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The Casimir interaction between two thick parallel plates, one made of metal and the other of a dielectric,
is investigated at nonzero temperature. It is shown that in some temperature intervals the Casimir pressure and
the free energy of a fluctuating field are nonmonotonic functions of temperature and the corresponding Casimir
entropy can be negative. A physical interpretation for these conclusions is given. At the same time we dem-
onstrate that the entropy vanishes when the temperature goes to zero, i.e., in the Casimir interaction between
a metal and a dielectric the Nernst heat theorem is satisfied. The investigation is performed both analytically,
by using the model of an ideal metal and dilute dielectric or dielectric with a frequency-independent dielectric
permittivity, and numerically for a real metal �Au� and dielectrics with different behaviors of the dielectric
permittivity along the imaginary frequency axis �Si and �-Al2O3�.
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I. INTRODUCTION

Recently, there has been a renewed interest in the inves-
tigation of the dispersion forces that originate from the exis-
tence of zero-point electromagnetic oscillations. The best-
known physical phenomena of this kind are the van der
Waals and Casimir forces �see, e.g., Refs. �1–4��. Both forces
are of the same nature and are related to the nonrelativistic
and relativistic situations, respectively. In the last few years
many measurements of the Casimir force between metals
were performed �5–14�. The increasing interest in experi-
mental research on dispersion forces is motivated by their
role in nanotechnology �15–17� and for constraining predic-
tions of modern theories of fundamental interactions
�13,14,18–20� �see also Ref. �21� covering both the experi-
mental and theoretical developments of the subject�. Quite
recently both the van der Waals and Casimir forces were
shown to be important �22–24� in experiments on quantum
reflection and Bose-Einstein condensation.

The theoretical description of the Casimir force between
real metals at nonzero temperature is problematic. The direct
application �25–28� of the Lifshitz formula �29� in combina-
tion with the dielectric function of the Drude model leads
�30� to a violation of Nernst’s heat theorem in the case of
perfect crystals, i.e., to a nonzero value of the Casimir en-
tropy at zero temperature depending on the separation dis-
tance between the plates. As was shown in Refs. �28,31�, for
crystals with defects or impurities Nernst’s heat theorem is
satisfied, so that the entropy of a fluctuating field is equal to
zero at zero temperature. This, however, does not solve the
problem since a perfect crystal is a truly equilibrium system
with a nondegenerate dynamic state of lowest energy. Ac-

cording to quantum statistical physics, the Nernst heat theo-
rem is valid for any system possessing this property. It fol-
lows that any formalism applied to a perfect crystal must
satisfy the Nernst heat theorem, whereas the approach of
Refs. �25–28� does not. It is notable that this approach pre-
dicts large thermal corrections to the Casimir force at short
separations as compared with the case of ideal metals.

Other theoretical descriptions of the thermal Casimir
force between real metals are based on the use of the Lifshitz
formula combined with the plasma model dielectric function
�32–34� or with the Leontovich surface impedance �30,35�.
In the framework of these approaches the Nernst heat theo-
rem is satisfied for both perfect lattices as well as lattices
with some small concentration of impurities. They predict
small thermal corrections to the Casimir force at short sepa-
rations in qualitative agreement with the case of ideal metals.

Recent experiments reveal the possibility of testing the
validity of different theoretical approaches to the thermal Ca-
simir force. Thus, the first modern measurement of the Ca-
simir force by means of a torsion pendulum �5� was found
�36,37� to be in disagreement with Refs. �25–28� and consis-
tent with Refs. �30,32–35�. The most precise and accurate
modern experiment by means of a micromechanical torsional
oscillator �13,14� excludes the theoretical approach of Refs.
�25–28� at 99% confidence and is consistent with the theo-
retical approaches of Refs. �30,32–35�. Notice that these con-
clusions concerning the comparison between theory and ex-
periment are not universally accepted �see the discussion on
this subject in Refs. �38,39��.

