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The quantum key distribution protocol without public announcement of bases is equipped with a two-way
classical communication symmetric entanglement purification protocol. This modified key distribution protocol
is unconditionally secure and has a higher tolerable error rate of 20%, which is higher than previous scheme
without public announcement of bases.
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I. INTRODUCTION

The quantum key distribution �QKD� is one of the most
important and exciting fields in quantum information. Its ba-
sic idea is to make use of principles in quantum mechanics to
detect whether there exists an eavesdropper Eve when two
parties Alice and Bob use a quantum channel to perform the
key distribution. In this way, the security is much higher than
that with only classical communications. The earliest QKD
protocol was proposed by Bennett and Brassard in 1984
�BB84� �1�. It is a kind of prepare-and-measure QKD proto-
col, a protocol that Alice first prepares a sequence of single
photons, and she sends them to Bob who measures each
single photon immediately after receiving it. Such kinds of
protocols are much more practical because they do not re-
quire quantum computation and quantum memory.

The security of QKD protocols is a basic problem in
quantum information. The BB84 protocol has been proved to
be secure when the channels are noiseless. However, it was
only until recently that its unconditional security has been
proved. Mayers �2� and Biham et al. �3� presented their
proofs, but the proofs are rather complex. In Mayers’ proof,
the BB84 protocol is secure when the error rate of the chan-
nel is less than about 7%. Shor and Preskill �4� gave a much
simpler proof which guarantees the unconditional security of
the BB84 protocol if the error rate is less than about 11%.
And then, Gottesman and Lo �5� brought two-way classical
communications to the BB84 protocol and obtained a much
higher tolerable error rate, 18.9%, which makes sure that the
BB84 protocol with two-way classical communications is
unconditionally secure. Recently, Chau has presented a se-
cure QKD scheme making use of an adaptive privacy ampli-
fication procedure with two-way classical communications
whenever the bit error rate is less than 20.0% �6�.

It is known that the standard BB84 protocol will use only
half of the transmitted qubits for the key distribution. In or-
der to enhance the efficiency of the standard BB84 protocol,
many variations have been proposed. The BB84 scheme
without public announcement of basis �PAB� is just such a
protocol �7�. In the eavesdropping detection process of the
standard BB84 protocol, Alice announces her basis string in
which the qubit string is prepared only after Bob has finished
receiving and measuring the qubit string. This announcement
step is called PAB. PAB guarantees that Alice and Bob select

the same measurement basis. However, it also leads to waste
of an average of one-half of the qubits. In the BB84 protocol
without PAB, the communication parties do not need PAB;
instead, they agree on a secret random measurement basis
sequence before any steps of the standard BB84 protocol.
Alice encodes qubits according to the prior basis sequence,
and Bob uses the same basis sequence to measure the qubits
when he receives them. In this way, none of the measurement
results will be dropped as a result of Alice and Bob choosing
different measuring bases. The BB84 scheme without PAB,
therefore, is still a prepare-and-measure QKD. In the infor-
mation processing of this protocol, Eve knows little about
the secret prior basis sequence yet, so all attacking strategies
that she can use are still the same as those in the standard
BB84 protocol. As a result, the security of the BB84 scheme
without PAB in noiseless channels can be derived easily
from the proof of the noiseless security of the standard BB84
protocol.

In this paper, we concentrate on the security of the BB84
scheme without PAB and its tolerable error rate. The proto-
col has been proved to be secure through noisy channels
following Shor and Preskill’s method �8� which obtains a
tolerable error rate of 11%, the same as that of the standard
BB84 protocol �4�. Recently, two-way classical communica-
tions were introduced in security proof and it increases the
tolerable error rate of the standard BB84 protocol to 18.9%
�5� and 20% �6�, respectively. Inspired by this idea, we prove
the security of the BB84 scheme without PAB with two-way
classical communications. We first describe the notations in
this paper in Sec. II. In Sec. III, we present a QKD protocol
without PAB and with a two-way entanglement purification
protocol �2-EPP� and prove its security. Then we use a theo-
rem in Sec. IV to reduce the protocol into a prepare-and-
measure protocol—that is, the BB84 scheme without PAB
and with two-way classical communications—and give a de-
tailed example in Sec. V to obtain its minimal tolerable error
rate of 20%. We give a brief summary in Sec. VI.

