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The simple system of two atoms couple to single mode optical cavity with the phase decoherence is studied
for investigating the entanglement and Bell violation between atoms and cavity or between two atoms. We
show that in the resonance case �i� atom-field entanglement rapidly decays with phase decoherence and
disappears in the stationary state, �ii� atom-atom entanglement is more robust against phase decoherence and
survives in the stationary state. In the nonresonance case, the pairwise atom-atom and atom-field entanglement
is sensitive to the detuning parameter and is not completely destroyed during evolution. On the other hand,
violation of Bell-CHSH inequality is very fragile against the phase decoherence and finally disappears in the
stationary state. The phenomenon that the more Bell violation, the less entanglement, or vice versa in such a
realistic physical system, is revealed. This phenomenon maybe is the consequence of the choice of concurrence
as the entanglement measure and the observables to build the Bell-CHSH inequality. The genuine three-partite
entanglement is also analyzed by making use of the state preparation fidelity. It is shown that the genuine
three-partite entanglement can appear in the evolution of the system even in the presence of the phase
decoherence.
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I. INTRODUCTION

The rapidly increasing in quantum information processing
has stimulated the interest of studying quantum entanglement
�1�. Entanglement can exhibit the nature of a nonlocal corre-
lation between quantum systems that have no classical inter-
pretation. However, real quantum systems will unavoidably
be influenced by surrounding environments. The interaction
between the environment and quantum systems of interest
can lead to decoherence. It is therefore of great importance to
prevent or minimize the influence of environmental noise in
the practical realization of quantum information processing
�2�. Instead of attempting to shield the system from the en-
vironmental noise, Plenio and Huelge �3� use white noise to
play a constructive role and generate the controllable en-
tanglement by incoherent sources. Similar work on this as-
pect has also been considered by other authors �4�. The cre-
ation of entangled atom-photon states in a Bose-Einstein
condensate superradiance experiment has been discussed
�5,6�. In this paper, we investigate two two-level atoms
coupled to a single mode optical cavity with the phase deco-
herence and show the rich dynamical features of entangle-
ment arising between atoms and cavity or between two at-
oms with the phase decoherence. The explicit expression of
the density matrix for the system is found and used to calcu-
late the concurrence characterizing the entanglement be-
tween two atoms or between atoms and cavity field. We find
that in the resonance case �i� atom-field entanglement rapidly
decays with phase decoherence and disappears in the station-
ary state, �ii� atom-atom entanglement is more robust against
phase decoherence and survives in the stationary state. In the
nonresonance case, the pairwise entanglement between vari-

ous subsystems is sensitive with the detuning parameter and
not completely destroyed by the phase decoherence. Further-
more, we show that even if one of the atoms is initially
prepared in a maximally mixed state, it can still entangle
with another atom. The Bell violation is also discussed. It is
found that two atoms possibly achieve more violation, but
less entanglement, or vice versa. Finally, we investigate the
genuine three-partite entanglement in this system by explor-
ing the state preparation fidelity which is related to the suf-
ficient condition that distinguish between the genuinely
three-partite entangled states and those in which only two-
partite is entangled �7,8�. It is shown that the genuine three-
partite entanglement can appear in the evolution of the sys-
tem even in the presence of the phase decoherence.

This paper is organized as follows. In Sec. II, we obtain
the explicit analytical solution of two atoms inside an optical
cavity with phase decoherence. In Sec. III, the pairwise en-
tanglement between atoms and cavity or between two atoms
is investigated, and the nonlocality of two atoms is also dis-
cussed. In Sec. IV, we investigate the genuine three-partite
entanglement in this system by exploring the state prepara-
tion fidelity. In Sec. V, there are some concluding remarks.

II. SOLUTION OF TWO ATOMS INSIDE OPTICAL
CAVITY WITH PHASE DECOHERENCE

We consider the situation that two atoms are trapped in-
side a single mode optical cavity initially prepared in the
vacuum state. The Hamiltonian for the system can be written
as �9,10� ��=1�,

