
Quantum cellular automaton for universal quantum computation

Robert Raussendorf
Institute for Quantum Information, California Institute of Technology, Pasadena, California 91125, USA

�Received 14 March 2005; revised manuscript received 11 May 2005; published 1 August 2005�

This paper describes a quantum cellular automaton capable of performing universal quantum computation.
The automaton has an elementary transition function that acts on Margolus cells of 2�2 qubits, and both the
“quantum input” and the program are encoded in the initial state of the system.

DOI: 10.1103/PhysRevA.72.022301 PACS number�s�: 03.67.Lx

I. INTRODUCTION

A number of physical systems that are considered for the
realization of a universal quantum computer, such as optical
lattices �1� or arrays of microlenses �2�, possess a translation
symmetry in the arrangement of qubits and their mutual in-
teraction. Quantum cellular automata �QCA� represent a suit-
able framework to explore the computational power of such
physical systems, because they respect this symmetry. A pri-
ori, translation invariance may be regarded as a severe limi-
tation since it constrains the degree of control that can be
exerted to the quantum system. However, it has been dem-
onstrated that one-dimensional QCA can efficiently simulate
any quantum Turing machine �3�.

Further it has been shown that there exists a universal
QCA which can simulate any other automaton with linear
slow down �4�, and that every reversible QCA can be repre-
sented in a generalized Margolus partitioning scheme �5�.
Proposals with an emphasis on experimental viability have
outlined how generic physical systems can be used as quan-
tum computation devices if equipped with a minimal amount
of external control. Among the described mechanisms are
global control via sequences of resonant light pulses �6� or
modulation of a coupling constant �7,8�, and individual con-
trol over one of the elementary cells �9�.

At this point, one may abandon all algorithm-specific con-
trol during the process of computation and ask “How intri-
cate do quantum cellular automata have to be such that they
can perform useful tasks in quantum information process-
ing?.” A quick answer may be “Simple, by definition.” How-
ever, when QCAs are tuned for algorithmic application, it
may occur that—while the simple composition is retained—
the elementary cells and neighborhood schemes become
complicated. An interesting facet of the answer to the above
question has been provided in Ref. �10�, where a very simple
QCA for quantum data transmission has been devised �also
see Ref. �5��. Motivated by a recent result �11�, where uni-
versal computation via autonomous evolution of a 10-local
Hamiltonian is described, here we consider quantum compu-
tation in the cellular automaton scenario. We explicitly con-
struct a computationally universal two-dimensional QCA
whose transition rule is based on a four-qubit unitary.

II. CONSTRUCTION OF THE AUTOMATON

Consider a two dimensional lattice of size 2s�2r with
periodic boundary conditions, i.e., a torus. Each lattice site

carries a qubit. The transition rule for the QCA is described
in terms of a Margolus partitioning �12�. The lattice is parti-
tioned into cells of size 2�2, and there is a separate parti-
tioning for the time t being even or odd, respectively. One
may choose a coordinate system on the torus with axes par-
allel to what were the boundaries before identification. For t
even, the qubits in the upper left corner of each cell have
both coordinates even, and for t odd they have both coordi-
nates odd. Thus, a cell in step t overlaps with four cells of
step t−1.

The transition of the QCA from time t to t+1 proceeds by
simultaneously applying a unitary transition function � to
each cell. For a suitable choice of the 4-qubit unitary � one
can perform universal quantum computation with the de-
scribed QCA. Specifically, a quantum logic network of local
and next-neighbor unitary gates with width 2s and depth r
can be simulated.

With a labeling of particles as illustrated in Fig. 1�a�, the
following elementary transition function is chosen:

� = S�1,3�S�2,4�H1 exp�− i
�

8

1 − Z3

2
Z1�

�exp�i�
1 − Z4

2

1 − Z1

2

1 − Z2

2
� . �1�

FIG. 1. �Color online� Transition of the QCA from t to t+1. �a�
Margolus cell of 2�2 qubits, with the part �D�12 of a data and �p�34

of the program column. �b� Before and after the first transition. The
program columns move left and the data columns move right. The
dashed lines indicate the partitioning into Margolus cells.

PHYSICAL REVIEW A 72, 022301 �2005�

1050-2947/2005/72�2�/022301�4�/$23.00 ©2005 The American Physical Society022301-1

http://dx.doi.org/10.1103/PhysRevA.72.022301

Therein, S�a ,b� denotes a SWAP gate between qubit a and b,
H1 is a Hadamard transformation on qubit 1, and Zc denotes
a Pauli phase flip operator applied to qubit c.

If �p�34 is a state in the computational basis, it effectively
stores two classical bits, p�3� and p�4�. Then, the transition
function � amounts to a classically controlled unitary opera-
tion U�p� applied to �D�12. The bit p�4� triggers a ��Z� gate
applied to �D�12, and p�3� a � /4-phase gate exp�−i� /8Z1�
applied to qubit 1 of �D�12. In this way, �p� encodes an el-
ementary step of a program, carried out on the two-qubit
“data” �D�12. The SWAP gates allow the quantum data and the
program to pass by another, such that �D�12 can interact with
subsequent program registers.

