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We propose a scheme to engineer quantum superpositions of coherent states �“Schrödinger-cat states”� of
propagating optical pulses. Multidimensional and multipartite cat states can be generated simply by reflecting
coherent optical pulses successively from a single-atom cavity. The influences of various sources of noise,
including atomic spontaneous emission and pulse-shape distortion, are characterized through detailed numeri-
cal simulation, which demonstrates the practicality of this scheme within the reach of current experimental
technology.
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Superpositions of classically distinguishable states
�“Schrödinger-cat states”�, as a distinct class of nonclassical
states, have attracted extensive research interest recently in
the context of a fundamental test of quantum mechanics and
quantum information theory. For bosonic modes, cat states
are typically referred to as quantum superpositions of coher-
ent states. Such states are of critical importance for investi-
gation of the decoherence process and the quantum-classical
boundary �1�, for a fundamental test of the quantum nonlo-
cality �2�, and for implementation of quantum computation
and communication �3–6�. Significant theoretical and experi-
mental efforts have been made for realization of such cat
states in different physical systems �1,7–9�. Until now, such
states have been successfully generated for phonon modes of
a single trapped ion �1�, and for microwave photon modes
confined inside a superconducting cavity �7�.

There is also great interest in generating Schrödinger-cat
states for propagating optical pulses. The motivation consists
of at least two aspects: first, for applications in the test of
quantum nonlocality or in the implementation of quantum
computation and communication, one needs to use cat states
of propagating optical pulses; secondly, for propagating
pulses, with assistance of linear optical devices �such as
beam splitters�, it is possible to generate a larger class of cat
states targeted to different kinds of applications �3–6,10�.
The proposals for generating cat states of optical pulses are
typically based on either the Kerr nonlinearity or postselec-
tions from nonlinear detectors �11–13�. Although the Kerr
nonlinearity in principle provides a method for deterministic
generation of the cat states, it is well known that such non-
linearity in typical materials is too small to allow cat state
generation from weak coherent pulses.

In this paper, we propose a scheme to engineer
Schrödinger-cat states of propagating optical pulses based on
the state-of-the-art cavity technology. It has been demon-
strated that a single atom can be trapped for seconds inside a
high-Q optical cavity working in the strong-coupling regime
�14–16�. With such a setup, we can generate a large class of
cat states simply by reflecting weak coherent pulses succes-
sively from a cavity mirror. With the aid of a few beam
splitters, we can generate multipartite and multidimensional
cat states, and the preparation of such states is a necessary

step for several distinct applications, such as loop-hole-free
detection of Bell inequalities with homodyne detections �17�
and quantum coding and computation �18�. This scheme also
extends an earlier photonic quantum computation proposal
by Duan and Kimble �19� to the continuous variable regime,
eliminating the requirement of using single-photon pulses as
a computation resource. To characterize the influences of
various sources of experimental noise on this scheme, we
develop a numerical simulation method to quantify the noise
effects due to the atomic spontaneous emission, the photon
pulse-shape distortion, and the cavity mode-matching ineffi-
ciency. The numerical method enables us to find out a range
of the cat-state amplitude achievable within our scheme. And
the calculation shows that substantial cat states can be gen-
erated within the reach of the current technology.

First, let us briefly introduce the basic idea of this scheme.
We consider an atom with three effective levels trapped in-
side an optical cavity. The level configuration is shown in
Fig. 1, where �0� and �1� are levels in the ground-state mani-
fold with different hyperfine spins. The transition from level
�1� to �e� is resonantly coupled to a cavity mode ac, which is
resonantly driven by an input optical pulse prepared in a
weak coherent state ���. The transition between level �0� and
�e� is decoupled from the cavity mode due to the large de-
tuning from the hyperfine frequency. If the atom is prepared
in the level �0�, the input pulse is resonant with the bare
cavity mode ac, and after resonant reflection it will acquire a
phase of ei� from standard quantum optics calculation �20�.
The effective state of the pulse is then given by �−��. How-
ever, if the atom is prepared in the level �1�, due to the strong

FIG. 1. �Color online� �a� Schematic setup for generation of cat
states by reflecting a coherent optical pulse from a single-atom cav-
ity. �b� The relevant level structure of the atom trapped in the cavity.
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atom-cavity coupling, the frequency of the dressed cavity
mode is significantly detuned from the center frequency of
the input pulse. In this case, one would expect intuitively that
the coupling between the atom-cavity system and the input
pulse does not play an important role here, and the reflection
is then similar to the reflection from a mirror, which keeps
the pulse shape and phase unchanged. So the pulse will re-
main in the same state ��� after the reflection, given that the
amplitude � of the input pulse is not too large. Our numeri-
cal calculation confirms this expectation.

