� , ��22�, so the excited states are weakly
populated. With e1=e2=e+ the effective Rabi frequency is

��R� =
2e2�R5S,5P�2

�0c�2 KI� �11 − �e/4

2�11��11 − �e�
� , �24�

with R5S,5P�5.13a0 the radial integral between the ground
and excited states, a0 is the Bohr radius, K=1/9 is an angular

factor, I is the intensity of each Raman beam, and �e /2�
=817 MHz is the hyperfine splitting of the excited state.
Working with 100 �W in each beam focused to a spot with
waist w0=5 �m at a detuning of ��11� /2�=100 GHz we get
�R /2�=4.6 MHz.

B. Raman beam ac Stark shifts

In this section we calculate heating and decoherence ef-
fects due to the tightly focused Raman beams. Before pro-
ceeding with calculations of the fidelity of qubit operations
we define the metric to be used. Starting with an initial pure
state ���=ca�a�+cb�b� a two-photon stimulated Raman tran-
sition results in the transformation ���→R��R ,� , t����
where the rotation matrix is

R��R,�,t� =�eı�t/2�cos	��t

2

 − i

�

��
sin	��t

2

� ieı�t/2�R

*

��
sin	��t

2



ie−ı�t/2�R

��
sin	��t

2

 e−ı�t/2�cos	��t

2

 + i

�

��
sin	��t

2

� � . �25�

In writing Eq. �25� we have suppressed a multiplicative
phase factor and neglected a small correction to some of the
terms containing � that is proportional to the differential ac
Stark shift of the basis states. The fidelity of a rotation op-
eration R��R ,� , t� compared to an ideal transformation with
R0=R��R0 ,�0 , t0� can be defined as

F = ���R0��R���2� , �26�

where the outer brackets specify an average over any sto-
chastic contributions to R.

In the simplest case of two-photon resonance �=0 and
the rotation matrix simplifies to

R��,�� = 	 cos��/2� ie−ı�sin��/2�
ieı�sin��/2� cos��/2�


 , �27�

where �= ��R�t and �=arg��R�. For the particular case of an
ideal � pulse ��0=�, �0=0� with ���= �a� the fidelity is F
= �1/2��1−cos ��. As this metric is independent of errors in
the azimuthal angle � we find it more informative to quan-
tify the fidelity of a single operation with respect to an ideal
� /2 pulse. In this case the fidelity is F= �1/2��1
+cos � sin ��. The gate errors listed in Table II are defined
by E=1−F. The extent to which errors accumulate in con-
catenated qubit operations is an important consideration
when designing a computational sequence. A discussion of
this topic in the context of an ion trap experiment has been
given in Ref. �13�.

Returning to the effect of ac Stark shifts we note that in
addition to providing controlled rotations between the qubit
basis states the Raman beams result in unequal ac Stark
shifts of the Zeeman states which leads to an additional ro-

tation phase ��. The rotation phase has an average value that
must be accounted for �50�, as well as a stochastic part re-
sulting from atomic motion that leads to a fidelity error. The
Raman beam induced Stark shifts also play a useful role by
enhancing the nondegeneracy of the Zeeman states beyond
that provided by the very small bias magnetic field. This
effect greatly reduces leakage out of the computational basis
as we discuss in Sec. III D below.

In order to give a quantitative account of the ground-state
Stark shifts for Raman beams tuned near the D1 line we add
the contributions from the �F�=1,2� excited states for both
beams to get the results shown in Table III. Using the physi-
cal parameters given in the previous section we find the
change in trapping potential at the center of one of the Ra-
man beams is UR�220 �K which is a few times less than
the �Um�=1 mK wells created by the FORT beams. Using red
detuned Raman beams the additional potential is attractive,
nonetheless, the associated dipole forces can lead to heating
of the trapped atoms. In the limit where the Rabi frequency
is much larger than the trap oscillation frequency a trapped
atom will only move a small fraction of its orbit during a
Raman pulse. The dipole force during the pulse will with
equal probability accelerate or decelerate the atomic motion,
so that on average, to lowest order in the ratio of trap fre-
quency to Rabi frequency, there will be no heating. Another
way to see this is to note that the heating rate given by Eq.
�13� vanishes when the perturbation has no energy at twice
the trap oscillation frequency.

Nonetheless, when we consider the effect of a single Rabi
pulse there will be a worst case heating of the atomic motion
that we require to be small compared to the trap depth to
avoid loss of the trapped atom. It is readily shown that the
heating due to a single Rabi � pulse is bounded by �U
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=2�UR�wf0
2 /2w0

2��Ta / �Um���	x /�R�. Using the parameters
given in Tables I and II and �R=2��4.6 MHz, we find
�U�70 nK. Since this amount of heating is very small com-
pared to the FORT depth, it will not lead to escape of the
trapped atom. Note that in the limit of fast Rabi frequency
the amount of heating is proportional to the atomic tempera-
ture, but is independent of the laser intensity used for the
Raman pulse. Although in the first approximation the heating
per Rabi rotation averages to zero there is a contribution to
the heating rate proportional to the square of the trap fre-
quency. For Ta=50 �K we get an average energy increase of
70 nK per operation so the maximum number of operations
before there is significant heating of the atoms is about 103.
This implies that recooling of the atomic motion after state
measurements will be necessary to enable many logical op-
erations. In principle recooling, and reinitialization of a qubit
to a fiducial state can be done on a site specific basis using
tightly focused molasses beams for Doppler cooling, or Ra-
man sideband cooling in a tightly confining optical trap.

To quantify the fidelity error due to the Raman beam in-
duced ac Stark shifts we note that a Rabi rotation will result
in a transformation ���=ca�a�+cb�b�→c�a�a�+eı��c�b�b�,
where c�a ,c�b are the desired result of the Rabi rotation, and
�� is an additional differential phase shift due to the ac Stark
shifts. The differential phase can be written as ��=��b
−��a= t��Ub−�Ua� /� with t the length of the pulse. The
Raman field E that is seen by the trapped atom is time de-
pendent due to the atomic motion at finite temperature. The
time averaged differential phase is proportional to ����

��E2� and the variance of the phase shift is �2����= ���2�
− ����2. Accounting for the atomic motion in the two trans-
verse dimensions, and neglecting the axial motion which
gives a much smaller contribution to time variation of the
field, we find �E2�=E0

2 / �1+ �Ta / �Um���wf0 /w0�2� and �E4�
=E0

4 / �1+2�Ta / �Um���wf0 /w0�2�, with E0 the peak value of the
field. These expressions are valid in the limit of tight con-
finement where Ta� �Um�.