H =
�0

2
�z

�1� +
�0

2
�z

�2� + �a†a + g�a�+
�1� + a†�−

�1��

+ g�a�+
�2� + a†�−

�2�� , �1�

where �z
�i� ,�±

�i� �i=1,2� are atomic operators, �0 is atomic*Electronic address: sbli@zju.edu.cn
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transition frequency, g is the coupling constant of the atoms
to cavity field, and a�a†� is the annihilation �creation� opera-
tor of cavity field with frequency �. The generation of the
entangled state in the system �1� in the laboratory has been
implemented �10�. Various modifications and generalizations
of the system �1� have been studied for preparing entangled
states or realizing various kinds of quantum information pro-
cesses �11–14�. In this paper, we investigate the entangle-
ment between atoms and cavity or between two atoms by
considering the pure phase decoherence mechanism only. In
this situation, the master equation governing the time evolu-
tion for the system under the Markovian approximation is
given by �15�

d�

dt
= − i�H,�� −

�

2
†H,�H,��‡ , �2�

where � is the phase decoherence rate. Note that the equation
with the similar form has been proposed to describe the in-
trinsic decoherence �16�. The formal solution of the master
equation �2� can be expressed as follows �17�:

��t� = �
k=0

�
��t�k

k!
Mk�t���0�M†k�t� , �3�

where ��0� is the density opera-tor of the initial atom-field
system and Mk�t� is defined by

Mk�t� = Hkexp�− iHt�exp�−
�t

2
H2� . �4�

As adopted in Ref. �10�, we assume that the cavity field is
prepared initially in the vacuum state �0	, and atom 1 is pre-
pared in the excited state �e	 and atom 2 is in the ground state
�g	, i.e.,

��0� = �0	
0� � �eg	
eg� . �5�

This kind of initial condition can make two atoms achieve
the nearly maximally entangled state in the evolution in the
large detuning limit. Substituting ��0� into Eq. �3�, the time
evolution of ��t� can be obtained as follows:

��t� = �0,+�0	
0� � �B+	
B+� + �1,gg�1	
1� � �gg	
gg� +
1

4
�0	
0�

� �B−	
B−� + �+gg�0	
1� � �B+	
gg� + �−gg�0	
1� � �B−	

�
gg� + �+−�0	
0� � �B+	
B−� + H . c.,

�0,+ =
1

8
�1 +

�2

	2 + �1 −
�2

	2�cos 	t exp�−
�t

2
	2�� ,

�1,gg =
g2

	2�1 − cos 	t exp�−
�t

2
	2�� ,

�+gg =

2g

2	
� �

	
�1 − cos 	t exp�−

�t

2
	2��

+ i sin 	t exp�−
�t

2
	2�� ,

�−gg =

2g

2	
�exp� i	t − i�t

2
�exp�−

�t

8
�	 − ��2�

− exp�− i	t − i�t

2
�exp�−

�t

8
�	 + ��2�� ,

�+− =
1

4
��1 −

�

	
�ei�	+��t/2exp�−

�t

8
�	 + ��2�

+ �1 +
�

	
�e−i�	−��t/2exp�−

�t

8
�	 − ��2�� , �6�

where �=�0−� is the detuning between the atoms and cav-
ity field, 	= ��2+8g2�1/2, and �B±	= �
2/2���eg	± �ge	� are
the Bell states. By tracing out the degree of freedom of the
cavity field, we obtain the reduced density matrix �s�t� de-
scribing the subsystem containing only two atoms,

�s�t� = �s++�B+	
B+� +
1

4
�B−	
B−� + �sgg�gg	
gg�

+ �s+−�B+	
B−� + H . c.,

�s++ =
1

8
�1 +

�2

	2 + �1 −
�2

	2�cos 	t exp�−
�t

2
	2�� ,

�sgg =
g2

	2�1 − cos 	t exp�−
�t

2
	2�� ,

�s+− =
1

4
��1 −

�

	
�ei�	+��t/2exp�−

�t

8
�	 + ��2�

+ �1 +
�

	
�e−i�	−��t/2exp�−

�t

8
�	 − ��2�� . �7�

III. ENTANGLEMENT BETWEEN ATOMS AND CAVITY
OR BETWEEN TWO ATOMS

In order to quantify the degree of entanglement, several
measures �18� of entanglement have been introduced for
both pure and mixed quantum states. In this paper, we adopt
the concurrence to calculate the entanglement between atom
and cavities or between two optical cavities with the phase
decoherence. The concurrence related to the density operator
� of a mixed state is defined by �19�

C��� = max�
1 − 
2 − 
3 − 
4,0� , �8�

where the 
i�i=1,2 ,3 ,4� are the square roots of the eigen-
values in decreasing order of magnitude of the “spin-flipped”
density operator R,

R = ���y � �y��*��y � �y� , �9�

where the asterisk indicates complex conjugation. The con-
currence varies from C=0 for an unentangled state to C=1
for a maximally entangled state.
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The explicit analytical expression of the concurrence Cs�t�
characterizing the entanglement in �s�t� can be obtained as

Cs�t� = �A2 + B2�1/2,

A =
�2

4	2 −
1

4
+

1

4
�1 −

�2

	2�cos 	t exp�−
�t

2
	2� ,

B =
1

2
�1 −

�

	
�sin�	 + ��t/2 exp�−

�t

8
�	 + ��2�

−
1

2
�1 +

�

	
�sin�	 − ��t/2 exp�−

�t

8
�	 − ��2� .

