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We present a way for symmetric multiparty-controlled teleportation of an arbitrary two-particle entangled
state based on Bell-basis measurements by using two Greenberger-Horne-Zeilinger states, i.e., a sender trans-
mits an arbitrary two-particle entangled state to a distant receiver, an arbitrary one of the n+1 agents, via the
control of the others in a network. It will be shown that the outcomes in the cases that n is odd or is even are
different in principle as the receiver has to perform a controlled-NOT operation on his particles for reconstruct-
ing the original arbitrary entangled state in addition to some local unitary operations in the former. Also we
discuss the applications of this controlled teleporation for quantum secret sharing of classical and quantum
information. As all the instances can be used to carry useful information, its efficiency for qubit approaches the
maximal value.
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I. INTRODUCTION

The principles of quantum mechanics supplied many in-
teresting applications in the field of information in the last
decade, such as quantum computer, quantum cryptography,
quantum teleportation, quantum secret sharing, and so on.
The quantum-teleportation process allows the two remote
parties, the sender Alice and the receiver Bob, to utilize the
nonlocal correlations of the quantum channel, Einstein-
Podolsky-Rosen �EPR� �1� pair shared initially, to teleport an
unknown quantum state ���=a�↑ �+b�↓ �; Alice makes a Bell-
basis measurement on her EPR particle and the unknown
quantum system �, and Bob reconstructs the state ��� with a
local unitary operation on his EPR particle according to the
classical information published by Alice �2�. Quantum tele-
portation has been demonstrated by some groups �3–6� since
Bennett et al. �2� proposed the theoretical protocol for tele-
porting an unknown single qubit in 1993. Subsequently, the
protocols for teleporting an entangled state are proposed with
some pure entangled states or maximal multiparticle en-
tangled states �7–13�. For example, Lu and Guo �11� intro-
duced some ways for teleporting an entangled state ��00�
+��11� with entanglement swapping �14–16� by using EPR
pairs or pure entangled states as the quantum channels
in 2000. Lee proposed a protocol �12� for teleporting
an entangled state ��10�+��01� with the four-
particle Greenberger-Horne-Zeilinger �GHZ� state ���L
= �1/�2���1010�+ �0101��. Recently, Rigolin �17� showed a
way to teleport an arbitrary two-qubit entangled state with a

four-particle entangled state ���R= 1
2 ��0000�+ �0101�+ �1010�

+ �1111�� and four-particle joint measurements.
Quantum secret sharing �QSS� is an important branch of

quantum communication and is used to complete the task of
classical secret sharing with the principles of quantum me-
chanics. The basic idea of secret sharing �18� in a simple
case �there are three parties of communication, say Alice,
Bob, and Charlie� is that a secret is divided into two pieces
which will be distributed to two parties, respectively, and
they can recover the secret if and only if both act in concert.
A pioneering QSS scheme was proposed by Hillery, Bužek,
and Berthiaume �19� in 1999 by using the three-particle and
four-particle entangled GHZ states for sharing classical in-
formation. Now, there are a lot of works focused on QSS in
both the theoretical �19–30� and experimental �31,32� as-
pects. Different from classical secret sharing, QSS can be
used to share both classical and quantum information. For
instance, the QSS protocols in Refs. �19–23� are used to split
a quantum secret.

Recently, controlled teleporation for a single-qubit ���
=a�↑ �+b�↓ � �33,34� or m-qubit message �i=1

m
� ��i�0�i

+�i�1�i� �35� have been studied. In those teleportation proto-
cols, the qubits can be regenerated by one of the receivers
with the help of the others. Those principles can be used to
split a quantum secret in QSS �19�. In this paper, we will
present a symmetric protocol for multiparty-controlled tele-
portation of an arbitrary two-particle entangled state with
two GHZ states and Bell-basis measurements. It can be used
to share classical information and an entangled quantum se-
cret. Different from the protocols for teleportation of a two-
particle entangled state with a GHZ state in which the un-
known state should be an EPR-class entangled state �7,8�,
i.e., ����=��uv�+��ūv̄� �u ,v� 	0,1
, and ū=1−u�, the un-
known quantum system in this protocol is in an arbitrary
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two-particle state. Moreover, the receiver is an arbitrary one
in the n+1 agents via the control of the others in the net-
work. As the whole quantum source is used to carry the
useful quantum information, the efficiency for the qubits ap-
proaches the maximal value and the procedure for controlled
teleportation is an optimal one.

