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Continuous-variable entanglement in a correlated spontaneous emission laser
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We discuss the generation and evolution of entangled light in a correlated spontaneous emission laser. The
master equation for the two-mode field in a cavity is derived and solved analytically. The time-dependent
characteristic function in the Wigner representation for the two-mode field is obtained. It shows that the
two-mode field in the cavity evolves in a two-mode Gaussian state. The entanglement degree of the two-mode
field in the cavity increases initially, then decreases, and finally vanishes as the field evolves from an initial
vacuum. The period of the entanglement is extended as the intensity of the driving field is increased. It is found
that the entanglement still exists even when the two-mode squeezing disappears. During the entanglement
period, the intensity of the field is amplified. The entanglement for the initial field being a two-mode squeezed
vacuum and the entanglement of the output field are also discussed.
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I. INTRODUCTION

In recent years, a number of possible practical applica-
tions of entangled states have been proposed. These include
the quantum computation, the quantum communication, and
the quantum cryptography [1]. Recently, it has been recog-
nized that Gaussian continuous variable entangled states are
important part of the quantum information theory [2]. With
successful experiments on quantum teleportation with two-
mode squeezed states [3] as well as the experimental realiza-
tion of the entanglement in atomic ensembles [4], a lot of
theoretical and experimental studies have been devoted to
generating the continuous variable Gaussian entangled states
and quantifying the entanglement of these states. For ex-
ample, Simon [5] and Duan er al. [6] proposed, respectively,
two criteria to determine the separability for two-mode
Gaussian states. Fiurasek and Cerf [7] proposed a scheme to
measure the entanglement of Gaussian states without homo-
dyning, Josse et al. [8] presented an experiment to generate
the continuous variable entanglement, and Li et al. [9] pro-
posed a scheme to generate the continuous variable excitonic
state in microcavity. On the other hand, any attempt to ex-
ploit entangled states in quantum information processing has
to face the obvious difficulty that the coherence and the in-
tensity of pure entangled states are unavoidably corrupted by
the interaction between the system and its environment. How
to prepare the entangled light in a large number of photons is
also an important issue. In this paper we address this ques-
tion by discussing in details a correlated spontaneous emis-
sion laser as an entanglement amplifier.

In the past 2 decades, research on the quantum amplifier
has been carried out extensively. Scully and Zubairy [10]
presented a theory of two-photon phase-sensitive amplifica-
tion by a three-level atomic system in a cascade configura-
tion, where the atomic coherence is induced by the initial
atomic coherent superposition of the upper and the bottom
levels. They showed that the quadratures of the field are
amplified with equal gain and added noise in one of the
quadratures goes to zero at the expense of increased noise in
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the other quadrature under certain conditions. Lu and Zhu
[11] extended this model to the case of two modes. They
found that the two-mode squeezing can be produced, and
they discussed the quantum correlation of the two-mode
field. Ansari et al. [12] considered a three-level atomic en-
semble in which the atomic coherence is induced by a strong
resonant external driving field for the single-mode and two-
mode cases, and they found that the system behaves as an
ideal parameter amplifier under some conditions. Huang,
Zhu, and Zubairy [13] investigated the amplified cat state in
a quantum amplifier and found that the nonclassicality of the
cat state can be preserved during its amplification. By means
of the phase-sensitive amplifier, Ahmad, Qamar, and Zubairy
[14] proposed a scheme to measure quantum states and re-
construct multimode entangled states in a cavity. In a recent
paper, Xiong, Scully, and Zubairy [15] have proposed a
scheme for an entanglement amplifier based on a two-mode
correlated spontaneous emission laser. They showed, using
the entanglement measure of Ref. [6], that the two modes of
the amplified laser field are in an entangled state even in the
presence of cavity losses. This analysis is, however, based on
the Einstein—Podolsky—Rosen (EPR) uncertainty which is
only a sufficient nonseparability criterion for a two-mode
state [6]. Recently Eisenberg et al. [16] proposed a scheme to
generate multiple entangled photons.