II. NOTATIONS

The notations in this paper are mostly the same as those in
the Gottesman-Lo paper �5�. A Pauli operator acting on n
qubits is a n-dimensional tensor product of individual qubit
operators that are of the following forms:
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I,X = �0 1

1 0
� ,

Y = �0 − i

i 0
�, Z = �1 0

0 − 1
� , �1�

where I is the identity. Note that X, Y, and Z operators are
anticommutative with each other and all Pauli operators have
only eigenvalues +1 and −1.

Bell bases are the four maximally entangled states

�± =
1
�2

��01	 ± �10	�, �± =
1
�2

��00	 ± �11	� . �2�

A symmetric EPP can be described with a set of operators

M�� plus unitary decoding operations U� � �P�U��, where
P� is a Pauli operator. Each M� is a particular measurement
step of the protocol with index � which denotes a measure-
ment history sequence in which each bit is 0 or 1 based on
the outcome of the corresponding measurement step. Ac-
cording to the history sequence �, Alice and Bob should both
choose the same operator M� to do the measurement and this
is why the EPP is called symmetric. U� � �P�U�� represents
error correcting operations depending on � after they obtain
all error syndromes. Alice performs U� while Bob performs
P�U� operation.

In various symmetric EPP’s, there exists a set of the
EPP’s in which all measurements M� are of eigenspaces of
Pauli operators, the decoding operator U� is a Clifford group
operator, and the error-correcting operator P� is a Pauli op-
erator. These symmetric EPP’s are called stabilizer EPP’s.
And if all measurements M� of a stabilizer EPP are either
X-type �including only I and X operators� or Z-type �includ-
ing only I and Z operators�, and U� involves only controlled
NOT operations, this stabilizer EPP is called a Calderbank-
Shor-Steane-like EPP �CSS-like EPP�. The CSS-like prop-
erty comes from the idea of a CSS code which decouples the
error correction of X and Z and guarantees the reduction in
the Shor-Preskill proof of the BB84 protocol �4�. Below, all
EPP’s are CSS like unless noted explicitly. In CSS code, CSS
�C1 ,C2� is constructed from two classical linear codes C1

and C2 that encode k1 bit and k2 bits of codewords into n-bit
codewords, and C2�C1 and C1 and C2

� both correct t errors.
In the EPP with one-way classical communications �1-

EPP�, Alice does not know the measurement results of Bob
and cannot obtain the history sequence �. Therefore, all the
measurements and operations in 1-EPP are independent of �.
However, in the EPP with two-way classical communications
�2-EPP�, Bob can also tell Alice his measurement results
through classical channels, so the communication parties can
make use of the history sequence � and choose a proper
measurement operator according to the current history, and
the final decoding and error-correcting operations also vary
with the measurement results. In this way, the 2-EPP is sup-
posed to tolerate a higher error rate than the 1-EPP, and we
will show that introducing two-way classical communica-
tions indeed increases the tolerable error rate for the BB84
protocol without PAB.

III. QKD WITH 2-EPP WITHOUT PAB

In this section, we present a QKD protocol with 2-EPP
without PAB, and prove its security through noisy channels.

Protocol 1: QKD with 2-EPP without PAB:
�1� Alice and Bob share a secret random �2n /r� bit string

and repeat it r times to form a basis sequence b.
�2� Alice prepares 2n EPR pairs in the state ��+��2n and

applies a Hadamard transformation to the second qubit of
each EPR pair where the corresponding bit of the basis se-
quence b is 1.

�3� Alice sends the second half of each EPR pairs to Bob.
�4� Bob receives the qubits and publicly announces the

reception.
�5� Alice randomly chooses n pairs of the 2n EPR pairs as

check bits to check the interference of Eve.
�6� Alice broadcasts the positions of the check EPR pairs.
�7� Bob applies a Hadamard transformation to the qubits

where the corresponding bit of the basis sequence b is 1.
�8� Alice and Bob both measure their own halves of the n

check EPR pairs on the Z basis and publicly compare the
results. If there are too many disagreements, they abort the
protocol.

�9� Alice and Bob apply the 2-EPP to the remaining n
EPR pairs and then share a state with high fidelity to ��+�m.

�10� Alice and Bob measure the state in the Z basis to
obtain a shared secret key.