The paper is organized as follows. In Sec. II, we present a
way for the symmetric controlled teleportation of an arbi-
trary two-particle entangled state with two three-particle
GHZ states. That is, there is one controller who controls the
process of quantum teleportation. We generalize it to the case
with n+1 agents in which one is the receiver and the other n
agents are the controllers in the network in Sec. III, and
discuss the difference between the two cases where the num-
ber of controllers is even or odd. In Sec. IV, we apply the
method for the controlled teleportation to share classical and
quantum information. A brief discussion and summary are
given in Sec. V.

II. CONTROLLED TELEPORTATION VIA THE CONTROL
OF ONE AGENT

An EPR pair is in one of the four Bell states shown as
follows �36�:

��±�AB =
1
�2

��0�A�1�B ± �1�A�0�B� , �1�

��±�AB =
1
�2

��0�A�0�B ± �1�A�1�B� , �2�

where �0� and �1� are the eigenvectors of the operator �z. The
four unitary operations 	Ui
 �i=0,1 ,2 ,3� can transfer each
one of the four Bell states into another,

U0 = �0��0� + �1��1�, U1 = �0��0� − �1��1� ,

U2 = �1��0� + �0��1�, U3 = �0��1� − �1��0� . �3�

Suppose the unknown two-particle state teleported is

���xy = a�00�xy + b�01�xy + c�10�xy + d�11�xy , �4�

where

�a�2 + �b�2 + �c�2 + �d�2 = 1, �5�

and the three-particle GHZ state prepared by Alice is

�GHZ�ABC =
1
�2

��000� + �111�� . �6�

With a Hadamard �H� operation on each particle,

H =
1
�2

�1 1

1 − 1

 , �7�

the state becomes

�GHZ��ABC =
1
�2

�� + x + x + x� + �− x − x − x�� , �8�

where �+x�= �1/�2���0�+ �1�� and �−x�= �1/�2���0�− �1�� are
the two eigenvectors of the operator �x.

The basic idea of this symmetric controlled teleportation
of an arbitrary two-particle entangled state is shown in Fig.
1. Suppose that Alice wants to send the state ���xy to one of
the two agents randomly and the receiver can reconstruct the
state only when he/she obtains the help of the other agent,
i.e., Bob reconstructs it with the control of Charlie’s, or vice
versa. To this end, Alice prepares two three-particle GHZ
states �	�a1a2a3

and �	�b1b2b3
,

�	�a1a2a3
= �	�b1b2b3

=
1
�2

��000� + �111�� , �9�

and she sends the particles a2 and b2 to Charlie, and a3 and
b3 to Bob. The state of the composite quantum system com-
posed of the eight particles x, y, a1, a2, a3, b1, b2, and b3 can
be written as

�	�s � ���xy � �	�a1a2a3
� �	�b1b2b3

= �a�00� + b�01� + c�10� + d�11��xy

�
1
�2

��000� + �111��a1a2a3

�
1
�2

��000� + �111��b1b2b3
. �10�

Alice performs Bell-basis measurements on the particles x
and a1, and y and b1, respectively, and then publishes the
outcomes. If Bob wants to reconstruct the state ���xy, Charlie
does the Bell-basis measurement on her particles a2 and b2,
or vice versa. Without loss of generalization, we assume that
Bob will obtain the original state with the help of Charlie,
shown in Fig. 1.