In this paper we extend the analysis of Ref. [15]. We first
obtain the time-dependent characteristic function in the
Wigner representation for the two-mode field in a cavity and
show that the field evolves in a two-mode Gaussian state.
This Gaussian solution is helpful in studying the entangle-
ment with the sufficient and necessary separability criteria
for two-mode Gaussian states of Refs. [5,6]. We show that,
as the field in the cavity evolves from an initial vacuum, the
entanglement between the two modes increases initially, then
decreases and eventually disappears, which is in agreement
with the results of Ref. [15]. The entanglement period is
extended with the increase of the intensity of the driving
field, and the entanglement periods determined by the two
separability criteria established respectively by Simon [5]
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FIG. 1. (a) Three-level atom in a cascade configuration. The
dipole-allowed transitions |a) < |b) and |b)« |c) with frequency o,
and w,; A strong external field induces the dipole-forbidden transi-
tion |a) <« |c). v is the spontaneous emission rate of the three levels
into other levels. (b) Gain media (atomic ensemble) in a doubly
resonant cavity with perfect reflecting mirror M and two high-
reflection mirrors M| and M.

and Duan et al. [6] are found to be identical at the present
problem. It is found that the entanglement still exists even
when the two-mode squeezing disappears. During the en-
tanglement period, the intensity of the entangled light is am-
plified. The entanglement for the initial field being a two-
mode squeezed vacuum and the entanglement of the output
field are also discussed.

The paper is organized as follows. In Sec. II, we derive
the master equation for the two-mode field in the cavity. In
Sec. 111, the master equation of the field is solved exactly. In
Sec. IV, we discuss in detail the conditions for the entangle-
ment between the two modes in the cavity. Also the entangle-
ment of the output field is evaluated in the parametric ap-
proximation in this section. In Sec. V we present a summary
of our main results.

II. MODEL AND THE MASTER EQUATION

We consider a three-level atomic ensemble in a cascade
configuration interacting resonantly with a two-mode field in
a cavity [see Figs. 1(a) and 1(b)]. The atoms, initially in the
lower level |c), are injected into the cavity at a rate r,. The
upper level |a) and the lower level |c) have the same parity
and the intermediate level |b) as the opposite parity. A strong
external field treated classically with Rabi frequency Qe~'¢
induces the dipole-forbidden transition |a) + |c¢) (through two
photon transition). The interaction Hamiltonian is
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Vint = (g,a1|a><b| + gra,|b){c| - %Qe‘i¢|a>(c|) +H.c.,
(1)

where a; and a, are the annihilation operators for the first
mode with frequency w; and the second mode w,, respec-
tively, g; and g, are the coupling constants associated with
the transitions |a) <« |b) and |b) < |c). In the interaction pic-
ture, the density operator for the two-mode field is governed
by

d :

Epf =-1 Tratom[VinU paf] 4 (2)
where p, is the atom-field density operator. With Eq. (1) we
have

d . .

P igilal.pap] - igalad.pp] +H . c.. 3)
where  p,,=(alp,|b) and p,.=(b|p,Jc). Following the
method in Ref. [17], p,, and p,,. can be evaluated to the first
order in the coupling constant g; (i=1,2) as

d Qe ) ;
Epab ==YPart+ 2 Peb — l(glalpbb — 81Paa1 — g2paca2) B
d iQe™'® . ;

S Pbe =" YPbc —~ Pra = 1(8282Pcc = 82Ppptia + & 1a1Pac)-

dt 2
“4)

Here v is the spontaneous emission rate of the three levels of
the atoms into other levels. The zeroth-order equations of
motion for p; (i=a,b,c) and p,, are

d i . )
Epaa == YPaa t 7(6 ld)pca - el¢pac) >
d i ~
" Pcec =" VPcct 7(El¢pac —e l¢pca) + FaPf>

dt

d i .

d_[pac == YPac— 76l¢(paa - pcc) s

and pp,=0. On substituting the steady-state solutions of the
above equations in Eq. (4), and integrating from — to 7, we
obtain the expressions of p,, and p,.. It follows on combin-
ing Eq. (3) and taking into account the dissipations of each
mode in the vacuum environment that we obtain the motion
equation of py as

d .
P By(pjara) —aja,py) — ki(ajayps— aypjal)

- (By+ Kz)(azazpf— a2pfa;) + C1(aIa§Pf— afpfaﬁ)

+ Cz(pfaia; - aJ{pfaD +H.c., (35)

where we have
3ra rZQrZ r, 12
Bl: /(2g,1 12\ BZ: g2/2’
1+Q"9)4+Q) 1+Q")
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with Q'=0Q/7y, g/ =g/, and k; (i=1,2) is the damping con-
stant of each mode. Here B, is the gain term for the first
mode, B, describes the absorption of the second mode, and
C,, C, represent the coupling between the two modes.

