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We analyze the quantum entanglement between two interacting atoms trapped in a spherical harmonic
potential. At ultracold temperature, ground-state entanglement is generated by the dominated s-wave interac-
tion. Based on a regularized pseudopotential Hamiltonian, we examine the quantum entanglement by perform-
ing the Schmidt decomposition of low-energy eigenfunctions. We indicate how the atoms are paired and
quantify the entanglement as a function of a modified s-wave scattering length inside the trap.
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I. INTRODUCTION

The interactions between trapped ultracold atoms govern
many interesting collective quantum phenomena, ranging
from Bose-Einstein condensation �1� to recently observed
fermion superfluid �2�. At sufficiently low energies, it is
known that short-ranged atom-atom interactions can be re-
placed by a pointlike regularized pseudopotential under the
shape-independent approximation �3�. The strength of such a
pseudopotential is determined by an s-wave scattering length
a only, and hence one can control the atom-atom interaction
by tuning the scattering length via the technique of Feshbach
resonance. For trapped systems, the theory of the pseudopo-
tential has been examined in detail by several authors �4,5�.
As long as the range of the actual atom-atom interaction is
short compared with the width of the trap, low-energy eigen-
functions can be accurately captured by the eigenfunctions of
the pseudopotential, except for a few tightly bound states
that may exist inside the range of the interatomic potential.
Such a universal applicability is the essence of shape-
independent approximation. Therefore the study of the eigen-
functions of pseudopotentials would provide useful insight
into generic features of two-body correlations in the low-
energy regime.

In this paper, we address a fundamental question as to
how the scattering length controls quantum correlations be-
tween two ultracold atoms inside a harmonic trap. Quantum
control of trapped ultracold atoms has been a subject of con-
siderable research interest, regarding potential applications in
quantum information processing �6,7�. For example, colli-
sions of atoms can be exploited to perform various quantum
logic operations �7�. However, the nature of quantum en-
tanglement arising from s-wave scattering has not been fully
explored �8�. Such an entanglement is inherent in the con-
tinuous degree of freedom of atoms, and it may have effects
on the fidelity of quantum gates based upon collisional
mechanisms �7�. In this paper we will analyze the quantum
entanglement of the low-energy eigenstates defined by the
regularized pseudopotential and the harmonic trap. By per-
forming the Schmidt decomposition of low-energy eigen-
functions, we show that quantum entanglement is manifested
as pairing of atoms in a set of orthogonal mode functions in
three-dimensional space. In particular, the angular momenta

are identified as good quantum numbers to characterize the
Schmidt-mode functions. We will present numerical results
that quantify the degree of entanglement as a function of the
scattering length a. In addition, we will examine the en-
tanglement in the a→� limit. Such a strong-coupling regime
corresponds to the unitarity limit in degenerate quantum
gases �9�. The study of pairing in two-body models in such a
limit may shed light on quantum correlations in the more
difficult many-body problems.

II. REGULARIZED HAMILTONIAN AND ENERGY
EIGENSTATES

To begin with, we consider a system of two interacting
atoms with equal mass trapped in a spherical harmonic po-
tential. The Hamiltonian of the system is given by

H = −
�2
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2 +
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2
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2 +
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2
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2 + V�r1 − r2� ,
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where r1 and r2 are the position vectors of the two atoms, m
is the mass of the atom, and � is the trap frequency. The
interaction between the two atoms is described by the short-
range potential V which will be replaced by a pseudopoten-
tial in Eq. �3� under the shape-independent approximation.
For convenience, we separate the Hamiltonian into a center-
of-mass part and a relative part, H=Hc.m.+Hrel, so that

Hc.m. = −
1

8
�R

2 + 2R2, �2�
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with R= �r1+r2� /2 and r=r1−r2. Here the energy and length
are expressed in units of �� and �� /���1/2 �where �=m /2
is the reduced mass�, respectively. The strength of the
pseudopotential is characterized by the modified s-wave scat-
tering length a. For a given interatomic potential, the precise
value of a depends on the trapping potential and it can be
determined self-consistently by the methods discussed in
Ref. �5�. In this paper we will treat a as a parameter of the
Hamiltonian.
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The s-wave eigenfunctions of the H have been solved
analytically in Ref. �4�. Given a scattering length, the
eigenenergy E of Hrel is defined by the solution of

��− E/2 − 1/4�
2��− E/2 + 3/4�

= a , �4�

with � being the gamma function. The eigenfunctions of Hrel
with the energy E are given by

�E�r� = Ae−r2/2U�− E/2 + 3/4,3/2,r2� , �5�

where A is a normalization constant and U�	 ,
 ,z� is Kum-
mer’s function �12�.