In order to generate a Schrödinger-cat state, we simply
prepare the trapped atom in a superposition state ��0�
+ �1�� /�2. Then, we reflect a coherent pulse ��� with this
single-atom cavity. Following the above analysis, the final
atom-photon state will become an entangled state,

��c� = ��0��− �� + �1�����/�2. �1�

This entangled state can be experimentally verified through a
homodyne detection of the state of the reflected photon pulse
�21�, correlated with a measurement of the atomic state in the
basis ��± �= ��0�± �1�� /�2	. With homodyne detections, one
can also measure the Wigner function of the optical field
with quantum state tomography �22�, which fully character-
izes the nonclassicality of the cat state.

With some extensions to the above method, we can gen-
erate more complicated types of cat states. First, by bouncing
a series of coherent pulses �say, n pulses�, each initially in
the state ���, successively from the same single-atom cavity,
one will get the state ��0��−���n+ �1�����n� /�2, which yields
entangled multipartite cat states ��−���n± ����n� �unnormal-
ized� for the pulses after a projective measurement of the
atomic state in the basis ����	. Secondly, after generation of
the state ��−��+ ���� for the pulse, one can transfer it to the
state ����+ �3��� through a simple linear optical manipulation
�for instance, by interfering this pulse with another phase-
locked stronger laser pulse at an unbalanced beam splitter,
one can shift up each coherent component of the cat state by
an amplitude of 2��. Then, if we reflect this pulse again from
the same cavity, we will get a state ��−3��+ �−��+ ���
+ �3��� for the pulse conditioned on a measurement of the
atom giving the ��� state. It is straightforward to extend this
idea to generate the multidimensional cat states �i=−n

n+1 ��2i
−1���, and such states have important applications for
continuous-variable quantum coding �18� and loop-hole-free
detection of the Bell inequalities with efficient homodyne
measurements �17�.

In the above, we have presented the basic idea for prepa-
ration of the cat state �1� and described its various exten-
sions. To understand and characterize this process better,
however, we need a more detailed theoretical modeling for
the interaction between the cavity atom and the light pulse.
First, we want to know how large the amplitude of the cat
state can be. If the amplitude ��� is too large, one would
expect that the quantum field of an optical cavity cannot
significantly change the property of a strong pulse, therefore
the output state would be different from the state described
by Eq. �1�. Second, in practice, experiments always suffer
various kinds of noise or imperfections, such as the photon

loss due to the atomic spontaneous emission and the mirror
scattering, the inherent pulse shape distortion induced by the
reflection from the cavity, and the random variation of the
cavity-mode–atom coupling rate caused by the thermal
atomic motion. One needs to characterize the influence of
these sources of noise on the generation of cat states.

The input to the cavity is a coherent optical pulse,
whose state ���in can be described by ���in=exp�−���2 /2�
�exp��
0

Tf in
* �t�ain

† �t�dt��vac�, where ain
† �t� is a one-

dimensional quantum field operator with the standard com-
mutation relation �ain�t� ,ain

† �t���=��t− t��, f in�t� describes the
input pulse shape with the normalization 
0

T�f in�t��2dt=1 �T is
the pulse duration�, and �vac� represents the vacuum state for
all the optical modes. The average photon number of the
pulse is given by ���2. The input pulse drives the cavity mode
ac through the Langevin equation �20�

ȧc = − i�ac,H� −
	

2
ac − �	ain�t� , �2�

where 	 is the cavity decay rate, and the Hamiltonian H
describes the atom-cavity interaction with the form

H = 
g��e��1�ac + �1��e�ac
†� . �3�

Here, g is the atom-cavity coupling rate. The cavity output
field aout is connected to the input through the input-output
relation

aout�t� = ain�t� + �	ac�t� . �4�

We need to find out the quantum state of the cavity output
field aout through the series of Eqs. �2�–�4�. As they are non-
linear operator equations with infinite modes, it is hard to
solve them even numerically. For the case of a single-photon
pulse input, a numerical method based on the mode discreti-
zation and expansion has been developed in Refs. �19,23�.
But that method does not work if the photon number of the
input pulse is larger than 1, as in the case of the present
work. To attack this problem, we propose a variational
method based on the following observation: if the atom is in
the state �0�, the Hamiltonian �3� does not play a role, and
Eqs. �2� and �4� become linear, from which we observe that
the state ��0�out of the output field can be exactly written as
��0�out=exp�−��0�2 /2�exp��0
0

Tfout
�0�*�t�aout

† �t�dt��vac�. The
normalized shape function can be expressed as

fout
�0��t� = −�

	

2
+ i�

	