A distinguishing feature of the theoretical approach of
Refs. �25–28� is the nonmonotonic dependence of the Ca-
simir pressure and the free energy of a fluctuating field on
the temperature. There are some temperature intervals where
the magnitudes of the Casimir pressure and the free energy
decrease with the increase of temperature. As a result, there
are temperature intervals where the entropy of the fluctuating
field takes negative values. The same is valid for hypotheti-
cal �nonexistent� dielectrics with a frequency-independent
dielectric permittivity �=100 or higher �27�. By contrast, in
the approaches of Refs. �30,32–35� for metals and also for
some real dielectrics considered in Ref. �30�, the magnitudes
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of the Casimir free energy and pressure increase with tem-
perature. There is, however, no general proof that the mag-
nitudes of the Casimir free energy and pressure must in-
crease with temperature for all real materials.

As can be seen from Ref. �22�, the magnitudes of the
Casimir-Polder free energy and force for the case of an atom
interacting with a metal wall may decrease within some tem-
perature region. The corresponding entropy of the fluctuating
field becomes negative. When it is taken into account that the
Lifshitz formula for an atom near a metal wall is obtained
�22,40� from the case of a rarefied dielectric wall spaced
parallel to a metal wall, it may be supposed that the primary
reasons for the nonmonotonic behavior of the free energy are
inherent in the Casimir interaction between the metal and
dielectric.

In this paper we investigate the Casimir pressure, free
energy, and entropy in a configuration of two thick parallel
plates, one being metallic and the other dielectric. Previ-
ously, only two metallic or two dielectric plates were consid-
ered in the retarded regime �see also Refs. �41,42� where a
so-called “unusual pair of plates” was treated—one of which
is made of an ideal metal and the other is infinitely perme-
able�. In the nonretarded limit of the van der Waals force the
Hamaker constants for the configuration of a metallic and a
dielectric plate were calculated in Ref. �43�. On the basis of
the Lifshitz formula we find the analytic expressions for the
Casimir pressure, free energy, and entropy in the configura-
tion of a plate made of ideal metal and a parallel plate made
of dilute dielectric separated by a gap of thickness a. It is
shown that there are intervals on the temperature axis where
the magnitude of the Casimir pressure decreases with the
increase of temperature, whereas the magnitude of the free
energy increases with the temperature and the Casimir en-
tropy is positive. The asymptotic expressions of the obtained
exact formulas at both low and high temperatures are pre-
sented and the validity of the Nernst heat theorem is demon-
strated. The possibility of a decreasing Casimir energy and of
negative values of the entropy of a fluctuating field within
some temperature intervals is demonstrated for the cases of
ideal and real �Au� metals near dielectrics with arbitrary con-
stant � �not dilute� and real dielectrics with the frequency-
dependent dielectric permittivities �Si, �-Al2O3�. The physi-
cal interpretation of that negativeness of entropy is
discussed. From this we give a positive answer to the above
question of whether the entropy of a fluctuating field in the
Casimir regime can be negative. This is important not only
for the theory of the thermal Casimir force but also for ex-
perimental investigations of the Casimir interaction between
metal and semiconductor �44�.

The paper is organized as follows. In Sec. II the main
notation is introduced and the Casimir free energy, entropy,
and pressure are found analytically in the framework of the
exactly solvable model �one plate is made of ideal metal and
the other of dilute dielectric�. Section III contains the results
of analytical and numerical computations performed for the
case of an ideal-metal plate spaced parallel to the plate of
dielectric with some frequency-independent � �not dilute�.
The case of a Au plate and real dielectrics with frequency-
dependent dielectric permittivities �Si, �-Al2O3� is consid-
ered in Sec. IV. Section V contains our conclusions and dis-
cussion.