Using Eq. �24� and Table III we find to leading order in
the ratio of the atomic temperature to the trap depth for a
� /2 pulse of length t�/2=� /2���R��,

���� = −
�

2

	ba

�11
−

3�

8

�e	ba

�11
2 + O�	ba

3 /�11
3 � , �28a�

�2���� = 	 Ta

�Um�

2	wf0

w0

4��

2

	ba

�11
+

3�

8

�e	ba

�11
2

+ O�	ba
3 /�11

3 ��2

. �28b�

The average phase shift given by Eq. �28a� evaluates to 0.1
rad for �11/2�=−100 GHz. This phase can be compensated
for by adjustment of the relative phase of the Raman beams.
It turns out using the full dependence of differential phase on
detuning that there are finite values of the detuning such that
the ac Stark shifts are equal and the differential phase van-
ishes �51�. However, these detunings are of order the hyper-
fine ground-state splitting, and are too small to suppress

TABLE III. Stark shifts of Zeeman ground states due to the Raman beams of Fig. 4. The Stark shifts given
by �UR= �e2R5S,5P1/2

2 / ��0c����K /72�I, with I the intensity of each Raman beam, are evaluated in columns 3
and 4 for I=100 �W and �11/2�=−100 GHz.

Ground state K �UR�mK� ��UR−�UR��a��� /h�MHz�

�1−1� 1

�11
+

1

�11−�e
+

1

�11−	ba
+

1

�11−�e−	ba

−0.107 −2.41

�10��=�a�� 1

�11
+

3

�11−�e
+

1

�11−	ba
+

3

�11−�e−	ba

−0.213 0

�11� 6

�11−�e
+

6

�11−�e−	ba

−0.319 2.42

��UR−�UR��b��� /h�MHz�

�2−2� 6

�11+	ba
+

2

�11−�e+	ba
+

6

�11
+

2

�11−�e

−0.458 −4.79

�2−1� 3

�11+	ba
+

3

�11−�e+	ba
+

3

�11
+

3

�11−�e

−0.343 −2.39

�20��=�b�� 1

�11+	ba
+

3

�11−�e+	ba
+

1

�11
+

3

�11−�e

−0.228 0

�21� 2

�11−�e+	ba
+

2

�11−�e

−0.114 2.38

�22� 0 0 4.75
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spontaneous emission from the 5P1/2 states. The standard
deviation of the stochastic phase given by Eq. �28b� scales
linearly with the factor �Ta / �Um���wf0 /w0�2 which expresses
the amount of variation of the Raman intensity over the cross
sectional area to which the atom is confined. Using Eq. �26�
the gate error is E��1/4��2����=4.4�10−7 at −100-GHz
detuning.

C. Atomic position and velocity fluctuations

In addition to fluctuations in the phase of the Rabi rota-
tion, variations in the atomic position and velocity also di-
rectly perturb the angle of single-qubit rotations since the
effective pulse area depends on the local value of the Raman
beam intensities as well as motional detuning due to Doppler
shifts. Starting with an atom in state �a�, and applying the
Raman fields E1 ,E2 the probability for the atom to be rotated
to state �b� after time t is given by Eq. �23�. Fluctuations in
the atomic position and momentum lead to fluctuations in the
effective pulse area at time t�.

We can characterize a � /2 pulse and its fluctuations due
to atomic motion by

���R�t�/2� = �/2, ���R�2t�/2
2 � = �2/4 + ��1

2� , �29�

��t�/2� = 0, ��2t�/2
2 � = ��2

2� , �30�

where we have assumed the system has been prepared with
zero detuning and �1 ,�2 are small stochastic parameters.
With the Raman beams copropagating the two-photon detun-
ing is first order Doppler free. Taking account of the velocity
spread given by Eq. �6c� we find

��2
2� =

�2	ba
2

4c2�R
2

Ta

m
. �31�

At Ta=50 �K we find ��2
2��3�10−13 so we can neglect the

contribution of Doppler detuning to the rotation error and use
the simplified rotation matrix of Eq. �27� with �=0.

Averaging over the atomic motion in the same way as in
the previous section we find

��1
2� =

�2

4
	 Ta

Tm

2	wf0

w0

4

�32�

and a fidelity error of E= �1/4���1
2�. This result takes account

of the two-dimensional transverse motion of the trapped
atom. Adding in the axial motion gives an additional factor
proportional to � f

2 /�2, where �=�w0 /�R. Our standard sys-
tem parameters give � f

2 /�2=0.15, so this is a small correction
which we will neglect. With the parameters of Table II we
find E=9.4�10−5 at a temperature of Ta=50 �K. This error
is larger than that due to ac Stark shifts by a factor of
��11/	ba�2, but is still very small at typical sub-Doppler tem-
peratures that are easily reached in a MOT.

As the motional error scales inversely with the waist of
the Raman beams it is desirable to use as large a waist as
possible. In a multiple site device unwanted crosstalk occurs
if the waist is made comparable to the site to site spacing d.
Simply increasing d is not feasible since that would reduce

the fidelity of two-qubit operations, as will be discussed in
Sec. IV. The application of Raman beams giving a Rabi fre-
quency �R at the addressed qubit will result in a leakage

Rabi frequency at a neighboring qubit of �R� =�Re−2d2/w0
2
. For

parameters that give a � /2 rotation at the targeted site there

will be a fidelity error of E= ��2 /16�e−4d2/w0
2

at the neigbor-
ing site. We will use a site spacing of d=8 �m which gives
E=2.2�10−5 for w0=5 �m. In practice laser beams that
pass through a large number of optical elements may deviate
significantly from an ideal Gaussian profile. Full character-
ization of spatial crosstalk will depend on specific experi-
mental details.

D. Polarization effects

Two-photon stimulated Raman transitions may result in
the atom being transferred to a Zeeman state that lies outside
the computational qubit basis. This will occur when the Ra-
man beams are a mixture of polarization states. The connec-
tion between fidelity loss due to unwanted transitions and the
polarization impurity � of the Raman beams is calculated in
the Appendix. With careful attention to optical design we
may achieve ��10−3 for a wide beam. In order to control
one qubit at a time the Raman beams are focused to a
waist of w0=5 �m. Near the focus of a linearly polarized
Gaussian beam propagating along ẑ the positive frequency
component of the field can be written as E�x ,y ,z , t�
=ex�E0 /2�e−�x2+y2�/w0

2
eı�kz−	t�. Consistency with Maxwell’s

equations requires that the actual field is E�x ,y ,z , t�= �ex

− i�x /zR�ez��E0 /2�e−�x2+y2�/w0
2
eı�kz−	t� which includes a compo-

nent of ez. Thus a circularly polarized field, E�e+ becomes

E�x ,y ,z , t�= �e++ ��y− ix� /zR�e0��E0 /2�e−�x2+y2�/w0
2
eı�kz−	t�. We

can make a rough estimate of the magnitude of the polariza-
tion induced leakage by inserting into Eqs. �A1� and �A2�
��ij��
�xa

2� /zR= �wf0 / �kw0
2��
Ta / �Um�=0.0028, with the nu-

merical value calculated for our standard parameters and
Ta=50 �K. This estimate puts an upper limit on the effective
polarization purity in the interaction region, even when the
unfocused Raman beams are perfectly polarized. Using this
value for all coefficients � gives the last column in Table VI
which shows that transition amplitudes to undesired states
will not exceed �6.6�10−3. Leakage out of the computa-
tional basis is a source of decoherence. We characterize the
decoherence probability for a � pulse by adding the prob-
abilities for leakage out of states �a� or �b�. We find starting
in �a� a leakage probability of 5.6�10−5, and starting in �b�
9.4�10−5. We use the larger of these numbers in Table II as
an estimate of the decoherence probability due to polariza-
tion effects.