In fact, Bob can only get an EPR-class entangled state,
i.e., ���u=��uv�+��ūv̄� �u ,v� 	0,1
 and ���2+ ���2=1�,
similar to those in Refs. �7,8,37�, if Alice and Charlie per-
form Bell-basis measurements on the composite quantum
system �	�s directly. For example, if the results of the Bell-
basis measurements are ��+�xa1

, ��+�yb1
, and ��+�a2b2

, then the
particles a3 and b3 are in the state

FIG. 1. �Color online� Symmetric controlled teleportation of an
arbitrary two-particle entangled state with two GHZ states. Alice,
Bob, and Charlie each keep one of the three particles in each GHZ
state. The bold lines connect qubits in GHZ states or the two-
particle arbitrary entangled state ���xy.
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�	�a3b3
= a2b2

��+� � yb1
��+� � xa1

��+���s

=
1

4�2
�a�00� + d�11�� ⇒ ���00� + ��11�� . �11�

It is just a superposition of the two product states �00� and
�11�. Fortunately, the case will be changed with just a little of
modification. Instead of sending the three particles in the
state �	�b1b2b3

= �1/�2���000�+ �111�� directly, Alice transfers
it into �	��b1b2b3

= �1/�2���+x+x+x�+ �−x−x−x�� with a H
operation on each particle. Then the joint state of the com-
posite quantum system is transferred to

�	� joint � ���xy � �	�a1a2a3
� �	��b1b2b3

=
1

2
�a�00� + b�01� + c�10� + d�11��xy

� ��000� + �111��a1a2a3

� �� + x + x + x� + �− x − x − x��b1b2b3
. �12�

Using the decomposition into Bell states, we can get the
relation between the measurement results �i.e., Rxa1

, Ryb1
,

Ra2b2
� and the final state of the two particles a3 and b3,

���a3b3
, shown in Table I.

Now, let us describe the notations in Table I. Here we
define V as the bit value of the Bell state, i.e., V��±��0,
V��±��1. That is, the bit value V=0 if the states of the two
particles in a Bell state are parallel, otherwise V=1. Vtotal
�Vxa1

� Vyb1
� Va2b2

. P denotes the parity of the result of the
Bell-basis measurement on the two-particle quantum system
Ri� 	��+� , ��−� , ��+� , ��−�
, i.e., P��±��±, P��±��± and
Ptotal��i=1 � PRi

= PRxa1
� PRyb1

� PRa2b2
; �a3b3

is the state of

the two particles a3 and b3 after all the Bell-basis measure-
ments are taken by Alice and Charlie; the unitary operations
Ui � Uj +CNOT �i , j� 	0,1 ,2 ,3
� means performing the uni-
tary operation Ui on the particle a3 and the operation Uj on
the particle b3, respectively, and then taking a controlled-NOT

�CNOT� gate on those two particles for reconstructing the
state ���xy, shown in Fig. 2. For example, if the results of
Rxa1

, Ryb1
, and Ra2b2

are ��−�xa1
, ��−�yb1

, and ��−�a2b2
, respec-

tively, then VRxa1
=1, Vtotal=Vxa1

� Vyb1
� Va2b2

=1 � 0 � 1=0,

Pyb1
=−, Ptotal= �−� � �−� � �−�=−, and Bob first performs the

unitary operations U3 and U1 on the particles a3 and b3,
respectively, and then does the CNOT operation on those two
particles for reconstructing the state ���xy.

Unlike those in Refs. �7,8,37�, the original entangled state
is an arbitrary one, i.e., ���xy =a�00�+b�01�+c�10�+d�11� is
an arbitrary state in the Hilbert space H2 � H2 for two par-
ticles. Another feature in this controlled teleportation is that
the receiver should perform a CNOT gate on the two particles
for recovering the state ���xy. Moreover, the whole quantum
source is used to carry useful information and the efficiency
for the qubits 
q�qu /qt approaches the maximal value 1

3 as

TABLE I. The relation between the unitary operations and the results Rxa1
, Ryb1

, and Ra2b2
in the case that

each of Alice, Bob, and Charlie keeps one of the three particles in each GHZ state. �a3b3
is the state of the

two particles held by Bob after all the Bell-basis measurements are done by the sender Alice and the
controller Charlie.