II. CASIMIR INTERACTION BETWEEN AN IDEAL
METAL AND A DILUTE DIELECTRIC

We consider the configuration of two thick parallel plates,
one made of a real metal and another of dielectric at a sepa-
ration a and temperature T in thermal equilibrium. The Ca-
simir free energy per unit area is given by the Lifshitz for-
mula �29,40�. In terms of dimensionless variables it can be
represented in the form

F�a,T� =
kBT

8�a2�
l=0

� �1 −
1

2
�l0�

� �
�l

�

y dy	ln�1 − r

M��l,y�r


D��l,y�e−y�

+ ln�1 − r�
M��l,y�r�

D��l,y�e−y�� . �1�

Here, the dimensionless Matsubara frequencies are �l=	l /	c,
where 	l=2�kBTl /
 are the usual Matsubara frequencies,
and 	c=c / �2a� is the characteristic frequency, kB is the Bolt-
zmann constant, and �l0 is the Kronecker symbol. The reflec-
tion coefficients for two different polarizations of the elec-
tromagnetic field are expressed in terms of the dielectric
permittivities �M,D��� of a metal and a dielectric, respec-
tively,

r

M,D��l,y� =

�l
M,Dy − �y2 + �l

2��l
M,D − 1�

�l
M,Dy + �y2 + �l

2��l
M,D − 1�

,

r�
M,D��l,y� =

�y2 + �l
2��l

M,D − 1� − y

�y2 + �l
2��l

M,D − 1� + y
, �2�

where �l
M,D=�M,D�i�l	c�.

For later use we introduce the so-called effective tempera-
ture Teff defined through kBTeff=
	c=
c / �2a�. In terms of
the effective temperature the nondimensional Matsubara fre-
quencies are expressed as �l=�l, where � is a new parameter
�=2�T /Teff.

For an ideal metal r
,�
M ��l ,y�=1 and Eq. �1� gives us the

free energy of the Casimir interaction between an ideal metal
and dielectric,

FID�a,T� =
kBT

8�a2�
l=0

� �1 −
1

2
�l0��

�l

�

y dy

�	ln�1 − r

D��l,y�e−y� + ln�1 − r�

D��l,y�e−y�� .

�3�

Let us assume that the dielectric is dilute, i.e., having dielec-
tric permittivity �l

D=1+, where =const�1. Expanding
the reflection coefficients r
,�

D from Eq. �2� in powers of ,
one obtains

ln�1 − r

D��l,y�e−y� = 

e−y

4
� �2l2

y2 − 2� − 2 e−y

32y4 ��4 + e−y��4l4

− 4e−y�2l2y2 + 4�e−y − 2�y4� + O�3� ,
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ln�1 − r�
D��l,y�e−y� = − 

e−y

4

�2l2

y2 − 2 e−y

32y4 �e−y − 4��4l4

+ O�3� . �4�

Substituting Eq. �4� in Eq. �3� and preserving only two
powers in the small parameter , we arrive at the following
expression for the Casimir free energy:

FID�a,T� =

c�

32�2a3�
l=0

� �1 −
1

2
�l0��

�l

�

y dy

� �− 
e−y

2
+ 2 e−y

16y4

��4y4 − e−y��4l4 − 2�2l2y2 + 2y4��� . �5�

Upon integrating and summing in Eq. �5�, we obtain

FID�a,T� = −

c

32�2a3�
e2� + 2�e� − 1

4�e� − 1�2

− 2 �

16
�2�e2� + 2�e� − 1�

�e� − 1�2 −
e4� + 4�e2� − 1

4�e2� − 1�2

+ �2e2�1 − e4� + 2��1 + 4e2� + e4��
2�e2� − 1�4

+ 2�4�
l=1

�

l4 Ei�− 2�l� − 2�2�
l=1

�

l2 Ei�− 2�l��� ,

�6�

where Ei�z� is the integral exponent.
The entropy of the Casimir interaction per unit area of the

ideal metal and dilute dielectric is found as minus the first
derivative of Eq. �6� with respect to the temperature,