In this paper we assume that the center-of-mass wave
function is the ground state of Hc.m., which is a simple
Gaussian: ��R�=2�2e−2R2

/�3/4. Combining ��R� with
�E�r�, the two-particle energy eigenfunctions are given by

��r1,r2� = ��R��E�r� . �6�

In Fig. 1, we illustrate how the eigenenergies depend on the
scattering length. For convenience, we choose to plot with
the inverse of scattering length—i.e., 1 /a—in order to indi-
cate the continuous branch associated with the ground states.
It should be noted that the ground-state energy becomes large
and negative when 1/a is positive and large. This feature
also occurs in the absence of the harmonic trapping potential,
and it is due to the existence of a tightly bound state in the
a→0+ limit �4�. As an illustration, we show in Fig. 2 the
radial probability density associated with relative coordinate
wave functions at several values of a.

III. SCHMIDT DECOMPOSITION

The characterization of quantum entanglement is achieved
by Schmidt decomposition of ��r1 ,r2�, which reads

��r1,r2� = �
j

� juj�r1�v j�r2� , �7�

where  j are eigenvalues, and uj and v j are Schmidt eigen-
modes defined by

� dr1�� dr2��r1,r2��*�r1�,r2�uj�r1�� =  juj�r1� , �8�

� dr2�� dr1��r1,r2��*�r1,r2��v j�r2�� =  jv j�r2� . �9�

Note that the mode functions uj form a complete and ortho-
normal set, and the same is true for v j. If atom 1 appears in
mode uj, then with certainty atom 2 must be in mode v j. In
other words, Eq. �7� indicates the pairing structure of the
two-particle state. In addition, the distribution of  j provides
a measure of the degree of entanglement. This is usually
discussed in terms of the entanglement entropy S=
−� j j ln  j. However, a more transparent measure is the ef-
fective number of Schmidt modes, which is provided by the
Schmidt number: K�1/� j j

2 �10�. A disentangled �product�
state corresponds to K=1; i.e., there is only one term in the
Schmidt decomposition. The larger the value of K, the higher
the entanglement. We point out that 1 /K equals the purity of
the density matrix of an individual particle. The purity has
also been employed as a measure of the degree of entangle-
ment in various physical situations �11�.

To carry out the Schmidt decomposition of the wave
functions in three dimensions, we note that R
=�r1

2+r2
2+2r1r2 cos � /2 and r=�r1

2+r2
2−2r1r2 cos �, where

� is the angle between r1 and r2. Therefore the wave
function ��r1 ,r2�=��r1 ,r2 ,cos ��=�l=0

� 	l�r1 ,r2�Pl�cos ��,
where Pl�x� is the Legendre polynominal and
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�10�

With the help of the addition formula �2l+1�Pl�cos ��
=4��m=−l

l Ylm
* ��1 ,�1�Ylm��2 ,�2�, we have
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This expression is already partially in the Schmidt form, be-
cause the pairing of angular functions has been identified.

FIG. 2. Radial densities ��r��4�r2	�E�r�	2 associated with the
ground-state wave functions at 1 /a=0, ±2. The radial distance r is
in units of �� /���1/2.

FIG. 1. Eigenenergies of Hrel as a function of the inverse of
dimensionless scaled scattering length. E is in units of ��. The
three branches A, B, and C correspond to the lowest three states
with zero angular momentum �in relative coordinate�.
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The remaining task is to decompose 	l�r1 ,r2� for each l. This
can be achieved by performing the Schmidt decomposition
of the function r1r2	l�r1 ,r2�—i.e.,

r1r2	l�r1,r2� = �
n

�nlunl�r1�vnl�r2� . �12�

Here the prefactor r1r2 is introduced in order to ensure cor-
rect normalization in radial directions.