E. Laser intensity noise and linewidth

Intensity fluctuations of the Raman lasers will impact the
accuracy of the Rabi pulse area. With the average intensity
and pulse length set to give a � /2 pulse, a relative fluctua-
tion of �I / I implies a fidelity error of E= �1/4���I / I�2. Active
stabilization of the Raman laser intensity is limited by shot
noise to �13�
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�I

I
� 	 4�	1

�Pt�/2

1/2

,

where P is the power of the Raman beam and � is the quan-
tum efficiency of the detector in the stabilization circuit.
With P=100 �W, ��R� /2�=4.6�106 Hz, and �=0.5 we
find �I / I�10−4 and E�9.4�10−8.

Finite laser linewidth, and in particular relative phase
fluctuations of the two Raman beams will lead to errors in
the phase � of the qubit rotation. Laser oscillators have been
demonstrated with a fractional frequency instability of 3
�10−16 at 1 sec averaging time �52�. An optical phase lock
between two laser oscillators with a residual phase noise at
the 1 �rad level has also been achieved �53�. As a conserva-
tive estimate we will assume the Raman lasers can be pre-
pared with a relative phase noise of 1 mrad. This implies a
fidelity error for a � /2 rotation of E=2.5�10−7.

F. State detection using resonance fluorescence

Rapid state selective measurements can be made by illu-
minating the atom with e+ polarized light tuned close to the
�5S ,F=2,mF=2�↔ �5P ,F=3,mF=3� cycling transition.
State readout can be based on detection of resonance fluo-
rescence �54�. Alternatively amplitude �55� and/or phase
shifts imparted to a tightly focused probe beam can be used.
In either case Poissonian photon counting statistics result in
measurement times that are several orders of magnitude
longer than Rydberg gate operation times. While the use of
sub-Poissonian light could be advantageous in this context, it
would add additional complexity.

It is of interest to estimate the time for performing a state
measurement with a desired accuracy. The number of photon
counts recorded in a measurement time � is

q��� = �
�d

4�

��

2

I/Is

1 + 4 �2

�2 + I/Is

, �33�

where �d is the solid angle of the collection optics, � is the
radiative linewidth, I is the readout intensity, Is is the satura-
tion intensity, and � is the detuning of the readout light from
the cycling transition. The factor ��1 accounts for the
quantum efficiency of the detector as well as any optical
losses. The counts are assumed poisson distributed so that
the probability of measuring n counts is Pn�q�=e−qqn /n!. We
also assume a background count rate b0 due mainly to para-
sitic scattering from optical components and detector dark
counts that gives a count number b���=b0�.

To make a measurement we detect scattered photons for a
time �. If the number of counts is greater than or equal to a
cutoff number nc we have measured the qubit to be in state
�b�. The measurement is incorrect if the actual number of
signal counts was less than nc or the number of background
counts was greater than or equal to nc. The probability of a
measurement error is therefore

E = �
n=0

nc−1

Pn�q� + �
n=nc

�

Pn�b� = 1 −
��nc,b�
��nc�

+
��nc,q�
��nc�

,

�34�

where ��nc�= �nc−1�! and ��nc ,q�=�q
�dt tnc−1e−t is the in-

complete gamma function. Since ��nc ,0�=��nc� the error
vanishes when b→0 and q→�. For given values of q and b
there is an optimum choice of nc that minimizes the error.

Figure 5 shows the error probability as a function of mea-
surement time for experimentally realistic parameters. We
see that optimum detection corresponds to a very small value
for nc and that even with background rates as high as b0
=104 s−1 accurate measurements can be made in under
100 �s. A problematic aspect of the state measurement pro-
cess is concomitant heating of the atomic motion. The calcu-
lations shown assume a detuning of �=−� /2, so that if
counterpropagating readout beams are used it should be pos-
sible to cool the atomic motion while performing the mea-
surement. Experiments have demonstrated the feasibility of
long measurement times exceeding several seconds for
single atoms confined in micron sized optical traps �32,56�.

IV. TWO-QUBIT PHASE GATE

In this section we study the performance of the Rydberg
gate using the geometry of two trapped atoms separated by a
distance R, as shown in Fig. 6. The basic idea of the Rydberg
gate is to use the strong dipole-dipole interaction of highly
excited atoms to give a fast conditional phase shift. The fi-
delity of a conditional two-qubit operation will be impacted
by the mechanisms affecting single-qubit gates listed in
Table II, plus additional effects specific to the use of Rydberg
states. As was shown above the single-qubit imperfections
can be quite small, leading to projected fidelity errors
O�10−4�. In the following subsections we analyze the addi-
tional errors specific to a conditional phase gate.

In comparison to the performance of single-qubit opera-
tions there are two significant complications involved in
achieving conditional logic. The first is that optical excitation
of Rydberg levels cannot readily be made Doppler free so
that atomic motion introduces pulse area errors. The second,

FIG. 5. State detection by resonance fluorescence for two dif-
ferent background count rates. The curves are labeled with the op-
timum values of nc. Parameters used were �d /4�=0.05, � /�=
−1/2, I / Is=1, �=2��6 MHz, and �=0.6.
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and more serious limitation, arises from motional heating
due to transfer to Rydberg states, and decoherence due to the
finite lifetime of the Rydberg states. We present a solution to
the heating problem based on balancing ground- and
Rydberg-state polarizabilities, and show that the decoherence
rates can be managed such that high fidelity gate operations
appear possible.

The Rydberg gate can be optimized in two limits. In the
first limit �Sec. IV A�, where the atoms are relatively far
apart, the two-atom interaction frequency shift is small com-
pared to the Rabi frequency of the Rydberg-state excitation.
In the opposite limit of closely spaced atoms �Sec. IV B� the
dipole-dipole interaction is large compared to the Rabi fre-
quency. In both cases the finite lifetime of the Rydberg state
sets a lower limit on the gate fidelity that scales as the
smaller of ��R��−2/3 or ��dd��−2/3, with �R the Rabi fre-
quency of the Rydberg excitation, �dd the dipole-dipole in-
teraction shift, and � the excited-state lifetime.

We start the analysis of the phase gate by calculating its
intrinsic fidelity scaling with speed of operation. The dipole-
dipole interaction energy is

Vdd = ��dd =
1

4��0R3��1 · �2 − 3
��1 · r12���2 · r12�

R2 � .