2
− i�

exp�i�t�f in���d� ,

where f in��� is the Fourier transform of f in�t�. The output
optical field is still in an effective single-mode coherent state,
but with the mode shape function fout

�0��t� in general different
from the input shape f in�t�. If the atom is in the state �1�, it is
reasonable to make the ansatz that the output optical field is
also in an effective single-mode coherent state ��1�out

=exp�−��1�2 /2�exp��1
0
Tfout

�1�*�t�aout
† �t�dt��vac�, but with prob-

ably a different normalized mode shape function fout
�1��t�. In

general, the amplitude �1 can be different from � �actually
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��1�2 ���2� because of the atomic spontaneous-emission
loss. Due to that loss, some of the photons are scattered to
other directions, so we have a weaker output field. To find
out the functional form of fout

�1��t�, we note that under the
above ansatz, the expectation value of the input-output equa-
tion �4� leads to

�1fout
�1��t� = �f in�t� + �	�ac�t�� . �5�

The expectation value of the cavity mode operator ac�t� can
be found by solving the corresponding master equation for
the atom-cavity-mode density operator �,

�̇ = −
i



�Heff,�� +

	

2
�2ac�ac

† − ac
†ac� − �ac

†ac� +
�s

2
�2�−��+

− �+�−� − ��+�−� , �6�

where �−= �1��e� and �+= �e��1� are the atomic lowering and
raising operators, and the effective Hamiltonian is given by
Heff=
�g�+ac+ i�	�ain�ac�+H.c. Compared with the Hamil-
tonian �3�, Heff has two extra terms i
�	�ain�ac+H.c. to ac-
count for the driving from the input pulse. After that correc-
tion, the cavity decay and the atomic spontaneous-emission
loss can then be described by the last two terms of the master
equation �6�, where �s denotes the atomic spontaneous-
emission rate. The density operator � can be solved from the
master equation �6� with standard numerical methods, from
which we can calculate the expectation value �ac�t��
=tr��ac�t��. Then, following Eq. �5�, we can determine the
output amplitude �1 and its pulse shape fout

�1��t�.
With the above method, we calculate the pulse shapes

fout
�0��t� and fout

�1��t� of the output optical field with the atom in
the state �0� and �1�, respectively. For this calculation, we
take a Gaussian shape for the input pulse with f in�t�
�exp�−�t−T /2�2 / �T /5�2�, where T characterizes the pulse
duration. The results are shown in Fig. 2, which demon-
strates that the shape functions fout

�0��t� and fout
�1��t� of the output

pulses overlap very well with f in�t� of the input pulse when
the pulse duration satisfies T�1/	. Furthermore, the global
phase factors of fout

�0��t� and fout
�1��t� are given by −1 and 1,

respectively, which confirms our previous expectation: if the
atom is initially prepared in a superposition state ��0�
+ �1�� /�2, the final atom-photon state will be the desired en-
tangled state ��c� as shown in Eq. �1�, where �−�� and ���
are coherent states of the output mode with the mode-shape
function −fout

�0��t� fout
�1��t� f in�t�. In the same figure, we have

also shown the output shape fout
�1��t� for different atom-photon

coupling rates g. Both the phase and the amplitude of
fout

�1��t� are very insensitive to random variation of g within a
certain range. For instance, even if g varies by a factor of 2
from 6	 to 3	 �which is the typical variation range of g
caused by the atomic thermal motion�, the change in fout

�1��t� is
negligible �10−4� �23�.

To quantify the limit of the cat states that one can prepare
and the influence of some practical noise, we introduce sev-
eral quantities to measure the quality of the cat-state prepa-
ration. First, the distortion between the output and the input
pulses can be measured by their pulse shape mismatching
�1=1−
f in�t�fout

�1�*�t�dt and �0=1+
f in�t�fout
�0�*�t�dt �as fout

�0��t�
has an opposite phase�. With typical experimental param-
eters, �0��1, so �0 has the dominant contribution to the im-
perfection of our scheme. Second, the effect of the
spontaneous-emission loss can be quantified by the photon
loss parameter �=1− ��1�2 / ���2, which represents the frac-
tion of the photons scattered to other directions instead of to
the cavity output �24�. Both the pulse-shape distortion and
the photon loss contribute to the imperfection of the final cat
state, which can be characterized by the state fidelity. The
ideal cat state is given by ��c� in Eq. �1�, while with noise,
the real state obtained is denoted by a density matrix �real.
The fidelity, defined as F���c��real��c�, can be expressed
by �0 and � as

F  � e−���2�1−�1−�� + e−���2�0

2
�2

, �7�

where we have neglected the contribution of �1 as �1��0.