In protocol 1, the idea of QKD without PAB is applied in
steps 1, 2, and 7. Alice and Bob share a basis sequence b at
the beginning. They can first distribute a smaller random
sequence with bit length 2n /r by another QKD protocol or
other methods, then repeat it r times. Although the basis
sequence b is a repeat of a random string, if r is small and n
is large enough, the information of the base sequence of Eve
is still exponentially small for n and the effect of r is only to
increase the information of the base sequence of Eve by mul-
tiplying polynomial of r. Therefore, we can affirm that Eve
knows very little about the basis sequence.

Knowing that Eve knows very little about b, we can fol-
low the method of Gottesman and Lo �5� to derive the un-
conditional security of protocol 1. First, protocol 1 is based
on a stabilizer EPP; hence, the quantum channel is equiva-
lent to a Pauli channel. Furthermore, because all operators in
protocol 1 commute with each other, we can apply classical
probability analysis. Calculating the probability of the suc-
cess of error correcting, because Eve knows little about the
basis sequence, we find that the fidelity of the state shared by
Alice and Bob after the EPP to ��+��m is 1–2−s for a large
factor s �4�. By lemma 1 and lemma 2 in �9�, Eve’s mutual
information with the final key is less than 2−c+2O�−2s� where
c=s−log2�2m+s+1/ ln 2�. As a result, Eve’s information
about the final key is exponentially small and the uncondi-
tional security of protocol 1 is proved.

IV. BB84 PROTOCOL WITH TWO-WAY CLASSICAL
COMMUNICATIONS WITHOUT PAB

Protocol 1 is based on the EPP which requires quantum
computers to process. In this section, we will reduce protocol
1 to a prepare-and-measure protocol—that is, the BB84 pro-
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tocol with two-way classical communications without PAB
�2-BB84 scheme without PAB�. The equivalent reduction of
protocol 1 is based on the main theorem of Gottesman and
Lo �5�. We revise it in a more simple way and apply it to
protocol 1 as the following.

Theorem 1 (revised main theorem in [5]). Suppose a
2-EPP is CSS like and also satisfies the following conditions:

�1� If M� is X-type operators for a specific step with �,
for the following step with �� ���=�0 or �1�, the choice of
M�� is independent of the measurement result of M�—that
is, M�0=M�1.

�2� The final decoding operations U� can depend arbi-
trarily on the outcome of the measured Z-type operators, but
cannot depend on the outcomes of measured X-type opera-
tors at all. The correction operation P� can depend on the
outcome of X-type operators, but only by factors of Z.

Then protocol 1 can be converted to a prepare-and-
measure QKD without PAB scheme with the same security.

The first condition in theorem 1 is equivalent to the tree
diagram representation of the first condition of the main
theorem in �5�. If Alice and Bob drop the phase error, they do
not know the exact result of the phase error. In order to
continue the 2-EPP, they must choose the unique measure-
ment operator in the next step despite the X-type measure-
ment outcome. The existence of the two conditions guaran-
tees this statement. And a CSS-like EPP makes that the
corrections of bit-flip errors and phase-flip errors are sepa-
rated. So Alice and Bob can perform only a bit-flip error
correction and do not require quantum computers to correct
phase-flip errors.

In detail, the first step is to throw away X-basis operations
and measurements. The introduction of QKD without PAB in
protocol 1 affects only in steps 1–7, before the error correc-
tion and privacy amplification. It only modifies the choice of
base sequence, and when the EPP is proceeded, all particles
are in the Z basis. Therefore, the transformation of a 2-EPP
quantum circuit in �5� can be directly applied. After the
transformation, Alice and Bob can obtain a classical circuit
with measurements only in the Z basis.

The second step is to transform the protocol into a
prepare-and-measure QKD. Following the same idea in �4�,
because all operations in protocol 1 commute with each
other, it is not necessary for Alice to prepare and distribute
EPR pairs and then measure them. Instead, Alice can mea-
sure them before distribution. In other words, Alice can just
prepare a random binary string and encode it into qubits and
send them to Bob. Also, Bob can measure the qubits in the
basis according to the basis sequence immediately after he
receives them, instead of using quantum memory to store the
qubits. Thus, we can successfully transform protocol 1 into a
prepare-and-measure QKD without PAB.