�35�

Here � j is the dipole moment of atom j, and r12=Rr̂12 is the
atomic separation. When the site to site qubit spacing R is
sufficiently large the dipole-dipole interaction shift �dd is a
small perturbation compared to �R, the Rabi frequency for
excitation from �b�→ �r�. The protocol for a phase gate in this
limit is �21� �i� excite both atoms from �b�→ �r� with a �
pulse, �ii� wait a time tdd=� /�dd�R�, and �iii� transfer both
atoms back down from �r�→ �b� with a � pulse. Here �dd�R�
is the dipole-dipole shift at an atomic spacing of R. The
resulting idealized logic table is �aa�→ �aa�, �ab�→−�ab�,
�ba�→−�ba�, �bb�→−�bb� which is an entangling phase gate.
Adding single-qubit Hadamard gates before and after the

conditional interaction implements a controlled-NOT gate.
The fidelity of the gate is constrained by the presence of four
time scales. In the large Rabi frequency limit we have
1/	ba�1/ ��R��1/�dd��, where input state decoherence
error rotation error � is the natural lifetime of the Rydberg
state. The fidelity is fundamentally limited by the combina-
tion 	ba� which should be as large as possible. Using char-
acteristic values of 	ba=2��6835 MHz and �=100 �s
gives 	ba��4�106 which is sufficiently large for high fi-
delity operation.

There is an intrinsic source of error in this gate that scales
with the ratio �dd /�R. Assume that the Raman fields used for
the �b�→ �r� transfer provide a � pulse when at most one of
the atoms is excited to �r�. Then if both atoms start in state
�b� the excitation to �r� will be imperfect due to the dipole-
dipole shift. In this case the gate operation will end with a
small amplitude for the atoms to remain in state �rr�. It is
readily shown that the probability for this to happen, and
hence the gate error, is E���dd /�R�2. This error is intrinsic
to the design of the gate, so we require a ratio of interaction
shifts to Rabi frequency of 0.1, or less, for high fidelity op-
eration.

Unfortunately, the finite lifetime of the Rydberg state
gives a finite decoherence rate, and an error that grows lin-
early with the time of the gate. As the gate time scales with
1/�dd the interaction must be sufficiently strong to achieve
high fidelity. We can write the probability of decoherence as
P� tdd /�=� /��dd where � is the excited-state lifetime due
to all decay mechanisms �see Secs. IV E and IV F�. The total
gate error accounting for both imperfect fidelity and decoher-
ence is then E���dd /�R�2+1/ ���dd�. The error is mini-
mized for �dd���R

2 /��1/3, which then gives E��1/��R�2/3.
We see that the excited-state lifetime dictates how fast the
Rydberg excitation must be performed to achieve a desired
error level.

A. Large Rabi frequency

In this section we investigate operation in the large Rabi
frequency limit in detail. To quantify the fidelity error we
average over the four possible initial states of the phase gate
which gives the results shown in Table IV. The calculations
are performed using the rotation matrix of Eq. �25� and the
fidelity definition of Eq. �26�. The decoherence error listed in
the table is the integrated probability of a transition out of the
Rydberg state during the gate operation due to spontaneous
emission or other mechanisms. For example the decoherence
error for each atom with the initial condition �aa� is E
��2/���0

�/��R�dt���R�2 /��2�sin2���t /2�+� / ��dd2��, with
��=
��R�2+	ba

2 . The error is then doubled to account for
two atoms.

The rotation error corresponds to the probability that the
atom is in the Rydberg state at the end of the gate. For the
initial condition �bb� the two-atom error is

E = 1 − �	1

0

T

R��R,�dd,�/��R��	1 0

0 − 1



� R��R,�dd,�/��R��	1

0

�4

. �36�

Here the rotation matrices operate on the states �b� and �r�

FIG. 6. �Color online� Geometry of two-qubit interactions.
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and the vector �1 0�T represents �b�. The last row in Table IV
gives the gate error averaged over the possible input states.
While a particular computation may weight certain input
states more heavily than others the average gate error is in-
dicative of the gate performance. The average error is mini-
mized for

�dd�opt� � 	���R�2

4�

1/3	1 +

��R�2

4	ba
2 
1/3

which determines the leading order contributions to the error
as

Eopt �
��R�2

	ba
2 +

3

21/3	 �

���R�

2/3

. �37�

The optimum dipole-dipole shift, gate time tg=2� / ��R�
+� /�dd�opt, and gate error are shown in Fig. 7. We see that
errors less than 10−2 are possible with Rabi frequencies of a
few tens of MHz and a gate time of less than 1 �s. The
corresponding optimum dipole-dipole shifts of order 1 MHz
can be achieved at tens of microns of separation as we dis-
cuss in Sec. IV C.

Finally we note that the absolute minimum gate error oc-
curs for ��R� intermediate between 	ba and 1/�. Minimizing
Eq. �37� with respect to ��R� we find ��R�opt
= ��	ba

3 / �21/2���1/4 and a minimum error of E�min

= �27/2� / ��	ba��1/2. For the parameters used in Fig. 7 we get
��R�opt=2��183 MHz and E�min=2.9�10−3.

Additional imperfections

There are two additional imperfections when working in
the large Rabi frequency limit. The first of these is due to
fluctuations in the distance between the atoms. For atomic
separation large compared to the extent of the thermal mo-
tion the actual qubit separation will be R+x1+x2, with �x1

2�
= �x2

2�= �wf0
2 /4��Ta / �Um��. The variance of the interaction

phase is easily shown to be �2���= �9�2 /2��wf0
2 /R2��Ta /

�Um��. Using this variance as a measure of the gate error
gives E= �1/4��2����1/4�=3.5�10−4 at R=50 �m. The fi-

nal factor of 1 /4 accounts for an averaging over the possible
initial states. We see that at R=50 �m this error is small
compared to the intrinsic gate error which dominates for R
�15 �m.

The second subsidiary imperfection is the presence of
heating due to two-body forces when both atoms are excited
to the Rydberg state. This effect could limit the number of
gate operations before motional cooling is needed and lead to
decoherence through undesired entanglement of the motional
and spin states. The heating rate can be estimated simply as
P=Fv�F	 fwf0. Using F=−dVdd /dR for the two-body force
we get a peak heating power of P�3��dd	xwf0 /R. Using
�dd=2��1 MHz and R=50 �m gives P�1.8 �K/�s for
our standard FORT parameters. We therefore expect a maxi-
mum of about 1 �K of heating when both atoms are initially
in the state �b� which is coupled to the Rydberg states. Al-
though the heating power will average to zero over many
operations there is a finite probability for undesired motional
entanglement. The spacing of the radial vibrational levels in
temperature units is �Evib=�	x /kB=1.9 �K which is com-
parable to the peak heating value. On average there will be a
reduced probability for a change of the vibrational state since
the atoms spend proportionately more time near the turning
points of the motion where the velocity is small.