Vxa1
Vtotal Pyb1

Ptotal �a3b3
Operations

0 0 � � a�00�+b�01�+d�10�+c�11� U0 � U0+CNOT

0 0 � � a�00�+b�01�−d�10�−c�11� U1 � U0+CNOT

0 0 � � a�00�−b�01�+d�10�−c�11� U0 � U1+CNOT

0 0 � � a�00�−b�01�−d�10�+c�11� U1 � U1+CNOT

0 1 � � b�00�+a�01�+c�10�+d�11� U0 � U2+CNOT

0 1 � � b�00�+a�01�−c�10�−d�11� U1 � U2+CNOT

0 1 � � b�00�−a�01�+c�10�−d�11� U0 � U3+CNOT

0 1 � � b�00�−a�01�−c�10�+d�11� U1 � U3+CNOT

1 0 � � d�00�+c�01�+a�10�+b�11� U2 � U0+CNOT

1 0 � � d�00�+c�01�−a�10�−b�11� U3 � U0+CNOT

1 0 � � d�00�−c�01�+a�10�−b�11� U2 � U1+CNOT

1 0 � � d�00�−c�01�−a�10�+b�11� U3 � U1+CNOT

1 1 � � c�00�+d�01�+b�10�+a�11� U2 � U2+CNOT

1 1 � � c�00�+d�01�−b�10�−a�11� U3 � U2+CNOT

1 1 � � c�00�−d�01�+b�10�−a�11� U2 � U3+CNOT

1 1 � � c�00�−d�01�−b�10�+a�11� U3 � U3+CNOT

FIG. 2. �Color online� The operations that Bob needs to perform
on the two particles for reconstructing the original entangled state.
Ui ,Uj � 	U0 ,U1 ,U2 ,U3
.
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the receiver can recover the two-qubit entangled state with a
six-qubit quantum source, where qu is the number of useful
qubits and qt is the number of qubits used for teleportation.

III. CONTROLLED TELEPORTATION VIA
THE CONTROL OF n AGENTS

In this section, we will generalize the method discussed
above to the case where there are n controllers who control
the teleportation of an arbitrary two-particle entangled
state ���xy =a�00�+b�01�+c�10�+d�11�, say Charliei 	i
=1,2 , . . . ,n
, shown in Fig. 3.

For the controlled teleportation, Alice prepares two �n
+2�-particle GHZ states. The state of the composite quantum
system can be written as

�	�s � ���xy � �	�s1
� �	�s2

= �a�00� + b�01� + c�10� + d�11��xy

�
1
�2
��

i=1

n+2

�0�ai
+ �

i=1

n+2

�1�ai

�

1
�2
��

i=1

n+2

� + x�bi
+ �

i=1

n+2

�− x�bi
 . �13�

After the Bell-basis measurements on the particles x and a1,
and y and b1, respectively, are done by Alice, the state of the
subsystem �without being normalized� becomes

	sub = ��
i=2

n+2

�0�ai
 � ����
i=2

n+2

� + x�bi
 + ���
i=2

n+2

�− x�bi
�
+ ��

i=2

n+2

�1�ai
 � ����
i=2

n+2

� + x�bi
 + 
��
i=2

n+2

�− x�bi
� .

�14�

The relation between the numbers � ,� ,� ,
 and the results
Rxa1

,Ryb1
is shown in Table II.

We can use a common formula to represent the Bell-basis
measurements done by the n controllers, Charlies, i.e.,

M � ���−��n−m−l−k
� ���+��m

� ���−��l
� ���+��k. �15�

It means that the numbers of the controllers who obtain the
results of Bell-basis measurements ��+�, ��−�, ��+�, and ��−�

TABLE II. The relation between the values of �,�,�,
 and the
results of the Bell-basis measurements on the particles x and a1, y
and b1.