III. GENERAL SOLUTION FOR THE MASTER EQUATION

The master equation (5) can be solved analytically by
using the characteristic function. The characteristic function
of a two-mode field in the Wigner representation is defined
as [17,18]

x(&1,6,1) = Tr p(t)exp(&,a] - &a))l.

(6)
With standard operator corresponding we find that the char-

acteristic function of the two-mode field under consideration
obeys

& a))exp(éa5 —

X(§1,§2J)ZCXP{(31 Kl)fl (Bz+K2)§2

& ‘52 73
+C2§1—§—( 1+K1)§1§1 ( 2""<2)§2§2
C/+C
( 1+ 2)§1§2+C C}X(§I’§27O) (7)

Defining a set of operators which form a closed Lie algebra
and using the operators ordering theorems [18] we can solve
Eq. (7) exactly. We assume that the two-mode field is ini-
tially in a symmetry two-mode Gaussian state whose charac-
teristic function is x(&,&.0)=expl-5&V,é") [19] with &
= (51 s él s §2 ) 52)7 Where

nompomg me

c s , (8)

me. np nmp

VO =
m

1
s
m.

ms m; ny

is covariance matrix, (a:fa,):n,-— 1/2, (a%):—mi (i=1,2),
(aya,)=-m,, and {a,a})=m,. The time-dependent solution of
Eq. (7) is obtained as X(§1,§Z,I)=exp(—%§V,§T) with

hl th hT2 h;
hyy hy hy h
| ©

The elements of matrix V, are given in the Appendix. As a
result, the state of the two-mode field at time ¢ also evolves
in a two-mode Gaussian state. Here we limit our discussion
to the case of the initial two-mode field being in a two-mode
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squeezed vacuum W(
ing operator S(r)=exp[-r(ajaje¢—a ae’®)] [17,18]. For
such an initial state, the nonzero elements of matrix V|, are
ny=n,=cosh(2r)/2, m.=sinh(2r)e="¢/2, and

hy 0 0 h

0 h, hy O
V,= : . (10)
0 hy hy O

hy 0 0 hy

IV. ENTANGLEMENT ANALYSIS OF THE SYSTEM
A. Entanglement of the two modes in the cavity

We now discuss the entanglement of the two mode in the
cavity based on the time-dependent solution of the master
equation (3). The entanglement property of the two-mode
Gaussian state with covariance matrix (10) can be analyzed
by the use of two sufficient and necessary separability crite-
ria for the two-mode Gaussian states established by Simon
[5] and Duan et al. [6].

Simon’s separability criterion is equivalent to judging
whether or not the quantum state is P representable [19]. A
two-mode Gaussian state is P representable, and hence, sepa-
rable, if and only if we have V- %I =0, where [ is a 4 X4
unit matrix and V is the covariance matrix for the Wigner
characteristic function. The eigenvalues of V,—%I for the
two-mode field with the covariance matrix (10) are twofold
degenerate, and they are

—_—
(hy + hy) £\ (hy - h2)2 + 4|h3|2 1

M a(t) = B Ty (11)

It is easy to verify that the eigenvalue w,(f) is always non-
negative at any condition, and has no effect on establishing
the nonseparability of the state. The eigenvalue u,(r) may be
negative and determines the nonseparablity of the state of the
two-mode field.

The separability criterion of Duan et al. is equivalent in
determining the entanglement where the necessary and suf-
ficient condition for having entanglement for the Gaussian
states is that the parameter A is negative. The parameter A is
defined as [6]

oo o))

where a is a nonzero real number, and the position and mo-
mentum operators (X;,P;) for each mode are X;=(a;
+a})/\2 and P;=—i(a;—a})/ V2, respectively. To get the ex-
pression of A, we need rewrite the characteristic function
x(€,,&,1) with the covariance matrix (10) in the standard
form shown in Ref. [6]. First we perform a local rotation of
W /2 of the phase angle to /5 in phase space, which does not
change the degree of the entanglement, and results in
)((51,§2,t)=exp[—h1|§1|2—h2|§2|2—|h3|(§1§2+§I§;)]. Now we
rewrite this characteristic function in the form of
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FIG. 2. (a) The time evolution
of the variance {(X,+X,)?) and

negativities u,(7) and A(z), and
(b) the mean photon numbers (n;)
and (n,) of the two-mode field as
the field evolves from an initial
vacuum for ¢=-m/2, y=r,=g,
=g, K =Kk,=0.001y, Q/y=20