The above errors due to fluctuations in the atomic separa-
tion and two-body forces are specific to gate operation in the
large Rabi frequency limit. There is an additional error
source that is common to both modes of gate operation,
which is the presence of Doppler shifts of the Rydberg exci-
tation beams due to atomic motion. For ground-state qubit
rotations two-photon stimulated Raman transitions are essen-
tially Doppler free for co-propagating beams, and the error
given by Eq. �31� is insignificant. Two-photon excitation of
Rydberg levels using 0.78 and 0.48 �m beams as indicated

TABLE IV. Leading contributions to the fidelity errors of a
phase gate in the large Rabi frequency limit. See text for details.

Input state Decoherence error Rotation error

�aa� 2���R�
�	ba

2 �1+
��R�
2�dd

� 2��R�2

	ba
2

�ab� or �ba� ���R�
�	ba

2 �1+
��R�
2�dd

�+
�

��dd
�1+

�dd

��R� � ��R�2

	ba
2

�bb� 2�

��dd
�1+

�dd

��R� � 8�dd
2

��R�2

Average ���R�
�	ba

2 �1+
��R�
4�dd

�+
�

��dd
�1+

�dd

��R� � ��R�2

	ba
2 +

2�dd
2

��R�2

FIG. 7. �Color online� Two-qubit phase gate performance in the
limit of large Rabi frequency: �a� optimum dipole-dipole shift and
gate time, and �b� minimum achievable fidelity error. Calculations
for �=100 �s and 	ba=2��6835 MHz.

ANALYSIS OF A QUANTUM LOGIC DEVICE BASED ON … PHYSICAL REVIEW A 72, 022347 �2005�

022347-13



in Fig. 6 cannot be made Doppler free. For Ta=50 �K and
��R�=2��10 MHz we find using Eq. �31�, fidelity errors of
3.3�10−4 and 1.9�10−5 for co- and counter-propagating
beams, respectively. These errors are significantly smaller
than the intrinsic gate errors shown in Figs. 7 and 8.

B. Large dipole-dipole frequency shift

There is an alternative mode of operation of the phase
gate that removes the dependence on variations in the inter-
atomic separation and eliminates the two-body heating dis-
cussed above. This mode can be used for closely spaced
atoms for which �dd ��R�. In this limit the time scales have
the ordering 1/	ba�1/�dd�1/ ��R���. The protocol for a
conditional phase gate is then �21� �ii� excite atom 1 �control
atom� from �b�→ �r� with a � pulse, �ii� excite atom 2 �target
atom� from �b�→ �r�→ �b� with a 2� pulse, and �iii� transfer
atom 1 back down from �r�→ �b� with a � pulse. Note that in
contrast to the protocol used in the large Rabi frqeuency limit
we assume here that the atoms can be individually addressed.

The resulting idealized logic table is �aa�→ �aa�, �ab�
→ �ab�, �ba�→ �ba�, �bb�→−�bb� which is an entangling
phase gate. The gate errors are calculated using the same
techniques as in Sec. IV A which results in the errors shown
in Table V. The average error is minimized for

�Ropt � 	4��dd
2

�

1/3

−
4��dd

2

3�	ba
2

which determines the leading-order contributions to the error
as

Eopt �
3�2/3

25/3

1

��dd��2/3	1 +
7�dd

2

3	ba
2 
 . �38�

The optimum Rabi frequency, gate time tg=4� / ��R�opt�,
and gate error are shown in Fig. 8. We see that errors much
less than 10−2 are possible with dipole-dipole shifts of a few
tens of MHz and a gate time of less than 1 �s. This protocol
appears more promising for achieving very small gate errors
than the large Rabi frequency protocol, since it is easier to
achieve very large dipole-dipole shifts than it is to achieve
very large Rabi frequencies.

Finally we note that minimizing Eq. �38� with respect to
�dd we find �dd�opt=
3/14	ba and an absolute minimum er-
ror of E�min= �1701�2 / �128�2	ba

2 ��1/3. For the parameters
used in Fig. 8 we get �dd�opt=2��3160 MHz and E�min
=1.9�10−4.

C. Dipole-dipole interaction strength

The long-range interactions between two Rydberg atoms
are extremely strong and are the heart of the quantum com-
putation scheme discussed in this paper. We consider here
the Rydberg-Rydberg interactions in two limits: zero electric
field, where the long-range 1/R6 van der Waals interactions
are of primary importance, and in a hybridizing electric field,
where the atoms attain a “permanent” dipole moment of
magnitude n2ea0.

For S states, the van der Waals interaction is dominated by
the near resonance between the states nS+nS and nP+ �n
−1�P, as can be seen from Fig. 9. In the approximation that
we neglect the contribution from other states, the Rydberg-
Rydberg potential-energy curves are simply given by

V�R� =
�

2
+
4U3�R�2

3
+

�2

4
, �39�

where U3�R�=e2�50S�r�50P��50S�r�49P� / �4��0R3�=5.75
�103 MHz �m3/R3 and the SS-PP energy defect is �
=E�49P�+E�50P�−2E�50S�=−3000 MHz. At the 10-�m
separations of interest here, U3�� so that

TABLE V. Leading contributions to the fidelity errors of a phase
gate in the large dipole-dipole shift limit. See text for details.

Input state Decoherence error Rotation error

�aa� 2���R�
�	ba

2

2��R�2

	ba
2

�ab� �

���R� �1+
��R�2

	ba
2 � ��R�2

	ba
2

�ba� �

��dd
+

�

���R� �1+
��R�2

	ba
2 � ��R�2

2	ba
2

�bb� �

� � 2

��R�
+

1

�dd
� ��R�2

2�dd
2

Average �

���R� �1+
��R�2

	ba
2 �+

�

2��dd

��R�2

8�dd
2 +

7��R�2

8�	ba�2

FIG. 8. �Color online� Two-qubit phase gate performance in the
limit of large dipole-dipole shift: �a� optimum Rabi frequency and
gate time, and �b� minimum achievable fidelity error. Calculations
for �=100 �s and 	ba=2��6835 MHz.
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V�R� = −
4U3�R�2

3�
. �40�

As can be seen from Fig. 10, the van der Waals potential for
50S is insufficient to allow for the MHz processing that is
desired here.

van der Waals interactions between D states are domi-
nated by the near resonance of nD+nD and �n+1�P+ �n
−1�F. In general, the van der Waals interactions are of com-
parable strength when compared to the S states. Because of
the degeneracy of the D levels, however, it can be shown that
U3 vanishes for one each of the 3!u

+ and 1!g
+ molecular

states �57�. Thus there is no blockade at zero field for these
states.

The scaling of the van der Waals interaction with n is very
rapid, V"n11. For n=100, V�10 �m��50 MHz. While this
is sufficient for a conditional phase gate �see Fig. 8� we can
considerably enhance the interaction strength by applying a
dc field. Thus we now consider the long-range interactions in
the presence of an applied electric field.