�10�

In Fig. 1, we plot the concurrence Cs as the function of time
t and phase decoherence rate � for three values of the detun-
ing parameter �. It is shown from Fig. 1�a� that the concur-
rence is always larger than zero for any time t�0 in the case
with ��0, which means that the phase decoherence does not
completely destroy the entanglement but generates a station-
ary entangled state of two atoms. We also see that the con-
currence is not larger that 0.5, which is different with the
nonresonant case �see Figs. 1�b� and 1�c��. From Fig. 1�c�,
we can observe that two atoms can get very large entangle-
ment in the large detuning case and the influence of phase
decoherence on the entanglement generation of two atoms is
strongly dependent on the detuning. The relation between
entanglement generation of two atoms and the detuning for
two different values of the phase decoherence rate is dis-
played in Fig. 2. Similar to the result that the phase decoher-
ence suppresses the revival and collapse of Rabi oscillation
in Ref. �17�, it is shown that the phase decoherence suppress
the oscillation of entanglement in this case. From Eq. �10�, it
is easy to verify that Cs���=2g2 / ��2+8g2� in the case with
��0, which means that the entanglement of stationary state
decreases with the increase of the detuning.

In the large detuning limit, i.e., g / ����1, the population
of the single mode cavity field will be very small in the time
evolution, which leads to very small entanglement between
atoms and cavity. Next, we investigate how entanglement is
distributed in system �1�. By tracing out the degree of free-
dom of atom 2 in ��t�, we obtain the reduced density matrix
�s1�t� describing the subsystem of atom 1 and the cavity
field,

�s1�t� = �s10e�0	
0� � �e	
e� + �s10g�0	
0� � �g	
g� + �s11g�1	

�
1� � �g	
g� + ��s1eg�0	
1� � �e	
g� + H . c.� ,

�s10e = �1

8
�3 +

�2

	2 + �1 −
�2

	2�e−��t/2�	2
cos 	t�

+
1

4
�1 −

�

	
�e−��t/8��	 + ��2

cos
�	 + ��t

2

+
1

4
�1 +

�

	
�e−��t/8��	 − ��2

cos
�	 − ��t

2
� ,

�s10g = �1

8
�3 +

�2

	2 + �1 −
�2

	2�e−��t/2�	2
cos 	t�

−
1

4
�1 −

�

	
�e−��t/8��	 + ��2

cos
�	 + ��t

2

−
1

4
�1 +

�

	
�e−��t/8��	 − ��2

cos
�	 − ��t

2
� ,

FIG. 1. �Color online� The concurrence Cs is plotted as a func-
tion of the time t and phase damping rate � for three different cases,
�a� �=0g; �b� �=g; �c� �=5g. In the three cases, the units of t and
� are both 1/g.
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�s11g =
2g2

	2 �1 − e−��t/2�	2
cos 	t� ,

�s1eg =
g

2	
��

	
−

�

	
e−��t/2�	2

cos 	t + ie−��t/2�	2
sin 	t

+ e�it/2��	−��−��t/8��	 − ��2
− e−�it/2��	+��−��t/8��	 + ��2� .

�11�

In the basis ��1	�e	 , �1	�g	 , �0	�e	 , �0	�g	� ,�s1�t� can be also re-
garded as a two-qubit mixed state. The concurrence Cs1 mea-
suring the entanglement of such a subsystem can be written
as follows:

Cs1�t� = �
 + �� ,


 =
g�

	2 −
g�

	2 e−��t/2�	2
cos 	t +

ig

	
e−��t/2�	2

sin 	t ,

� =
g

	
e�it/2��	−��−��t/8��	 − ��2

−
g

	
e−�it/2��	+��−��t/8��	 + ��2

,

�12�

where �x� gives the absolute value of x. Similarly, we can also
investigate the entanglement of subsystem containing only
cavity field and atom 2 by tracing out the degree of freedom
of the atom 1. The corresponding concurrence Cs2 is ob-
tained,

Cs2 = �
 − �� . �13�

In the resonance case, i.e., �=0, Cs1 and Cs2 reduce to

Cs1 = �
2

2
sin
2gt�exp�− �g2t� + cos
2gt exp�− 4�g2t���

�14�

and

Cs2 = �
2

2
sin
2gt�exp�− �g2t� − cos
2gt exp�− 4�g2t��� .