The sets of qubits on the torus with the same first coordi-
nate x, 0�x�2r−1, are called columns. At time t=0 all
even columns contain data registers �Di�, and all odd col-
umns contain program registers �pj�. The initial state of the
automaton is

���0�� = �
i=0

r−1

�Di�0��2i�pi+1�2i+1. �2�

Here and in the following the labels inside the kets specify
the state and the ones outside specify the location of the
support within the lattice, i.e., the column. For example,
�D1�0��2 is data register number 1 at time t=0, located on
column 2. Of all data registers only �D0� is used, the others
are auxiliary. When the QCA starts to run, the data registers
move right �counter-clockwise, as seen from top� and the
program registers move left �clockwise�, by one column in
each time step. When passing the data registers, the program
registers �p� control unitary transformations U�p� acting
upon the data registers �D�. In this way, a program specified
by the data p1 , . . . , pr, with p1 encoding the first and pr the
last step, is carried out on the quantum data register �D0�. The
program that is carried out corresponds to a quantum logic
network of local and next-neighbor gates in a particular ar-
rangement; see Fig. 2. Such networks are sufficient for uni-
versal quantum computation, as is discussed in detail further

below. The same program steps that are applied to the regis-
ter �D0� are also carried out on the auxiliary data registers
�Di�, 1� i�r−1, but in scrambled order. Therefore, these
registers are not used.

In the course of computation, both data and program
travel across half the torus. When the automaton has run for
r time steps, the computation is finished and the register
�D0�r��r can be read out from column r, via local measure-
ments.

Let �i,j denote the elementary transition function �1� ap-
plied to the cell �i , j�. Therein, i is the column coordinate of
the upper left qubit in the cell, and j the respective coordi-
nate within the column. Then, the unitary transition function
Ti, acting upon two consecutive columns i, i+1, is

Ti = �
j=0

s−1

�i,�2j + i�2s
. �3�

Therein, �2j+ i�2s is a shorthand for 2j+ i mod 2s that will be
used throughout the remainder of the paper.

If �p� is a state in the computational basis, then

Ti��D�i � �p�i+1� = �p�i � �U�p��D��i+1. �4�

Therein, U�p� is a unitary transformation chosen by p con-
taining a Hadamard—and possibly a ��Z�—and a � /4-phase
gate, in accordance with �1�.

The global transition function T : ���t��→ ���t+1�� is, for
even t given by Te= � i=0

r−1T2i, and for odd t by To= � i=0
r−1T2i+1.

In both cases it can be written in the form

T = �
i=0

r−1

T�2i + t�2r
. �5�

Now, the state ���t�� of the QCA at time t is

���t�� = �
i=0

r−1

�Di�t���2i + t�2r
� �p�i + t + 1�r

��2i + t + 1�2r
, �6�

with the data register i at time t given by

�Di�t�� = �	
k=1

t

U�p�i + k�r
���Di�0�� . �7�

The unitaries U�p�i + k�r
� are ordered in ascending order with

k, i.e., U�p�i + 1�r
� acts first. For i=0 and t=r, in particular, one

finds that

�D0�r�� = �	
k=1

r

U�pk���D0�0�� �8�

is the output quantum register, with the unitaries
U�p1�¯U�pr� applied in the correct order to the quantum
register in its input state, �D0�0��.

Before proving �6�, let us recover therein some features of
the QCA that were stated before. It is easy to see that—apart
from being moved—the program registers remain unchanged
throughout the evolution, and that there is no entanglement
across columns. The data registers indeed move right,
and the program registers left �with i+ t+1= i�,
�p�i + t + 1�r

��2i + t + 1�2r
= �p�i��r

��2i�− t − 1�r
�. After r time steps, the

FIG. 2. �Color online� The quantum logic network simulated by
the QCA. The gates in each shaded box result from one application
of the elementary transition function. The arrows denote classically
controlled gates which are triggered by the program registers. In the
second time slice of the displayed network, the two half-
neighborhoods at the lower and upper end form a neighborhood,
due to the toric topology.

ROBERT RAUSSENDORF PHYSICAL REVIEW A 72, 022301 �2005�

022301-2

output quantum register �D0�r�� can be read out from column
r.

Equation �6� is proved by induction. First note that for
t=0 it reduces to �2�. Further,

T���t�� = �
i=0

r−1

T�2i + t�2r
�Di�t���2i + t�2r

�p�i + t + 1�r
��2i + t + 1�2r

= �
i=0

r−1

�U�p�i + t + 1�r
��Di�t����2i + t + 1�2r

� �p�i + t + 1�r
��2i + t�2r

= �
i=0

r−1

�Di�t + 1���2i + �t + 1��2r

� �p�i + �t + 1� + 1�r
��2i + �t + 1� + 1�2r

= ���t + 1�� . �9�

Here, the first line follows by the definitions of T and ���t��,
�5� and �6�, and the second follows by �4�. The third line
follows by �7� and, for the �p� part, the substitution i→ i+1
under which the product is invariant. �

Finally, it is shown that the quantum logic network simu-
lated by the described QCA is indeed universal, as stated.
The controlled-NOT �CNOT�, the Hadamard and the � /4
phase gate exp�−i� /8Z� form a universal gate set �13�. For
the described QCA, one can independently apply the Had-
amard, the � /4 phase gate and the identity to the simulated
logical qubits, by choosing the following sequences of p�3�

bits:

p�3� =
0 000 000 000, for U = I ,

0 101 101 101, for U = H ,

1 000 000 000, for U = Uz��/4� .
� �10�

with all p�4� bits zero. In the way they are constructed here
�no claim that this is close to optimal�, the one-qubit opera-
tions from the universal set require 10 successive applica-
tions of p�3�-controlled gates and thus 20 time steps of the
QCA. A next-neighbor CNOT gate that acts within this cycle
can be constructed from a ��Z� and two Hadamard gates.
The long-distance CNOT gates may then be constructed with
the help of next-neighbor SWAP gates, which themselves con-
sist of three next-neighbor CNOT gates. This completes our
construction of a QCA capable of performing universal
quantum computation.

Two remarks, �1� the described QCA may, with some
right, be called a deterministic programmable quantum gate
array, but this notion is already in use for a construction that
has been proven not to exist �14�. Our QCA is consistent
with this result. The program information is classical and all
program states � i=1

r �pi�2i−1 are orthogonal, as required in Ref.
�14�. Further, from the viewpoint of temporal complexity, the
described QCA is—within a constant—as efficient as a quan-
tum logic network with local and next-neighbor gates. These
issues have also been addressed in Ref. �15�.

�2� That the described QCA lives on a torus simplifies the
discussion, but is not essential. A planar sheet of size n
�2r is sufficient for simulation of the discussed networks of
r time steps and n qubits. Figure 3 specifies the operations on
the boundary that differ from �. When this modified QCA is
run, in the bulk the data registers still move right and the
program registers left. On the left and right boundary, how-
ever, the registers are reflected. As a consequence, on the
left-hand side of the lattice, reflected program registers are
acted upon by left-moving program registers as if they were
data. More severely, on the right-hand side of the cluster,
reflected data registers act upon right-moving data registers
as program. Therefore, the state of the QCA is no longer a
tensor product of the column states, but instead an entangled
state supported by many columns grows from the right, by
one column in each time step. However, none of that has an
impact on the data register �D0�, which—as before—can be
read out from column r after r transitions of the automaton.

III. CONCLUSION

This paper describes a quantum cellular automaton for
universal quantum computation. The transition function from
one time step to the next is generated by a four-qubit unitary
transformation acting on Margolus cells of size 2�2. The
program is encoded in the initial state of the system, and the
automaton is left to its autonomous evolution from initializa-
tion to readout.

Coming back to our initially posed question, it is found
that QCAs performing complex tasks in quantum informa-
tion processing can indeed be constructed for compact cells
and neighborhood schemes.

ACKNOWLEDGMENTS

The author would like to thank Pawel Wocjan and Sergey
Bravyi for discussions. This work was supported by the Na-
tional Science Foundation under Grant No. EIA-0086038.

FIG. 3. �Color online� Boundary specifications for the described
QCA on a planar sheet. The 2�2 cells displayed in white are acted
upon by �, as usual. To the hatched 1�2 cells a SWAP gate is
applied, and to the cross-hatched cells the identity operation. The
column in gray underlay represents a data register moving right.

QUANTUM CELLULAR AUTOMATON FOR UNIVERSAL … PHYSICAL REVIEW A 72, 022301 �2005�

022301-3

�1� D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller,
Phys. Rev. Lett. 81, 3108 �1998�.

�2� G. Birkl, F. B. J. Buchkremer, R. Dumke, and W. Ertmer, Opt.
Commun. 191, 67 �2001�.

�3� J. Watrous, Proceedings of the 36th IEEE Symposium on
Foundations of Computer Science, 1995, p. 528.

�4� W. van Dam, Masters thesis, University of Nijmegen, 1996.
�5� B. Schumacher and R. F. Werner, e-print quant-ph/0405174.
�6� S. Lloyd, Science 261, 1569 �1993�.
�7� S. C. Benjamin, Phys. Rev. A 64, 054303 �2001�.
�8� J. Levy, Phys. Rev. Lett. 89, 147902 �2002�.

�9� S. C. Benjamin, Phys. Rev. Lett. 88, 017904 �2002�.
�10� G. K. Brennen and J. E. Williams, Phys. Rev. A 68, 042311

�2003�.
�11� D. Janzing and P. Wocjan, Quant. Inf. Proc. 2�2�, 129 �2005�.
�12� T. Toffoli and M. Margolus, Physica D 45, 229 �1990�.
�13� P. O. Boykin et al., Inf. Process. Lett. 75, 101 �2000�.
�14� M. A. Nielsen and I. L. Chuang, Phys. Rev. Lett. 79, 321

�1997�.
�15� A. Yu. Vlasov, Proc. International Conference Physics and

Control, St. Petersburg �2003�, p. 861; e-print quant-ph/
0311196; e-print quant-ph/0503230.

ROBERT RAUSSENDORF PHYSICAL REVIEW A 72, 022301 �2005�

022301-4