There are two primary ways to enhance the Rydberg-
Rydberg interaction using an applied electric field. The first
is to use the electric-field dependence of the state energies to
bring the energy defect � to zero, in which case V�R�
�2U3�R� /
3. This would produce an extremely strong iso-
tropic interaction of maximum strength, for example n=95
gives a frequency shift at 10-�m separation of 160 MHz.
However, inspection of Fig. 9 shows that the P states tune
the wrong way in an electric field, increasing rather than
decreasing �. For D states there remains the problem of zero
dipole-dipole interactions for some molecular symmetries.

The second way to adjust the Rydberg-Rydberg interac-
tions is to use a large enough field to strongly mix states of
different L. In this case the atom acquires a field-independent
dipole moment, as suggested for example by the linear field
dependence of the 50D state at electric fields between 5 and
6 V/cm. In this case the Rydberg-Rydberg interaction is
strong but anisotropic and we have the dipole-dipole interac-
tion of Eq. �35�,

Vdd�R� = ��dd�R� =
�2

4��0R3 �1 − 3 cos2�� , �41�

where � is the angle between the interatomic axis and the
electric field.

In the proposed geometry for the quantum computer, the
electric fields can be aligned to �=0 for maximum interac-
tion strength. The electric dipole moment is on the order of
n2ea0, giving a dipole-dipole interaction of comparable size
as the zero field case with �=0. We have numerically esti-
mated the dipole moments for the field-mixed D states, and
obtain for example �=3300ea0 for n=50. The resulting in-
teraction strengths as a function of distance are shown in Fig.
11. We see that interaction frequencies in excess of 100 MHz
can be achieved for R=8 �m at n=70 and well beyond R
=10 �m at n=95. Thus the dipole-dipole interaction strength
needed to optimize the phase gate, as shown in Fig. 8, can be
achieved for qubit separations that are optically resolvable. It
has been pointed out �58� that n should not be too large in
order to avoid collisions between the valence electrons of
neighboring Rydberg atoms. For R=8 �m this implies that n

FIG. 9. �Color online� Stark map for states near n=50 for 87Rb.
At electric fields around 5–6 V/cm, the atom acquires a large per-
manent dipole moment, oriented in space along the applied field.

FIG. 10. �Color online� Isotropic dipole-dipole interaction for
excitation to the Rb 50S state. The energy defect between the 50S
+50S and 49P+50P states significantly reduces the interaction as
compared to the ideal degenerate case. Going to larger n partially
compensates for the nonzero energy defect.

FIG. 11. �Color online� Dipole-dipole interaction strengths as a
function of interatomic distance for various principal quantum
numbers.
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should be less than about 100. Although n=100 is sufficient
for the geometry considered here, it is also true that in the
large dipole-dipole shift limit discussed above this limitation
is not needed as only one atom at a time is excited to a
Rydberg level.

D. Balancing the ground- and excited-state polarizabilities

The implementation of the two-qubit conditional gate de-
scribed so far has an inherent flaw that stems from the need
to make real transitions to Rydberg levels. The atoms are
confined in attractive optical potential wells since the
ground-state polarizability is positive for light tuned to the
red of the first Rb resonance lines. However, for the same red
detuned trapping laser, the high-lying Rydberg levels have a
negative polarizability that provides a repulsive potential.
Excitation of an atom to the repulsive Rydberg state during a
gate cycle leads to heating and decoherence through en-
tanglement of the spin and motional states. Looking at Fig.
12 we see that for � f =1.06 �m the 50D5/2 Rydberg level has
a polarizability of �0�50D5/2�=−77 Å3. This polarizability is
about 95% of the free-electron polarizability of −e2 /me	 f

2,
with me the electron mass. This implies that the Rydberg
polarizability is only weakly dependent on the principal
quantum number n for large n, so the discussion given here
for the case of the 50D5/2 level is applicable to any of the
highly excited states.

When the Rydberg state sees a repulsive potential the
heating is minimized by turning off the trapping laser during
the gate operation. For atomic temperatures large compared
to the trap vibrational energy the motion is quasiclassical and
the average heating per gate cycle of duration � is ��U�
=Ta1 # 2 �	��2, where 	 is the radial trap vibration fre-
quency. For �=0.5 �s and 	=2��39 kHz we get
��U� /Ta=7.5�10−3. This heating rate is about 5 times
larger than that due to the ac Stark shifts of the Raman lasers
discussed in Sec. III B, and implies that several hundred op-
erations can be performed before there is significant heating
of the atomic motion.

The heating can be eliminated by choosing a FORT laser
wavelength that gives equal polarizability for the ground and
Rydberg states. Referring to Fig. 12, one possibility is to tune
the FORT laser to the blue side of the 50D-6P transition
where the Rydberg level acquires a positive polarizability.

The scalar polarizability of the Rydberg level is given by

�0�nD5/2� = −
2

3�

1

2J + 1 �
��J�

	��J�,�J

	��J�,�J
2 − 	 f

2 ����J��D̂��J��2,

�42�

where D̂ is the electric dipole operator and �	��J�,�J=E��J�
−E�J. Away from the resonance the polarizability changes
slowly with 	 f and for the �50D5/2� level it is �̄0�50D3/2��
−69 Å3. When 	 f is near resonant with the �nD5/2�↔ �6P3/2�
transition the polarizability is the sum of the background
value �̄0 plus the resonant contribution to the sum. Using
Coulomb wave functions for n=50 we find

�50D5/2�D̂�6P3/2�=0.059ea0 so that a rough estimate for the
detuning condition at which the polarizabilities are equal is

� f =
1

3�

1

2J + 1

��50D5/2�D̂�6P3/2��2

�0�5S1/2� − �̄0�50D5/2�
= 2� � 945 MHz.

�43�

Unfortunately there is a penalty associated with balancing
the polarizabilities in this way since there is a probability for
the gate operation to end with the atom having finite
amplitude to be in the �6P3/2� level which lies outside
the computational basis. The Rabi frequency for this
transition �starting from mJ=3/2� is given by �� f�
= �E f / ��
15���50D5/2�D̂�6P3/2� and the probability for popu-
lation transfer to the �6P3/2� state at the end of a Rydberg
operation is bounded by Pmax= �� f�2 / ��� f�2+� f

2�. For a trap
depth of 1 mK we find �� f�=2��210 MHz and Pmax
=0.16. This upper bound assumes that the ratio of the gate
time and the spontaneous lifetime of the 6P level is not large,
otherwise there is an additional loss mechanism due to decay
out of the 6P level.

This decoherence probability is roughly proportional to
the FORT laser intensity and can be reduced by working with
a shallower FORT trap. This suggests that atoms be loaded
into 1-mK-deep traps where they can be cooled to sub Dop-
pler temperatures with standard methods, followed by adia-
batic reduction of the trap depth before performing logical
operations. With Ta=5 �K and �Um�=100 �K the atom lo-
calization and motional errors will be the same as considered
in the rest of this paper, while the decoherence probability
per Rydberg operation will be bounded by Pmax=0.016.