In the final step, in order to simplify the protocol, Alice
and Bob can perform a 2-EPP to reduce the error rate of the
qubits until both bit-flip and phase-flip errors are lower than
the bound of the capacity of the 1-EPP. Then they can per-
form a 1-EPP to correct the remaining error and obtain the
final secret key �5�.

Consequently, we can conclude the content above into
protocol 2 as the following.

Protocol 2: Secure BB84 scheme with two-way classical
communications without PAB:

�1� Alice and Bob share a secret random �2n /r� bit string
and repeat it r times to form a basis sequence b.

�2� Alice prepares 2n random qubits and measures each
qubit in Z basis of which the corresponding bit of b is 0 or in
the X basis of which the corresponding bit of b is 1. So Alice
obtains a random key and encodes it in the qubit string.

�3� Alice sends the qubit string to Bob.
�4� Bob receives these 2n qubit strings, measures it in the

Z basis or X basis according to b, and then publicly acknowl-
edges the receipt.

�5� Alice randomly chooses n qubits as check bits and
announces their positions.

�6� Alice and Bob compare the measurement results of the
check bits. If there are too many errors, they abort the pro-
tocol.

�7� Alice and Bob use a classical circuit transformed from
the 2-EPP to do error correction until the error rates of both
bit and phase are lower than the bound of the capacity of the
BB84 protocol with one-way classical communications—for
example, 11% in �4�.

�8� Alice and Bob use the method in the BB84 protocol
with one-way classical communications to perform final er-
ror correction and privacy amplification to obtain the key.
For example, they can use the CSS code to correct errors and
obtain the coset �+C2 as the secret key �4�.

According to theorem 1, protocol 2 is equivalent to pro-
tocol 1. Therefore protocol 2 is also unconditionally secure
through noisy channels.

V. EXAMPLE OF A SECURE BB84 PROTOCOL
WITH TWO-WAY CLASSICAL COMMUNICATIONS AND

WITHOUT PAB

In Sec. III, we give the secure BB84 protocol with two-
way classical communications without PAB—that is, proto-
col 2. However, protocol 2 is still a theoretic scheme and
needs further study to exploit its capacity. In this section, a
particular 2-EPP from �5� is presented and transformed to the
classical circuit. We use this classical circuit in step 7 of
protocol 2 so that we can estimate the lower bound of the
tolerable error rate of protocol 2.

Although Theorem 1 guarantees the security of protocol
2, it is still necessary to find a practical 2-EPP that fulfills the
theorem’s conditions. Such a 2-EPP is presented in �5� in-
duced from the classical error-correction theory. This 2-EPP
contains alternating rounds of two major steps—that is, a
bit-flip error-correction step �“B step”� and phase-flip error-
correction �“P step”� step:

B step �5�: Alice and Bob randomly permute all the EPR
pairs. Then they each measure their own local Z � Z in order
to obtain the bit-flip error of the remaining output pair. If the
results of Alice and Bob are different, they estimate that
there is a bit flip on the remaining output pair and discard it.
This step is similar to advantage distillation in classical com-
munications by Maurer �10�.

P step �5�: Alice and Bob randomly permute all the EPR
pairs. Then they group them into sets of three, both measure
X1X2 and X1X3 on each set. This step can be transformed into
a circuit that first perform a Hadamard transformation on
each qubit, two bilateral XOR transformations, measurement
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of the last two EPR pairs, and a final Hadamard transform. If
Alice and Bob disagree on one measurement, Bob estimates
that the phase error was probably on the first two EPR pairs
and does nothing; if both measurements disagree, Bob as-
sumes the phase error was on the third EPR pair and corrects
it by performing a Z gate. This step is induced from the
three-qubit phase-flip error correcting code and will reduce
the phase-flip error rate if the error rate is low enough.

The completed 2-EPP consists of alternating rounds of the
two steps above. In each round, Alice and Bob first perform
a B step to calculate bit-flip error syndromes. This is a Z-type
measurement step. Then Alice and Bob perform a P step to
calculate phase-flip error syndromes, which is an X-type
measurement step. And the P step does not affect later op-
erations. So the 2-EPP satisfies the conditions of theorem 1.
After the P step, they estimate the error rate of the qubits by
sacrificing some of them to measure. If the error rate is lower
than the bound of the BB84 protocol with one-way classical
communication—that is, about 11%—they use the Shor-
Preskill method to obtain final key �4�; otherwise, they go on
with another round of B and P steps.