Vxa1
Vyb1

Pxa1
Pyb1

� � � 


0 0 � � +�a+b� +�a−b� +�c+d� +�c−d�
0 0 � � +�a−b� +�a+b� +�c−d� +�c+d�
0 0 � � +�a+b� +�a−b� −�c+d� −�c−d�
0 0 � � +�a−b� +�a+b� −�c−d� −�c+d�
0 1 � � +�a+b� −�a−b� +�c+d� −�c−d�
0 1 � � +�a−b� −�a+b� +�c−d� −�c+d�
0 1 � � +�a+b� −�a−b� −�c+d� +�c−d�
0 1 � � +�a−b� −�a+b� −�c−d� +�c+d�
1 0 � � +�c+d� +�c−d� +�a+b� +�a−b�
1 0 � � +�c−d� +�c+d� +�a−b� +�a+b�
1 0 � � −�c+d� −�c−d� +�a+b� +�a−b�
1 0 � � −�c−d� −�c+d� +�a−b� +�a+b�
1 1 � � +�c+d� −�c−d� +�a+b� −�a−b�
1 1 � � +�c−d� −�c+d� +�a−b� −�a+b�
1 1 � � −�c+d� +�c−d� +�a+b� −�a−b�
1 1 � � −�c−d� +�c+d� +�a−b� −�a+b�

TABLE III. The relation between the results of the Bell-basis
measurements and the state 	 f when the number of the controllers
is even.

Vxa1
Vtotal Pyb2

Ptotal 	 f Operations

0 0 � � a�00�+b�01�+c�10�+d�11� U0 � U0

0 0 � � a�00�+b�01�−c�10�−d�11� U1 � U0

0 0 � � a�00�−b�01�−c�10�+d�11� U1 � U1

0 0 � � a�00�−b�01�+c�10�−d�11� U0 � U1

0 1 � � b�00�+a�01�+d�10�+c�11� U0 � U2

0 1 � � b�00�+a�01�−d�10�−c�11� U1 � U2

0 1 � � b�00�−a�01�−d�10�+c�11� U1 � U3

0 1 � � b�00�−a�01�+d�10�−c�11� U0 � U3

1 0 � � d�00�+c�01�+b�10�+a�11� U2 � U2

1 0 � � d�00�+c�01�−b�10�−a�11� U3 � U2

1 0 � � d�00�−c�01�−b�10�+a�11� U3 � U3

1 0 � � d�00�−c�01�+b�10�−a�11� U2 � U3

1 1 � � c�00�+d�01�+a�10�+b�11� U2 � U0

1 1 � � c�00�+d�01�−a�10�−b�11� U3 � U0

1 1 � � c�00�−d�01�−a�10�+b�11� U3 � U1

1 1 � � c�00�−d�01�+a�10�−b�11� U2 � U1

FIG. 3. �Color online� The principle of the controlled teleporta-
tion of an arbitrary two-particle entangled state in the case that there
are n controllers. The rectangles represent the Bell-basis measure-
ments done by Alice or the controllers; Charlie i are the n control-
lers in the n+1 agents; Bob is just the agent who will obtain the
original entangled state with unitary operations.
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are k , l ,m, and n−k− l−m, respectively. Because of the sym-
metry, who obtains the result ��+� is not important for the
final state �	�an+2bn+2

of the two particles an+2 and bn+2, but
only the number. The operation M represents all the possible

results of the Bell-basis measurements of the n controllers
with the parameters k, l, and m. The final state �	�an+2bn+2

can
be obtained by means of performing the operation M on the
state of the subsystem 	sub:

	an+2bn+2
= M���

i=2

n+2

�0�ai
 � ����
i=2

n+2

� + x�bi
 + ���
i=2

n+2

�− x�bi
� + ��
i=2

n+2

�1�ai
 � ����
i=2

n+2

� + x�bi
 + 
��
i=2

n+2

�− x�bi
��
=

1

2n 	�0�an+2
��� + x� + �− 1�n−l−k��− x��bn+2

+ �− 1�n−m−k�1�an+2
��� + x� + �− 1�k+l
�− x��bn+2




=
�2

2n+1 	�� + �− 1�n−l−k���00� + �� − �− 1�n−l−k���01� + �− 1�n−m−k�� + �− 1�k+l
��10� + �− 1�n−m−k�� − �− 1�k+l
��11�
 .

�16�

This is just the final state 	 f without being normalized:

	 f = �� + �− 1�n−l−k���00� + �� − �− 1�n−l−k���01�

+ �− 1�n−m−k�� + �− 1�k+l
��10�

+ �− 1�n−m−k�� − �− 1�k+l
��11� . �17�

As in the case with one controller, let us define

Vtotal � �
i

� VRi
, Ptotal � �

i

� PRi
, �18�

where VRi
, PRi

are the bit values and the parities of the results
of the Bell-basis measurements done by Alice or the control-
lers, respectively �see them in Sec. II�.

The relation between the state 	 f and the results Vxa1
,

Vtotal, Pyb2
, and Ptotal is shown in Table III when the number

of controllers n is even. When n is odd, the result is the same
as that in Table I with just the modification of replacing the
state �a3b3

with 	 f. The results in Tables I and III show that
the unitary operations performed on Bob’s particles for re-
constructing the state ���xy are different in principle when n
is even or odd. In Table III, it is enough for Bob to recon-
struct the state ���xy with the two local unitary operations Ui
and Uj �i , j� 	0,1 ,2 ,3
� on the particles an+2 and bn+2, re-
spectively, but he has to do an additional CNOT operation on
the two particles when the number of the controller is odd,
which is different from the other methods for a controlled
teleportation �33–35�.

For a secure controlled teleportation of the state ���xy, the
controllers need to keep the receiver from eavesdropping the
quantum communication when they set up the quantum
channel, similar to the case in quantum secret sharing.
Surely, the task of the teleportation of an arbitrary two-
particle entangled state can be completed with the combina-
tion of the method for teleporting an arbitrary two-qubit state
�17� and quantum secure direct communication protocols
�38–43�, similar to the way that quantum secret sharing for
classical information �30� can be finished with quantum-key-

distribution protocols �44–50�. This time, the receiver is only
the person who is deterministic in advance, not an arbitrary
man in the n+1 agents. Moreover, the total efficiency 
t is
not more than that in this symmetric controlled teleportation
protocol, as the classical information exchanged and the
quantum source will increase since the efficiency of QKD is
no more than 1. Here 
t is defined as �48,49�


t =
qu

qt + bt
, �19�

where bt is the number of classical bits exchanged between
the parties. On the other hand, the multiparticle-entangled
states must be produced in this protocol, which is not easy at
present �51–53�. With the improvement of technology, it may
be feasible in the future.

IV. QUANTUM SECRET SHARING BASED ON
CONTROLLED TELEPORTATION

A. Setting up the quantum channel with GHZ states

It is important for the parties of the communication to set
up a quantum channel with GHZ states securely in both the
symmetric controlled teleporation and quantum secret shar-
ing. The process for constructing a quantum channel dis-
cussed in this paper is similar to that in Ref. �38� for quan-
tum secure direct communication �QSDC� in which the
classical secret is transmitted directly without creating a pri-
vate key and then encrypting it. Another property, as in
QSDC �38–43�, is that the information about the unknown
state ���xy should not be leaked to an unauthorized user, such
as a vicious eavesdropper Eve. It means that the controllers
and Eve can get nothing about the final entangled state even
though they eavesdrop on the quantum communication. If
the quantum channel is secure, no-one can obtain the original
state except for the legal receiver Bob.