While we expect this to be a viable approach for initial
experiments it can be readily shown that the decoherence
probability with polarizability balancing of a nD Rydberg

level scales proportional to 1/ ��nD5/2�D̂�6P3/2��2. Since

��nD5/2�D̂�6P3/2��2�1/n3 the leakage problem scales as n3

and the technique is most useful for low-lying Rydberg states
that have large transition dipole moments with the 6P level.

An alternative solution is to choose a FORT wavelength
such that the ground state acquires a negative polarizability
which coincides with that of the Rydberg level. In this situ-
ation the optical potential is negative so the atom is trapped
at a local minimum of the intensity. This approach has a
number of advantages since for an intensity profile of the

FIG. 12. �Color online� Polarizability of the 5S1/2 and 50D5/2

states. The inset shows the behavior near the 5S-6P transition.
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form I= I0�1−e−2r2/wf0
2

� the time averaged trapping intensity
at the position of the atom is Ta / �Um� times smaller than it
would be for an attractive potential of the same depth. This
increases the T1 and T2 times in rows 2, 3, and 6 of Table I
associated with photon scattering and motional ac Stark
shifts by the same factor. It was pointed out by Safronova et
al. �59� that the polarizabilities can be balanced in this way
by tuning the trapping laser between the D lines. For 87Rb
the balancing point is at � f �0.79 �m. However, the vector
polarizability at this point has a very large value of �1
�3600 Å3 which would lead to a T1 due to inelastic scatter-
ing �see Eq. �12�� of about 1 ms for the parameters of Table
I, which is unacceptably short.

A more favorable alternative is to use a FORT wavelength
of � f �0.431 �m which gives equal polarizabilities of �0
�−12.5 Å3, as shown in the inset to Fig. 12. At this wave-
length �1�−0.01 Å3 which gives an inelastic scattering T1
that is longer than any other time scale in Table I. The only
drawbacks of this solution are technical, not fundamental.
There is additional experimental complexity associated with
creating optical beams with local intensity minima, as well
as the need for a medium power laser in the blue. Recent
developments in solid-state laser sources and parametric fre-
quency convertors render the latter requirement readily solv-
able.

E. Rydberg state radiative lifetimes

The lifetimes of highly excited Rydberg nl states are af-
fected strongly by background blackbody radiation. If the
0-K lifetime is �nl

�0� the finite temperature lifetime can be
written as

1

�nL
=

1

�nL
�0� +

1

�nL
�bb� , �44�

where �nL
�bb� is the finite temperature blackbody contribution.

The 0-K radiative lifetime can be calculated by summing
over transition rates or approximated by the expression �60�

�nL
�0� = �L

�0��n*��L. �45�

For all the alkalis �L�3. Parameters for Rb are �S=2.94,
�P=3.02, �D=2.85, �F=2.95, and �S

�0�=1.43, �P
�0�=2.76,

�D
�0�=2.09, and �F

�0�=0.76 in units of ns.
For large n the blackbody rate can be written approxi-

mately as �61�

1

�nL
�bb� =

4�3kBT

3�n2 , �46�

where � is the fine-structure constant. Equation �46� includes
transitions to continuum states so that it accounts for black-
body induced photoionization. Figure 13 shows the radiative
lifetime �nL for n up to 100 and several l states. We see that
for n�65 the S , P ,D, and F states have lifetimes greater
than 0.1 ms at room temperature.

F. FORT trap induced photoionization

Highly excited states are also unstable against photoion-
ization from the intense trapping light. Since the Rydberg

electron is nearly free, and the photoionization is far above
threshold, the photoionization cross sections are small. We
have estimated the photoionization rate of high Rydberg
states by calculating the cross section using Rydberg and
continuum wave functions.

The cross section is given by �61�


 = 2�2�e2

mc
� df

dE
�

Ec

, �47�

where f is the oscillator strength and Ec=�	+Er the energy
of the continuum electron produced by the photon of fre-
quency 	 from the Rydberg state of energy Er. The oscillator
strength distribution is

df

dE
= �

L

2m	L�

3��2Lr + 1�
�� $r�r�r�L,E�r�dr�2

, �48�

where L� is the larger of Lr and L and the continuum wave
function is normalized per unit energy

�L,E�r� �
r→�
 2m

��2k
sin�kr + �L,E� . �49�

We have used two methods to detemine the bound and con-
tinuum wave functions. In the first we use quantum defect
theory �62� to find the Coulomb wave functions and phase
shifts �L,E. The second method uses the L-dependent model
potentials of Marinescu et al. �63�, with values slightly ad-
justed to give the proper quantum defects of the Rydberg
states. The Numerov method was then used to find �L,E.
Numerical results for the two approaches agree within a fac-
tor of about 2 for the range of n discussed here. The discus-
sion and Fig. 14 give the results obtained using the Mari-
nescu potential.

The n=50 photoionization cross sections are shown as a
function of L in Fig. 14. The photoionization cross section
for the S state is much smaller than L�0 states due to the
� /2 phase shift between the S and P wave functions �61�.
The cross sections increase dramatically for the P and D
states before slowly decreasing with further increases in L.
While the 50S cross sections are very small, the 100� larger
cross section for the higher L levels implies that the photo-
ionization rate for the S states will depend sensitively on

FIG. 13. �Color online� Excited-state lifetime due to radiative
decay for T=0 �blue, thin lines� and T=300 K �red, thick lines� for
S , P ,D, and F states of Rb.
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mixing with the P levels due to external fields. Thus the
photoionization cross sections may be as large as 10−20 cm2,
or as high as �pi=31 000/s for a 1-mK trap depth.

The photoionization cross sections decrease with n, a fac-
tor of 6 going from n=50 to n=90 as shown in the inset to
Fig. 14. Thus at n=90 we get a minimum lifetime of �pi
�190 �s for the P and D states and substantially longer for
the other L states. Taking into account the blackbody lifetime
calculated in the previous section we conclude that the Ryd-
berg lifetime will exceed 100 �s for n�80. This validates
the gate fidelity estimates discussed in Secs. IV A and IV B.
Since the photoionization rate scales linearly with the trap
depth even better performance is possible by further cooling
of the atomic motion and a corresponding reduction of the
trap depth, or by use of a blue detuned FORT laser as dis-
cussed in Sec. IV D.

V. DISCUSSION

In this paper we have presented a detailed analysis of
quantum logic using neutral atoms localized in optical traps.
Two-photon Raman transitions are used for single-qubit
gates, dipole-dipole interactions of Rydberg states provide a
two-qubit conditional phase gate, and detection of resonance
fluorescence is used for state measurement. We have concen-
trated on an implementation of neutral atom gates that should
be feasible with currently available experimental methods
and laser sources. The T1 and T2 coherence times for qubit
storage, and error estimates for single-qubit gates are sum-
marized in Tables I and II. The intrinsic two-qubit gate errors
are shown in Figs. 7 and 8. The analysis supports the feasi-
bility of MHz rate logical operations with intrinsic errors
O�10−4� for single-qubit operations, O�10−3� for two-qubit
gates, and state measurements in less than 100 �s with
O�10−3� measurement error. We show that coherence times
of at least several seconds are possible in red-detuned attrac-
tive optical traps. Taken together these numbers suggest an
attractive framework for experimental studies of quantum
logic with neutral atoms.