�15�

Equations �14� and �15� indicate that, in the case with �=0
and ��0, there are not any entanglements between the cav-
ity field and atom 1 or between the cavity field and atom 2 as
the time approach to infinite. However, in the nonresonance
case, i.e., ��0 and ��0, Cs1���=Cs2���= �g� /	2�.

In Figs. 3 and 4, the concurrence Cs1 and Cs2 are plotted
as the functions of the time t for three different values of
detuning parameter. It is shown that, although the optimal
values of concurrence Cs1 and Cs2 in the case of ��0 with
phase decoherence are smaller than those without phase de-
coherence, the phase decoherence does not completely de-
stroy the entanglement. We also see that the individual atom
and cavity field can not get maximally entangled. It is easy to
prove that the optimal value of concurrence can not exceed
3
6/8. In the case ��0 and ��0, the atom and field is
almost entangled for t�0, which is different from the case of
�=0 and �=0. Cs ,Cs1, and Cs2 are displayed as the func-
tions of the time for �=10g in Fig. 5. From Fig. 5, we can
see that the concurrence Cs characterizing the pairwise en-
tanglement between two atoms can achieve a very large
value even in the presence of phase decoherence, which is
similar to the case without phase decoherence. It can be veri-
fied that, in the large detuning limit, the maximal value of the
concurrence between atoms arrives near 1 in the time evolu-
tion even in the presence of phase decoherence. Moreover,
we show that Cs1 and Cs2 exhibit very different dynamical
behavior with or without phase decoherence. In Fig. 5�a�, the
pairwise entanglement between the cavity field and atom 1 or
between the cavity field and atom 2 exhibits synchronous
oscillation, which is different from Fig. 5�b�.

Furthermore, we discuss how much pairwise entangle-
ment between the various subsystems can be achieved if the
initial atom 1 is in a thermal state. We assume that the initial
atom 1 is in the state �A�0�=��g	
g�+ �1−���e	
e�, where 0
���1, atom 2 is in the ground state, and the cavity field is
still in the vacuum state �0	. Our calculation shows that Cs�

FIG. 2. �Color online� The concurrence Cs is plotted as a func-
tion of the time t and the detuning � in two different cases, �a� �
=0/g; �b� �=0.5/g. In the cases, the units of t and � are 1/g and g,
respectively.
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= �1−��Cs, Cs1� = �1−��Cs1, and Cs2� = �1−��Cs2. This means
that even if the initial atom 1 is in a maximally mixed state
1
2 �g	
g�+ 1

2 �e	
e�, it can still entangle various subsystems.
In what follows, we discuss the nonlocality of two atoms

in this system. Bell’s inequality test with entangled atoms
inside a cavity has been extensively studied �20�. The non-
local property of two atoms can be characterized by the
maximal violation of Bell’s inequality. The most commonly
discussed Bell’s inequality is the CHSH inequality �21,22�.
The CHSH operator reads

B̂ = a� · �� � �b� + b�
→

� · �� + a�
→

· �� � �b� − b�
→

� · �� , �16�

where a� ,a�
→

,b� ,b�
→

are unit vectors. In the above notation, the
Bell inequality reads

�
B̂	� � 2. �17�

The maximal amount of Bell’s violation of a state � is given
by �23�

B = 2

 + 
̃ , �18�

where 
 and 
̃ are the two largest eigenvalues of T�
†T�. The

matrix T� is determined completely by the correlation func-
tions being a 3�3 matrix whose elements are �T��nm

=Tr���n � �m�. Here, �1��x, �2��y, and �3��z denote
the usual Pauli matrices. We call the quantity B the maximal
violation measure, which indicates the Bell violation when
B�2 and the maximal violation when B=2
2. For the den-
sity operator �s in Eq. �7� characterizing the time evolution

of two atoms, 
+ 
̃ can be written as follows:


 + 
̃ = � + max��,�� , �19�

where

� =
4g4

	4 �1 − e−��t/2�	2
cos 	t�2

+
1

4
��1 −

�

	
�e−��t/8��	 + ��2

sin
�	 + ��t

2

− �1 +
�

	
�e−��t/8��	 − ��2

sin
�	 − ��t

2
�2

, �20�

and

� = ��2 + 4g2

	2 +
4g2

	2 e−��t/2�	2
cos 	t�2

. �21�

From Eqs. �18�–�21�, it is easy to see the violation of Bell’s
inequality for two atoms. Similarly, one can also obtain the
analytical expressions of maximal violation of Bell’s in-

FIG. 3. The concurrence Cs1 is plotted as a function of time t,
�a� �=0/g; solid line: �=0g; dotted line: �=g; dash-dotted line:
�=5g; �b� �=0.5/g; solid line: �=0g; dotted line: �=g; dash-
dotted line: �=5g. The unit of t is 1 /g.

FIG. 4. The concurrence Cs2 is plotted as a function of time t,
�a� �=0/g; solid line: �=0g; dotted line: �=g; dash-dotted line:
�=5g; �b� �=0.5/g; solid line: �=0g; dotted line: �=g; dash-
dotted line: �=5g. The unit of t is 1 /g.
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equality B�s1� and B�s2� of atom 1 and the cavity field or atom
2 and the cavity field, respectively. In the analysis of the Bell
violation concerning the degree of freedom of the cavity
field, the three components of dichotomous observables of
the cavity field are analogously defined as �x

�c���1	
0�
+ �0	
1�, �y

�c��−i�1	
0�+ i�0	
1�, and �z
�c���1	
1�− �0	
0�.

Recently, Verstraete et al. investigated the relations be-
tween the violation of the CHSH inequality and the concur-
rence for systems of two qubits �24�. They showed that the
maximal value of B for given concurrence C is 2
1+C2,
which can be achieved by the pure states and some Bell-
diagonal states. If the given concurrence C is larger than

2/2, the minimal value of B is 2
2C, which can be
achieved by the maximal entangled mixed state. Further-
more, the entangled two-qubits state with the concurrence
C�
2/2 may not violate any CHSH inequality, even after
all possible local filtering operations, except their Bell-
diagonal normal form does violate the CHSH inequalities
�24�. In what follows, we attempt to reveal the relations be-
tween the entanglement and Bell violation in the system �1�.
First, we focus our attention on the resonant case. Our cal-
culations show that two atoms cannot violate the CHSH in-
equality in this case, though two atoms get entangled in the
time evolution. However, the Bell violation of the individual
atom 1 or 2 and the cavity field can emerge in this case,

whereas it can be destroyed by the decoherence. In Fig. 6, we
display the Bell violation versus the concurrence for three
subsystems in the resonant case. One interesting point noted
from Fig. 6 is that the Bell violation and the concurrence
does not satisfy the monotonous relation. It means that pos-
sibly the more violation, the less concurrence, or vice versa.
For realizing the quantum information processing in the sys-
tem of atoms coupling to cavity field, the large detuning case
is often adopted to suppress the cavity decay �9,12�. In Fig.
7, the Bell violation versus the concurrence for three sub-
systems in the large detuning case is depicted. It is shown
that very large violation of CHSH inequality can be achieved
by two atoms in this case. Meanwhile, the Bell violations of
the individual atom 1 or 2 and the cavity field deteriorate in
the large detuning case. One may question whether there
exists an infinitesimal time evolution in which two atoms can
achieve more entanglement, but less violation. The answer is
yes, and it can be confirmed by observing the middle graph
in Fig. 7. The relation between the Bell violation and the
entanglement may strongly depend on the choices of the ob-
servables to build the Bell inequality and the entanglement
measure. So it is very interesting to study further whether
this phenomenon is still valid or not for other forms of Bell’s
inequalities and other entanglement measures.

FIG. 5. The concurrences Cs �solid line�, Cs1 �dotted line�, and
Cs2 �dash-dotted line� are plotted as a function of time t with �
=10g: �a� �=0/g; �b� �=0.5/g.