If the process for constructing the entangled quantum
channel is secure, then the whole process for communication
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is secure as no-one can read out the information about a
maximal entangled quantum system from a part of it �36�.
The results in Secs. II and III show that Bob’s particle is
randomly in one of the 16 entangled states with the same
probability. The randomness of the outcomes ensures the se-
curity of the communication �36�, as for the classical one-
time-pad cryptosystem �54�.

The method for setting up a quantum channel with a se-
quence of EPR pairs is discussed in Refs. �38,55�. The ap-
proach can also be used for sharing GHZ states �36�. The
way is just that the legal users determine whether there is an
eavesdropper in the line when they transmit the particles in
the GHZ state and then purify the quantum channel if there is
no-one monitoring the line or the probability for being eaves-
dropped is lower than a suitable threshold. The latter can be
considered as quantum privacy amplification with quantum
purification �56,57�. Let us use a three-particle GHZ state as
an example to demonstrate the principle, as in Ref. �37�.
Alice prepares a sequence of GHZ states �GHZ�ABC. For each
GHZ state, Alice sends the particles B and C to Bob and
Charlie, respectively, and retains the particle A:

�GHZ�ABC =
1
�2

��000�ABC + �111�ABC�

=
1

2�2
��� + x�A� + x�B + �− x�A�− x�B�� + x�C

+ �� + x�A�− x�B + �− x�A� + x�B��− x�C� . �20�

For determining whether there is an eavesdropper in the line
when the particles are transmitted, Alice picks up some of
the GHZ states from the GHZ sequence randomly, and re-
quires Bob and Charlie to choose the measuring basis �z or
�x to measure their particles according to the information
published by Alice. If there is an eavesdropper monitoring
the quantum channel, the error rate of the samples will in-
crease, as in the Bennett-Brassard-Mermin QKD protocol
�46�. If the error rate is low, Alice, Bob, and Charlie can
obtain some private GHZ states with multiparticle entangle-
ment purification �56,57�.

B. Quantum secret sharing of a classical secret and quantum
information with controlled teleportation

Now, let us introduce the method for quantum secret shar-
ing with controlled teleportation. There are two main goals in
quantum secret sharing. One is to share classical informa-
tion, a sequence of binary numbers, and the other is to share
quantum information, an unknown quantum state. In the
former, the quantum state of each two particles in all the
parties of the communication is coded as a two-bit binary
number �the parties store the results of the measurements on
the particles as classical information�. For instance, they can
code the four Bell states 	��+� , ��−� , ��+� , ��−�
 as 	0+ ,
1− ,0− ,1+ 
, respectively. Here the codes 	�,�
 can be used
to represent the binary numbers 	0,1
, respectively. For shar-
ing an unknown quantum state, the case is similar to that for
the controlled teleportation of an arbitrary two-particle state,
and the agents will recover the unknown state when they
collaborate.

For sharing classical information, Alice encodes her mes-
sage �a random key or a classical secret� on her two-particle
quantum state. For the convenience of the measurements, it
requires that the final state of Bob’s particles can be mea-
sured deterministically if all the controllers, say Charliei, per-
form the Bell-basis measurements on their particles, as in
QSDC �38–42�. In other words, all the input states should be
orthogonal. Then the quantum system composed of two par-
ticles prepared by Alice for coding the classical information
is in one of the four Bell states or in EPR-class states, i.e.,