It should be emphasized that the Rydberg gate approach
does not rely on cooling the atoms to the motional ground
state. While ground-state cooling has been demonstrated in

optical traps, and lower atomic temperatures will lengthen
coherence times and reduce some of the gate errors, the dif-
ficulty of maintaining the atoms in the motional ground state
in the presence of heating mechanisms should not be over-
looked. Our assumption of Ta=50 �K does not require com-
plex cooling schemes, and implies that O�103� single-qubit
logical operations can be performed without significant re-
duction in fidelity due to motional heating.

As discussed in Sec. IV D the differential polarizability of
the ground and Rydberg states in a red-detuned FORT will
lead to substantial heating or loss of coherence. While initial
experiments are viable in red-detuned FORTs our analysis
suggests that a blue FORT where the atoms are trapped at a
local minimum of the intensity will ultimately be necessary
to realize the full potential of this scheme. The blue FORT
will also substantially improve the coherence times for qubit
storage, and to a lesser extent the Rydberg state lifetime.

Extending the two-qubit approach described here to a
large number of qubits will involve solving challenges re-
lated to loading and addressing of multiple sites. The Ryd-
berg gate approach does appear intrinsically well suited for
implementation in a two-dimensional array, including error
correction blocks. The large dipole-dipole shift limit can be
used for gates between neighboring sites, while the large
Rabi frequency limit which works at longer range may allow
non-nearest neighbors to be coupled. Figure 7 shows that in
the limit of large Rabi frqeuency, gate errors less than 10−2

are possible with dipole-dipole coupling strengths of only 1
MHz. For Rydberg levels with n=70 we can achieve a cou-
pling strength of 1 MHz at a separation of about 40 �m.
With a 8-�m qubit spacing this suggests the possibility of
coupling blocks of 25 or more qubits without physical mo-
tion. By taking advantage of the directional properties of the
dipole-dipole interaction described by Eq. �35� it is possible
to perform row parallel operations between pairs of qubits
with strongly suppressed crosstalk. While there are many
appealing features of the approach studied here we empha-
size that the extent to which it will prove possible to perform
arbitrarily large, scalable quantum computations remains an
open question that will require a great deal of further theo-
retical and experimental studies.
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APPENDIX: RAMAN TRANSITIONS DUE TO IMPERFECT
POLARIZATION

We account for imperfect polarization of the Raman
beams by putting �1= �e++�1−e−+�10e0� / �1+�1−

2 +�10
2 �1/2 and

�2= �e++�2−e−+�20e0� / �1+�2−
2 +�20

2 �1/2. Referring to Fig. 4
and limiting ourselves to transition amplitudes that are linear
in the small parameters � we must account for the following
undesired transitions starting from �a�= �10�:

FIG. 14. �Color online� Photoionization cross section vs ejected
electron energy, for the Rb 50S Rydberg state with � f =1.01 �m.
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�a� → �1 − 1� �10�E1e0��E1e+�* + �20�E2e0��E2e+�*,

�a� → �11� �10
* �E1e+��E1e0�* + �20

* �E2e+��E2e0�*,

�a� → �2 − 2� �1−�E1e−��E2e+�*,

�a� → �2 − 1� �10�E1e0��E2e+�*,

�a� → �21� �20
* �E1e+��E2e0�*,

�a� → �22� �2−
* �E1e+��E2e−�*, �A1�

and the following transitions starting from �b�= �20�:

�b� → �1 − 1� �20�E2e0��E1e+�*,

�b� → �11� �10
* �E2e+��E1e0�*,

�b� → �2 − 2� �1−�E1e−��E1e+�* + �2−�E2e−��E2e+�*,

�b� → �2 − 1� �10�E1e0��E1e+�* + �20�E2e0��E2e+�*,

�b� → �21� �10
* �E1e+��E1e0�* + �20

* �E2e+��E2e0�*,

�b� → �22� �1−
* �E1e+��E1e−�* + �2−

* �E2e+��E2e−�*. �A2�

We have labeled the kets as �F ,mF� and the factors on the

TABLE VI. Transition amplitudes out of the computational basis due to imperfect optical polarization. The effective Raman frequencies
are given by �R= �2e2R5S,5P1/2

2 / ��0c�2���K /72�I, with I the intensity of each Raman beam. The last column shows the amplitude of the
leakage state for a � pulse on the �a�→ �b� �or �b�→ �a�� transition, evaluated using Eq. �23� with I=100 �W and �11/2�=−100 GHz such
that ��R��a�→ �b��� /2�=4.6 MHz.

Transition K Transition Stark shift �MHz� Transition amplitude

�a�→ �1−1�
−

2�10

��11−�e�
−

2�20

��11−�e−	ba�
−2.41 −4.1�10−3

�a�→ �11�
�10

* � 1

�11
−

3

�11−�e
�+�20

* � 1

�11−	ba
−

3

�11−�e−	ba
� 2.42 −4.1�10−3

�a�→ �2−2�
−
6�1−� 1

�11
−

1

�11−�e
� −4.79 1.3�10−5

�a�→ �2−1� 2
3�10

�11−�e

−2.39 3.4�10−3

�a�→ �21�
−
3�20

* � 1

�11
+

1

�11−�e
� 2.38 −3.4�10−3

�a�→ �22� 
6�2−
* � 1

�11
−

1

�11−�e
� 4.75 −1.4�10−5

�b�→ �1−1�
−

2�20

�11

−2.41 −1.9�10−3

�b�→ �11�
−�10

* � 1

�11
−

3

�11−�e
� 2.42 2.0�10−3

�b�→ �2−2�
−
6�1−� 1

�11+	ba
−

1

�11−�e+	ba
�−
6�2−� 1

�11
−

1

�11−�e
� −4.79 2.5�10−5

�b�→ �2−1� 2
3�10

�11+	ba
+

2
3�20

�11

−2.39 6.5�10−3

�b�→ �21� 
3�10
* � 1

�11+	ba
+

1

�11−�e+	ba
�+
3�20

* � 1

�11
+

1

�11−�e
� 2.38 6.6�10−3

�b�→ �22�
−
6�1−

* � 1

�11+	ba
−

1

�11−�e+	ba
�−
6�2−

* � 1

�11
−

1

�11−�e
� 4.75 2.5�10−5
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right indicate the participating fields and polarizations. The
Clebsch-Gordan factors and detunings associated with these
transitions are different than those that apply for the desired
�a�→ �b� transition. We will assume that the fields are in
two-photon resonance for the �a�→ �b� transition accounting

for the ac Stark shifts given in Table III. The Rabi frequen-
cies normalized to that of the desired transition are given in
Table VI which shows the transition amplitude for excitation
of an undesired state with parameters that give a � pulse on
the desired transition.
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