By transforming the circuit of the 2-EPP according to
theorem 1, we can get a more detailed protocol than protocol
2 as the following.

Protocol 3: secure BB84 protocol example with two-way
classical communications without PAB:

�1� Alice and Bob share a secret random �2n /r� bit string
and repeat it r times to form a basis sequence b.

�2� Alice prepares 2n random qubits and measures each
qubit in the Z basis in which the corresponding bit of b is 0
or in the X basis in which the corresponding bit of b is 1. So
Alice obtains a random key and encodes it in the qubit string.

�3� Alice sends the qubit string to Bob.
�4� Bob receives these 2n qubit string, measures it in the Z

basis or X according to b, and then publicly acknowledges
the receipt.

�5� Alice randomly chooses n qubits as check bits and
announces their positions.

�6� Alice and Bob compare the measurement results of the
check bits. If there are too many errors, they abort the pro-
tocol.

�7� �B step� Alice and Bob randomly pair up their own
bits. Alice publicly announces the parity �XOR� of the values
of each pair of her own—that is, x2i−1 � x2i—and Bob also
publicly announces the parity of his corresponding pair—that
is, y2i−1 � y2i. If the parities agree, they keep one of the bits
of the pair. Otherwise, they discard the whole pair.

�8� �P step� Alice and Bob randomly group the remaining
bits in to sets of three and compute the parity of each set.
They now regard those parities as their effective new bits in
later steps.

�9� Alice and Bob sacrifice sufficient m of the new bit
pairs to perform the refined data analysis publicly. They
abort if the error rate is too large. And if the error rate is low
enough, they go to the next step; otherwise, they return to
step 7.

�10� Alice and Bob randomly permute their pairs and use
the Shor-Preskill method �4� with one-way classical commu-
nications to perform final error correction and privacy ampli-
fication. In detail, it contains the following substeps:

�a� Alice and Bob select a proper CSS �C1 ,C2� code Q.
�b� Alice randomly choose a codeword u from classical

linear code C1 and announces u+v, where v is a remaining
code bits.

�c� Bob subtracts u+v from his code bits, v+�, and ob-
tains u+�, and then corrects it to a codeword w in C1.

�d� Because code C2 in CSS code Q is a subgroup of F2
n

which is the binary vector space on n bits �11�, and u−w
�C2, Alice and Bob use the coset of u+C2 as the final key.

Protocol 3 consists of detailed operations of each step,
which can be studied further, for example, the tolerable error
rate. Reviewing the discussion in this section, the introduc-
tion of the QKD without PAB does not affect the error cor-
rection and privacy amplification of protocol 3. Thus, we can
estimate the tolerable error rate of our protocol without PAB
directly from the same method in �5,6�. First, from �5�, in the
BB84 protocol, the 2-EPP by alternating B and P steps is
successful provided that the bit error rate is lower than
17.9%. Hence, protocol 3 is secure with the same upper
bound of error rate. However, Gottesman and Lo point out
that alternating B and P steps is not optimal, and based on
other arrangements of such two steps, the BB84 protocol can
achieve higher tolerable error rate of 18.9% �5�. Moreover,
by applying adaptive privacy amplification procedure with
two-way classical communications in the Gottesman-Lo
method, Chau obtain that a tolerable error rate of the BB84
scheme is 20.0% �6�. Such modifications in the error correct-
ing and privacy amplification procedure can also be applied
to our BB84 protocol with two-way classical communica-
tions and without PAB. In conclusion, our protocol is secure
whenever the bit error rate is less than 20.0%, which is
higher than the result of the BB84 protocol with only one-
way classical communications and without PAB �8�.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we have proved the unconditional security
of a simple modification of the standard BB84 protocol—the
BB84 scheme without public announcement of bases—by
applying two-way classical communications. In addition, we
present a detailed protocol, protocol 3, and follow other
2-EPP procedures �5,6� to calculate a lower bound of the
tolerable error rate of the protocol. The result of about 20.0%
demonstrates the advantages of two-way classical communi-
cations over one-way classical communications without PAB
whose tolerable error rate is about 11% �8�. Compared to the
previous BB84 protocol sets, this protocol benefits from both
two-way classical communications which tolerate a higher
error rate and the technique without PAB which increases the
key generation rate. As a result, it is much more efficient
than previous protocols and can be widely used in future
quantum communications.
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