���±�xy = ��uv� ± ��ūv̄� , �21�

where u ,v� 	�0� , �1� , �+x� , �−x�
. Without loss of generality,
we suppose that the state �	�c prepared for carrying the clas-
sical secret is one of the four Bell states 	��±� , ��±�
. Alice
prepares two GHZ states �	�s1

and �	�s2
as the quantum

channel. And the state of the composite quantum system is

�	�s � �	�c � �	�s1
� �	�S2

, �22�

where

�	�s1
=

1
�2
��

i=1

n+2

�0�ai
+ �

i=1

n+2

�1�ai
 , �23�

�	�s2
=

1
�2
��

i=1

n+2

� + x�bi
+ �

i=1

n+2

�− x�bi
 . �24�

Alice and Charliei all perform Bell-basis measurements on
their particles. Bob will perform Bell-basis measurement on
his two particles an+2 and bn+2 when the number of the con-
trollers, Charliei, is even, otherwise Bob will take a joint
measurement �x � �z on his particles �that is, he take a �x
measurement on the particle an+2 and �z on the particle bn+2�
as the final states 	 f of Bob’s particles in these two cases are
different.

The relation between the final state 	 f of Bob’s particles
and the original entangled state 	c is shown in Tables IV and
V for the cases that the number of controllers is even and
odd, respectively. When the n controllers and Bob want to
reconstruct the classical secret, they collaborate to decode
the message with the information published by Alice, accord-
ing to Tables IV and V.

TABLE IV. The relation between the results of the Bell-basis
measurements taken by Alice and Charliei and the state 	 f of the
particles an+2 and �z when the number of the controllers is even.

Vtotal Ptotal 	 f

0 � �U0 � U0�	c

0 � �U0 � U1�	c

1 � �U0 � U2�	c

1 � �U0 � U3�	c
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The difference between this QSS protocol for a classical
secret and the symmetric multiparty-controlled teleportation
discussed above is that the input states are orthogonal and all
the agents take the measurements on their particles in the
former.

A piece of quantum information can be an arbitrary state
of a quantum system. For a two-particle quantum state, an
arbitrary state can be an entangled state in the general form
shown in Eq. �4�. With the symmetric multiparty-controlled
teleportation discussed above, quantum secret sharing for an
entangled state is easily implemented in principle in the same
way. Moreover, each of the n+1 agents can act as the person
who will reconstruct the quantum information with the help
of the others in the network.

V. DISCUSSION AND SUMMARY

In the symmetric multiparty-controlled teleportation, the
second GHZ state is prepared along the x direction. It can
also be prepared along the z direction, like the first GHZ
state, i.e.,

�	�s � ���xy � �	�s1
� �	�s2

=
1
�2

�a�00� + b�01� + c�10� + d�11��xy

�
1
�2
��

i=1

n+2

�0�ai
+ �

i=1

n+2

�1�ai

�

1
�2
��

i=1

n+2

�0�bi
+ �

i=1

n+2

�1�bi
 . �25�

At this time, Alice and n−1 controllers do the Bell-basis
measurements directly on their particles, and the last control-
ler, say Charlien first takes a H operation on her second par-
ticle bn+1 and then performs the Bell-basis measurement on
her two particles. Similar to the case above, Bob can also
recover the original entangled state with the unitary opera-
tions. As for sharing of a classical secret, Alice can also
prepare the two GHZ states along the z direction, and all the

persons in the communication perform Bell-basis measure-
ments on their particles without the H operation.

In summary, we present a method for symmetric
multiparty-controlled teleportation of an arbitrary two-
particle entangled state with two GHZ states and Bell-basis
measurements. Any one in the n+1 agents can reconstruct
the original entangled state with the help of the other n
agents in the network and the information published by the
sender Alice. To this end, Alice prepares two �n+2�-particle
GHZ states along the z direction and the x direction, respec-
tively. When the number of the controllers is even, the re-
ceiver, say Bob, need only perform two local unitary opera-
tions on his particles to obtain the original entangled state
with the help of the n controllers in the network; otherwise,
he has to do a CNOT operation on his particles in addition to
the local unitary operations. This method for a symmetric
multiparty-controlled teleportation can also be used to share
classical information and an arbitrary two-particle state with
just a little modification. As the whole quantum source is
used to carry the useful quantum information, the efficiency
for qubits approaches the maximal value and the procedure
for controlled teleportation is an optimal one.
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