(solid), Q/y=30 (dashed), and

Q/y=50 (dotted). In the inset, we
plot the time period of the en-
tanglement as a function of (/.

x(& ,52,t)=)(()\,t)=exp(—%)\M)\T) with the parameter \
=N NN AY) where NF and ! are the real and imaginary
parts of & (i=1,2). Here M is a 4 X 4 matrix with the nonzero
elements M, ,=My,=2h,, My3=M 4,=2h,, M3=M,==2|h;|
and M,,;=M,,=2lhs]. From Ref. [6], we can find d?
=\(M,=1)/(M33—1)=+(2h,—1)/(2h,—1). Equation (12)
reduces to

A(t) = (2hy = 1)a® + (2hy — 1)/a* - 4|h4]. (13)

In addition, the mean photon number of each mode can be
obtained as n;=h;—1/2 and n,=h,—1/2. The variances

(X, +X2)2> =((P, - P2)2> =(hy +hy) - 2|h3|005 v
(14)

being smaller than one means having the two-mode squeez-
ing, which also is a sufficient non-separability criterion for a
two-mode field in our present system [6].

For the initial cavity field being in vacuum (i.e., r=0),
from the expression of /3, the phase angle V¥ is equal to ¢
+ /2. Because Egs. (11) and (13) are independent of the
phase W, which implies that the separability of the entangle-
ment between the two modes is independent of the phase
angle ¢ of the driving filed for the initial vacuum input.
However, for the two-mode squeezing, from Eq. (14), it de-
pends on ¢. Obviously to get the maximum squeezing, we
should choose the phase angle ¥'=0 and ¢=—/2.

We plot the time evolution of the variance ((X,+X,)?),
and negativities u,(r) and A(z) in Fig. 2(a) for the vacuum
input. The entanglement and the two-mode squeezing of the
two modes in the cavity increase initially, then decrease and
finally vanish after a period that depends on ()/7y. We find
that there exists entanglement even when the two-mode
squeezing disappears. The entanglement periods (from #=0
to the time of the entanglement vanishing) 7, are identical
for the Simon’s and Duan’s criteria determined by w(r,,)
=0 and A(r,,)=0. Increasing €}/ vy leads to longer entangle-
ment period 7,, [see the inset in Fig. 2(a)]. The mean photon

numbers (n;) and (n,) of the two modes are plotted in Fig.
2(b). We can see that, during the entanglement period, the
mean photon numbers increase. For {}/y=50, we can have
maximal entanglement degree with total mean photon num-
ber above 200. As a result, in order to have entanglement
with high intensity, high Rabi frequency (strong driving
field) is needed. To maintain the mean photon number of the
field growing, according to the expressions of &, and h,, the
condition B;—B,+w > k;+ K, should be held. As «;+«k;, is
the loss of the cavity, we can set B|—B,+w=k|+k, as the
threshold condition. That is to say the system is operating
above the threshold. For example, for x;=«,=0.0017y, r,
=g,=g,=", at the threshold (or above), the strength of the
driving field is )/ y=<<1000. When )/ above this value, the
system is operating below threshold and the field could not
increase continuously. As time goes to infinity, the system
reach a quasisteady state, where the entanglement is deter-
mined by Eq. (11) with 7A{=[C;;Cy(B+a)-Biay(a;
+a,)]/D+1/2, /’l;=—C%1K1/D+1/2 and hi=ie'?x,Cy a3/ D
with D=(a;+a,)(a;a,—C1,Cyy). For Q/y>1,(Q/y)72 is
much smaller than (2/79)~!, and therefore B, and B, are
much smaller than Cy; and C,, and we have approximately
C1=Cn=c=r,g,8,/Q. Further more, if B, and B, are
much smaller than «; and k,, B; and B, in Eq. (5) can be
neglected. As a result Eq. (5) is reduced to the master equa-
tion for a nondegenerate parametric amplifier under the
vacuum dissipation (parametric approximation). Under this
approximation the expressions for &; (i=1,2,3) are simplified
to

c[c cosh(2¢t) + k sinh(2¢t) Je > — k?
hy=hy= 2(62_K2) ’

c[c sinh(2¢t) + k cosh(2¢t)Je 2 = ek
2(c? - k)

h3=iei¢ s (15)