FIG. 2. �Color online� Pulse-shape functions for the input and
output pulses. The solid curve shows the shape of the input pulse.
The dashed-dotted, dashed, and dotted curves correspond to the
output pulses with g=0 �for the atom in the level �0��, g /	=3, and
g /	=6, respectively. In the calculation, we assumed �s=	.

FIG. 3. �Color online� The cat-state fidelity shown as a function
of the average input photon number ���2 when the spontaneous-
emission rate is set to zero ��s=0�. Other parameters are g /	=3
and 	T=210 for the solid curve; g /	=6 and 	T=210 for the dotted
curve �exactly overlapped with the solid curve�; g /	=6 and 	T
=100 for the dash-dotted curve; and g /	=6 and 	T=400 for the
dashed curve.
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First, let us examine the intrinsic limit to the amplitude of
the cat state that one can prepare even if we neglect the
influence of practical photon loss. This intrinsic limit comes
from the fact that the quantum field of an optical cavity
cannot affect the state of a strong optical field �i.e., with a
large �� efficiently. For that purpose, we simply set the
spontaneous-emission rate �s=0, and look at the state fidelity
as a function of the cat-state amplitude �. The result is
shown in Fig. 3, which reveals that given a certain fidelity
requirement the maximal achievable cat amplitude ��� de-
pends only on the pulse duration T if we completely neglect
the photon loss noise. In general, a longer input pulse dura-
tion allows the generation of a larger cat state. In particular,
the fidelity increases dramatically when we increase the
pulse duration T as the shape distortion parameter �0 signifi-
cantly reduces for a pulse with a very narrow bandwidth.

We then take the influence of practical noise into account,
and investigate, under typical experimental configurations,
how large the amplitude of an achievable cat state can be.
With the spontaneous-emission rate �s=	, the state fidelity F
is shown as a function of the cat amplitude in Fig. 4�a�, and
as a function of the coupling rate in Fig. 4�b�. The fidelity
increases with the coupling rate g and decreases with the cat
amplitude �, as one would expect. We note that the photon
loss from spontaneous decay reduces when the coupling rate
g increases. Under a reasonable atom-cavity coupling rate
g10	 comparable with the current technology, a cat state
with a remarkable amplitude �3.4 �corresponding to an
entangled state of about 10 photons� could be generated with
a fidelity of 90%.

Another source of noise for cavity QED experiments is
the mode-matching inefficiency between the intracavity field
and the input-output beams. When the mode matching is not
perfect, a portion of the input pulse will not be able to enter
the cavity, so the state of the pulse will not be affected by the
cavity-atom coupling efficiently. Independent of the atomic
state, this portion of the light pulse will be directly reflected
without phase flip. This will degrade the fidelity of our cat-
state preparation. To quantify this effect, we note that if we
neglect all the other imperfections, the cat-state fidelity from
the mode-matching inefficiency can be described by

F  � 1 + e−2���2�1−��

2
�2

,

where � denotes the efficiency of the mode matching. If we
take into account at the same time the other sources of noise
that we considered above, the state fidelity will have a more
complicated analytic expression. In Fig. 5, we show the state
fidelity as a function of the mode-matching efficiency �. In
this calculation, we have also included the noise contribu-
tions from the atomic spontaneous emission and pulse-shape
distortion. It is shown that for a cat state with a large ampli-
tude, the fidelity could be quite sensitive to the mode-
matching efficiency.

In summary, we have proposed a scheme to generate and
control multipartite and high-dimensional Schrödinger-cat
states for propagating optical pulses. The scheme is based on
the state-of-the-art of the cavity technology. We have devel-
oped a variational calculation method which can be used to
solve efficiently the interaction between the input-output
quantum field and the cavity atom. This calculation tech-
nique enables us to quantitatively characterize the influence
of various sources of practical noise on the performance of
this scheme.

We thank Jeff Kimble for helpful discussions. This work
was supported by the ARDA under an ARO contract, the
NSF �0431476�, and the A. P. Sloan Foundation.

FIG. 4. �Color online� �a� The cat-state fidelity shown as a func-
tion of the average photon number ���2 of the input pulse. The
dash-dotted, dashed, and solid curves correspond to g /	=3, g /	
=6, and g /	=10, respectively. �b� The fidelity shown as a function
of the coupling rate g. The solid and dashed curves correspond to
the average input photon number ���2=1 and ���2=3, respectively.
In both calculations for �a� and �b�, we have taken �s=	 and 	T
=210.

FIG. 5. �Color online� The cat state fidelity shown as a function
of the mode-matching efficiency �. The solid, dashed, and dash-
dotted curves correspond to ���2=1, ���2=2, and ���2=3, respec-
tively. Other parameters are �s=	, g=6	, and 	T=210.
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