FIG. 6. The maximal violations versus concurrences for three
subsystems �s ,�s1, and �s2 during the time interval t� �0,4� are
depicted with �=0g, and two different decoherence rates, i.e., �
=0/g �solid triangle� and �=0.5/g �solid circle�. The unit of t is
1 /g.
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IV. GENUINE THREE-PARTITE ENTANGLEMENT IN
THIS SYSTEM

In this section, we turn to investigate whether the genuine
three-partite entanglement can appear or not in the evolution
of this system. For discriminating the genuine three-partite
entangled states from other entangled states or separable
states, there have been many criterions such as the Mermin-
Klyshko inequality �25,26� and state preparation fidelity
�7,8�, etc. The Mermin-Klyshko inequality and state prepa-
ration fidelity are related to two sufficient conditions that
distinguish between genuinely N-partite entangled states and
those in which only M particles are entangled �M �N�. Here,
we adopt the state preparation fidelity to study how the three-
partite entangled states can be generated in this system. For a
three-qubit state �, the state preparation fidelity F is defined
as

F��� = 
GHZ���GHZ	 , �22�

where �GHZ	 is the three-partite GHZ state. A sufficient con-
dition for genuine three-partite entanglement is given by

F��� �
1

2
. �23�

Now we consider the state described by the density matrix
��t� in Eq. �6� and choose the GHZ state �GHZ	 to be

�GHZ	 =
1

4
���0	 − i�1	� � ��g	 + �e	� � ��g	 − �e	�

− ��0	 + i�1	� � ��g	 − �e	� � ��g	 + �e	�� . �24�

Substituting the GHZ state �GHZ	 in Eq. �24� and the den-
sity matrix ��t� in Eq. �6� into Eq. �22�, we can obtain the
state preparation fidelity F as follows:

F„��t�… =
1

4
+

g2

2	2 �1 − cos�	t�e−��t/2�	2
�

+ Re�−
ig

2	
�e�it/2��	−��e−��t/8��	 − ��2

− e−�it/2��	+��e−��t/8��	 + ��2
�� , �25�

where Re�x� gives the real part of a complex number x. In
Fig. 8, we plot the state preparation fidelity F as the function
of the time t and the detuning � in the case without any
phase decoherence. It can be observed that F can exceed
above 1

2 in the evolution of this system both in the resonant
case and the off-resonant case. This implies that the genuine
three-partite entangled pure state can be achieved in this
case. However, in the case with ��g, the state preparation
fidelity F cannot be larger than 1

2 . The physical reason is the
cavity field initially in the vacuum state cannot be excited in
the large detuning limit. So the degree of the freedom of the
cavity field is always separable with the atoms in the large
detuning limit. For clarifying the influence of the phase de-
coherence on the state preparation fidelity, we plot the state
preparation fidelity F as the function of the time t and the
decoherence rate � in Fig. 9. It is shown that the two atoms
and the cavity field which are in a three-partite mixed state
can also become genuinely three-partite entangled even in
the presence of phase decoherence. If the phase decoherence
rate is large enough, the state preparation fidelity defined by

FIG. 7. The maximal violations versus concurrences for three
subsystems �s ,�s1, and �s2 during the time interval t� �0,4� are
depicted with �=5g, and two different decoherence rates, i.e., �
=0/g �solid triangle� and �=0.5/g �solid circle�. The unit of t is
1 /g.

FIG. 8. �Color online� The state preparation fidelity F of the
evolving state ��t� is plotted as the function of the time t and the
detuning � for the case without any phase decoherence, i.e.
�=0/g The units oft and � are 1/g and g respectively.
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Eqs. �22� and �24� cannot be larger than 1
2 during the whole

evolution. Since F�
1
2 is only a sufficient condition that de-

termining a genuinely three-partite entangled state, we need
other criterions such as the violation of three-partite Bell
inequalities to investigate further whether the genuine three-
partite entanglement can be generated or not in the cases
with very large decoherence rate.

V. CONCLUSION

In this paper, we investigate analytically the system of
two two-level atoms coupled to a single mode optical cavity
with the phase decoherence and calculate the entanglement
between atoms and cavity field or between two atoms in the
presence of phase decoherence. It is shown that in the reso-
nance case �i� atom-field entanglement rapidly decays with
phase decoherence and disappears in the stationary state, �ii�
atom-atom entanglement is more robust against phase deco-
herence and survives in the stationary state. In the nonreso-
nance case, the pairwise entanglement between atoms and
cavity is sensitive with the detuning parameter and not com-
pletely destroyed by the phase decoherence. Furthermore, we
show that even if the atom 1 is initially in a maximally
mixed state, it can also be entangled with atom 2 initially
prepared in ground state in this system. In addition, the non-
locality of two atoms is investigated, and the phenomenon
that the more violation, the less entanglement, or vice versa,
is revealed. Finally, we investigate whether the genuine
three-partite entanglement can appear or not in the evolution
of this system by making use of state preparation fidelity. It
is shown that the two atoms and the cavity field which are in
a three-partite mixed state can become genuinely three-
partite entangled even in the presence of phase decoherence.
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