where we have assumed «;=x,=«. The total mean photon
number of the field becomes {(n)=(n;)+{n,)=c[(c
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FIG. 3. The minimum u,(¢) vs Q/y for r,
=7y, k1=Kk;=0.001y, g,=g,=0.5y (solid), g,
=g,=7 (dashed), g,=g,=2.07y (dotted).
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+ k)24 (= k)e 2/ 2(2= kD) + 2/ (K2=c?).  When
the system operates above the threshold, i.e., ¢ > k, we have
the total photon number increased exponentially. The nega-
tivity is o =c[e 29"~ 1]/2(c+ k). So the minimum g,(7) is
equal to —c/2(c+«k)=-0.5, which increases (or decreases)
on the increase of /7y (or g;). Meanwhile it can also be
shown A i, =4uymin, 1.€., the two criteria are the same with a
difference of scale.

In Fig. 3 we plot the minimum u,(7) (which corresponds
to the maximal entanglement degree) as a function of /.
We find that there exists a critical value of )/ such that in
the left region of it, the maximal entanglement degree in-
creases with the increase of )/, which is in the opposition
to that in the right region. As the coupling constant g; (i=1,2)
increases, the entanglement is significantly enhanced for the
large values of (/.

In Fig. 4(a) we plot the entanglement evolution for r# 0
(i.e., the entangled light input of the initial cavity field being
the two-mode squeezed vacuum). It shows that the entangle-
ment period decreases on the increase of the degree of the
initial squeezing of the cavity field. Besides the amplification
of the intensity, the system also can enhance the entangle-
ment degree for a relative small initial squeezing r. When r
exceeds a certain value (r=0.4), although there is no en-
tanglement amplification, we still have the intensity of the
entanglement amplified to a certain degree. For example, the
mean photon number of the two-mode entangled light is
about 4.0 [when u,(t)=-0.2] for the initial squeezed light
input with r=0.6 which has mean photon number about 0.8
[and u,(0) =-0.35]. For the given squeezing parameter r, the
enhancement of the entanglement depends on the strength of
the diving field. The optimal entanglement increases with the
increase of the driving field, see Fig. 4(b). Also we find the
entanglement is dependent on the relative phase between the
initial squeezed intracavity field and the external driving
field, which is plotted in Fig. 4(c). From it the entanglement
at @— 0=1/2 is larger than that at other values of the relative
phase.

B. Entanglement of the output field

Now we consider the entanglement of the output field. As
the field outside the cavity is continuum of frequencies, we

need to calculate the entanglement between different compo-
nents of frequencies. Because, for the system operates above
the threshold, the steady entanglement cannot be achieved
(except for the parametric approximation), the analysis of the
entanglement of the output field involves definition of the
spectrum of an unstable field, which will make the calcula-
tion complicated. So here we only consider the entanglement
of the output field under the parametric approximation dis-
cussed above. Under this approximation the master equation
Eq. (5) can be derived from the effective Hamiltonian (as a
parametric amplification Hamiltonian) H{l=—c(a a,e'®
+alale™?). Using the input-output theorem [20], we can eas-
ily calculate out the quantity %“ which is defined as the
summation of the variances for quadrature variables X; and
P,

20 =((X, +X2)2>w+ (P, - P2)2>w (16)

in the frequency domain associated with two frequency com-
ponents w;+w and w,—w with a frequency shift w. Accord-
ing to Ref. [6], if 2®<2 we can say sufficiently that the two
components are entangled. Here we will do not give the deri-
vation and only present the main results which has been
derived in Ref. [21]. For the output field with frequencies

w1+ and w,—w, %2 can be calculated as

81282 + &(1 + & + @)si
sy, - REXAFTHOINI] ) )
I(1-i@)* -2

with the total mean photon number at the frequency shift w

82
_— 18
|(1-i@)* -2 (18)

where ¢=c/k and @=w/ k. Here we can see, from Eq. (17),
that the maximum entanglement of the output field is ob-
tained at p=—r/2. At the central frequency (w=0), we have
3=0-2_87/(1+¢)% On the threshold (¢=1), we can have

out

the perfect entangled light at the central frequency (3¢°

out

=0). On the other hand, from Eq. (15), we have X,
=2/(1+¢) for the two-mode intracavity field. So we have
Eint,a—E,‘j’;O=25(E—3)/(E+1)2, which tells us the entangle-
ment degree of the output field at the central frequency is
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stronger than that of the cavity field for ¢ <3 under the para-

metric approximation.
In Figs. 5(a) and 5(b), we plot the dependence of the
summation of quantum fluctuations ¢ and the total photon

out

number (n), on the frequency @ for the system operating

under, on, or above the threshold. From them we can see that
the entanglement degree and the photon number get their
maximum at the central frequency and decreases with the
increasing of the frequency @. At the central frequency and
near the threshold, the entanglement state of intense field
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18

(b)

FIG. 5. The dependences of the quantum fluctuations of quadra-
ture variables (a) and the total mean photon number (b) on the
dimensionless frequency with ¢=0.5 (solid), and ¢=1.0 (dashed),
and ¢=1.5 (dotted).