The final form of the Schmidt decomposition of the wave
function, Eq. �5�, now reads

��r1,r2� = �
n=1

�

�
l=0

�

�
m=−l

l 
4��nl

2l + 1
��unl�r1�

r1
Ylm

* ��1,�1�
��vnl�r2�

r2
Ylm��2,�2� . �13�

Our derivation indicates a general feature that for any wave
function that is a function of distances R and r only, the
angular parts of Schmidt modes are simply the spherical har-
monics. The pairing involves angular momentum quantum
numbers �l ,m� and �l ,−m�; i.e., the same l and opposite m
must be paired. In addition, each m is of equal weight for a
given l. Therefore, if one could select Schmidt modes with a
fixed n and l via projective measurement, then the resulting
state is a maximally entangled state among various m’s on
the projected l manifold.

IV. NUMERICAL RESULTS

The fact that the angular parts of Schmidt modes can be
obtained analytically reduces the computational difficulty in
the original three-dimensional problem. Finding unl, vnl, and
nl in Eq. �12� is a relatively simple numerical task, because
r1r2	l�r1 ,r2� behaves as a two-particle �one-dimensional�
wave function in non-negative r1 and r2 regions. Specifically,
we first obtain 	l�r1 ,r2� by performing numerical integration
of Eq. �10� for discretized values of r1 and r2, typically with
the spacing �r=0.01. For the s-wave eigenfunctions consid-
ered here, it is sufficient to choose r1 and r2 ranging from 0
to 3.5, where the wave functions are mainly confined. Be-
cause of the symmetry properties of r1r2	l�r1 ,r2�, unl and vnl

are the same real functions. Therefore unl, vnl, and nl can be
obtained by diagonalizing the matrix r1r2	l�r1 ,r2�. For the
low-energy states considered in this paper, l up to 30 are
typically sufficient in order to obtain convergent results.

We can now obtain the value of K for the state �13� from
the Schmidt eigenvalues—i.e.,

K = 1/�
n=1

�

�
l=0

�

�nl
2 . �14�

Here �nl=16�2nl / �2l+1�3/2 is defined. The main result of
this paper is shown in Fig. 3, where the values of K are
displayed as a function of the inverse of the scaled scattering
length for low-energy states. We notice that higher excited
states generally have higher quantum entanglement. How-
ever, the ground state �curve A� shows a distinct behavior in

the positive-1 /a region, where we notice a sharp rise of K as
1/a increases.

The strong ground-state entanglement in the large
positive-1 /a limit is understood as the appearance of increas-
ingly bounded atoms. This is implied in the ground-state
energy curve �A� in Fig. 1, as well as in the wave function
�1/a=2� shown in Fig. 2. A crude estimation of K can be
made from the analytical results of Gaussian functions. For
Gaussian functions separable in the center of mass and rela-
tive coordinates, it is known that K� ��R�3 / ��r�3 when the
center-of-mass width �R is much wider than the width of the
relative coordinate �r �13�. Here the tightly bound state cor-
responds to a strong localization in particle’s relative dis-
tance, with �r of order a in the 1/a�1 limit. Therefore
�R /�r�1, and hence high values of K can be expected as in
the case of Gaussian functions. However, we remark that
Gaussians can only serve as a guide here, because the singu-
lar 1 /r dependence in �E�r� cannot be captured by Gauss-
ians. Indeed, K depends on a in a complicated form accord-
ing to our numerical calculations.

For excited eigenstates on the branches B and C, we see
an interesting feature in Fig. 3—that the change of quantum
entanglement is only sensitive to a range of scaled scattering
lengths. Such a window of scaled scattering lengths is high-
lighted by dashed lines in Fig. 3, where we found that K
changes significantly with 1/a when 1/ 	a	�2. Recalling that
we are using the length unit defined by the harmonic trap,
our results suggest that the s-wave interaction can apprecia-
bly affect quantum entanglement in excited states when a is
greater than or comparable with the width of a ground-state
particle inside the trap—i.e., 	a	� �� /2m��1/2. This feature is
also true for the ground state with negative scattering
lengths.

The structure of quantum entanglement is characterized
by the distribution of Schmidt eigenvalues and the Schmidt
mode functions. In Fig. 4 we show the distribution �nl for
the ground state with 1/a=−2 and 1/a=2. In the case of

FIG. 3. Schmidt number as a function of the inverse of dimen-
sionless scaled scattering length for the low eigenstates associated
with the three energy curves in Fig. 1. K is plotted up to 1/a=2 for
ground-state curve A because the high values of K are out of the
range of the figure for 1 /a�2.
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1/a=−2, the entanglement K=1.2 is not high because of the
presence of a dominant �n , l ,m�= �1,0 ,0� Schmidt mode,
which covers about 70% probability of the state. On the con-
trary, K=10.13 is much higher for the 1/a=2 case. This is
shown in the distribution of �nl �Fig. 5�b�� in which Schmidt
modes with n=1 and higher angular momentum number l are
involved. In other words, the strong entanglement is mainly
manifested in the angular variables.