(which is large number of photons) can be achieved, which
can also be seen from Eq. (18).
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V. CONCLUSION

In conclusion, the generation and evolution of the en-
tanglement between the two modes in a correlated spontane-
ous emission laser is investigated. We derive and solve ana-
Iytically the master equation for the two-mode field in the
cavity and obtain the time-dependent characteristic function
of the field in the Wigner representation. It shows that the
two-mode field in the cavity evolves in a two-mode Gaussian
state. The entanglement between the two modes increases
initially, then decreases and vanishes eventually as the field
evolves from an initial vacuum. The entanglement period is
extended as the intensity of the driving field increases. For
the present problem, we show that the entanglement periods
determined by the separability criteria established, respec-
tively, by Simon and Duan et al. are found to be identical
under some conditions. The maximal entanglement degree is
enhanced with the increase of /7y for {}/7y being smaller
than a certain critical value, and then decreases when the
value of )/ exceeds this critical value. The entanglement
between the two modes still exists even when the squeezing
disappears. The system can also amplify the entangled fields
as the initial two modes being entangled (a two-mode
squeezed vacuum) with relative small amount of squeezing.
During the entanglement period, the intensity of the en-
tangled light is amplified, thus leading to an entanglement
amplifier. When the system behaves as a nondegenerate para-
metric amplifier, we still have, at the central frequency and
near the threshold, relative large degree of the entanglement
and the intensity of the output field.
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APPENDIX: EXPLICIT FORM OF THE MATRIX ELEMENTS IN Eq. (9)

. m QO + 4n,C3,Qsinh?(w1/2) — 2iCy,Qisinh(wt/2) (m,e ' —c . c )

1

mzﬂf

L n,C},Qisinh®(wt/2) + nyw?Q3 - 2iC,,Q, Q3sinh(w/2)(m.e " —c .c.)

f=h

2

hyy =

w2}

f=r

m Q] — 4e*9m,C3, Q0 sinh*(wt/2) + 4ie'®m; C,,Q3sinh(w1/2)

w202 ’

— 4e7%%m, C3 Q3sinh®(wt/2) + 4ie'Pm,C,, Q0 O3sinh(w1/2) + mzngf

h22 =

w Q] '

—2ie™%m,C,,Q3sinh(wt/2) + 2ie'®m,Cy,Q3sinh(wt/2) + m, (203 - mZ)f

2=

mzﬂl ’
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_ 2ie'’n, C, 1 Qjsinh(w1/2) + 2ie'nyCopQ Qsinh(w1/2) + m 0703 - m > *Q}(Q; - w?)
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3=
w Q]

X f=fy=|hle™,

1 A,
fi= ZalAn(fe™ = 1) = Ap(fe™ = D]+ —5(f= 1) (i=1,2.3),

A=

(b £ (C3,— C,1C)(a) — ay £ @) £2(C3,b, — €1 Corb))

at+taxw

2(C11Coy — Coy)(@) — ) = 4Co(11)(Cy1by = Cyyby)

A=

(a)+ @)

)

[byw + (C%1 —CiCp) (- @) = Z(C%lbl = C11Cypby)

Ari2)=

s

a1+azim'

Lig22C1HC0(Cri = Cy) + Criby(a — ay 2 @) £ b,Cp(ey — ay + )

Az =ie

s

a'1+azim'

(Cy1 = Cy)(a; — ay)* +2(Cp by — Cyrby) (@) — ay)

A33 = ie_i¢

k]

a1+a2

f=el@r®) Q) = cosh(wt/2) + (o) — a)sinh(wt/2), O, = Q3 +4C,,Cypsinh(wt/2),

[
23] :Bl_Kb a2:b2:—B2—K2, w = \r’(al—a2)2+4C11C22, b] :_Bl - Kj.
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