In Fig. 5, we illustrate the shape of leading Schmidt
modes corresponding to the ground-state wave functions in
Fig. 4. Since the angular part are simple spherical harmonic
functions, we show only the radial mode functions in the
figure. Apart from the fact that Schmidt modes of positive
scattering lengths are more attracted to the origin, the change
of scattering length has small effects on the mode functions.
This is in contrast to the Schmidt eigenvalues, which are
more sensitive to the values of a as depicted in Fig. 4.

Finally, let us discuss the limit of 	a	→� or 1/ 	a	→0. In
such a limit, we find that the eigenfunctions take simple ana-
lytic forms. We present some of the s-wave eigenfunctions of
H in the limit 	a	→�:

�10�r1,r2� =
2

�3/2

e−r1
2
e−r2

2

	r1 − r2	
, �15�

�11�r1,r2� =
�2

�3/2

e−r1
2
e−r2

2

	r1 − r2	
�1 − �r1 − r2�2� , �16�

�12�r1,r2� =
�3/2

�3/2

e−r1
2
e−r2

2

	r1 − r2	�1 − 4�r1 − r2�2 +
4

3
�r1 − r2�4 .

�17�

Here Eqs. �15�–�17� correspond to the energy eigenfunctions
�center of mass+relative coordinates� associated with the
lowest three states of Hrel and the ground state of Hc.m.. Al-
though Eqs. �15�–�17� are simple expressions, the Schmidt
decomposition still cannot be carried out analytically. We
perform numerical calculations which give K10=1.98,
K11=3.45, and K12=9.11 for the wave functions given in
Eqs. �15�–�17�. Therefore the degree of entanglement re-
mains finite at the infinite-scattering limit.

We remark that the regularized pseudopotential method
can only describe wave functions at interatomic distance

much larger than the range of the actual interatomic potential
b—i.e., 	r1−r2	�b. Inside the interaction range b, the actual
wave functions remain finite as 	r1−r2	→0. Therefore the
singular behavior at r1=r2 in Eqs. �15�–�17� is only an arti-
fact of the shape-independent approximation, and hence
these wave functions should be understood for 	r1−r2	�b
only. However, since b is typically much smaller than
�� /���1/2 �which is about the width of ��, the probability of
finding the two particles within the range b is negligible.1

This justifies the use of the shape-independent approximation
here.

V. SUMMARY

To summarize, we present a procedure to analyze the
s-wave quantum entanglement between two ultracold atoms
in a spherical harmonic trap. The s-wave interaction is de-
scribed by the regularized pseudopotential. By performing
the Schmidt decomposition of low-energy eigenstates, we
quantify the quantum entanglement and indicate its depen-
dence on the modified scattering length. In particular, our
Schmidt analysis reveals the angular correlations by showing
explicitly the pairing of spherical harmonic functions. For
small and positive a, the ground states are highly entangled
states, and we explain this feature as a consequence of tight
binding between the atoms. For low excited states and
ground states with negative a, we find that the atom-atom
interaction can only appreciably affect the entanglement
when the scattering length is larger than the width of the
�noninteracting� ground state defined by the trap. However,
the degree of entanglement remains finite in the large scat-
tering length limit. Our work here indicates that quantum
entanglement can be controlled by the scattering length.

1For example, the lowest-order van der Waals interaction has a
characteristic range of the order of 50 Å, and the width of typical
trap of frequency 100 Hz is of order 1 �m.

FIG. 5. Probability density of the radial part of Schmidt modes
�nl= 	unl	2, where the unl is defined in Eq. �12�. The solid line cor-
responds to the ground state with 1/a=−2, while the dashed line
corresponds to 1/a=2. The radial distance r is in units of
�� /���1/2.

FIG. 4. �Color online� Distribution of �nl �see text� of ground
states for �a� 1/a=−2 and �b� 1/a=2.
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To explore applications of s-wave entanglement, one may
need to establish schemes for detecting Schmidt modes. In
addition, the dynamics of entanglement associated with non-
stationary states of the system is also an interesting topic for
open future investigations.
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