SID�a,T� = −
�FID�a,T�

�T

=
kB

8�a2

2
� e� + 1

2�e� − 1�
− �e�1 + � − �1 − ��e�

�e� − 1�3 �
−

2

16
� 7e� + 9

4�e� − 1�
− 4�e�1 + � − �1 − ��e�

�e� − 1�3

−
2�e2� + e2� − 1

2�e2� − 1�2 + �2e2�

�
3�1 − e4�� + 10��1 + 4e2� + e4��

2�e2� − 1�4

− �
l=1

�

�6�2l2 − 10�4l4�Ei�− 2�l��� . �7�

Equation �6� permits one to find an analytic expression for
the Casimir pressure between the ideal metal and dilute di-
electric,

PID�a,T� = −
�FID�a,T�

�a

= −

c�

32�2a4

2
� e2� + 2�e� − 1

�e� − 1�2 +
�2e��e� + 1�

�e� − 1�3 �
−

2

4
� e2� + 2�e� − 1

�e� − 1�2 +
�2e��e� + 1�

�e� − 1�3

−
e4� + 4�e2� − 1

8�e2� − 1�2 −
�3e2��e4� + 4e2� + 1�

2�e2� − 1�4

− �4�
l=1

�

l4 Ei�− 2�l��� . �8�

Note that Eqs. �6�–�8� are perturbative in the small param-
eter  but for each perturbation order the thermal effects are
taken into account exactly. This gives the possibility to find
the high-temperature behavior ���1� of the Casimir free en-
ergy, entropy, and pressure. Thus, from Eq. �6� in the limit
��1 �T�Teff� for the free energy it follows that

FID�a,T� = −
kBT

32�a2�1 −
7

16
� . �9�

In a similar manner from Eqs. �7� and �8� one finds the
behavior of the Casimir entropy and pressure at high tem-
perature,

SID�a,T� =
kB

32�a2�1 −
7

16
� ,

PID�a,T� = −
kBT

16�a3�1 −
7

16
� . �10�

Needless to say, the entropy and pressure from Eq. �10� can
be obtained also as minus the derivatives of Eq. �9� with
respect to temperature and separation distance, respectively.

Now let us consider the low-temperature behavior of the
Casimir free energy, entropy, and pressure. For this purpose
the direct application of Eqs. �6�–�8� is rather cumbersome.
The same results can be obtained more simply by using the
Abel-Plana formula �see, e.g., Refs. �3,21��,

�
l=0

� �1 −
1

2
�l0�F�l� = �

0

�

F�t�dt + i�
0

� dt

e2�t − 1

��F�it� − F�− it�� , �11�

where F�z� is an analytic function on the right half plane.
Before the application of Eq. �11�, we return to Eq. �5� and
perform the integration with respect to y �but not the sum-
mation over l�. The result is

FID�a,T� = −

c�

32�2a3�
l=0

� �1 −
1

2
�l0�F�l� , �12�

where
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F�l� =


2
�1 + �l�e−�l −

2

16
�4�1 + �l�e−�l

−
1

2
�1 + 2�l + �2l2 − 2�3l3�e−2�l

− 2�2l2�1 − �2l2�Ei�− 2�l�� . �13�

The sum in Eq. �12� can be calculated using the Abel-
Plana formula �11�. In doing so, we note that the first term on
the right-hand side of Eq. �11�, where F�t� is given by Eq.
�13� with a substitution of t for l, is proportional to the Ca-
simir energy at zero temperature, whereas the second gives
the thermal correction. Direct integration results in

�
0

�

F�t�dt =


�
�1 −

457

960
� . �14�

The second integral on the right-hand side of Eq. �11� is
calculated as a perturbative expansion in powers of a small
parameter � with the aim of obtaining the low-temperature
asymptotics. Preserving all terms up to �3 inclusive, we ob-
tain from Eq. �13�

F�it� − F�− it� = −
i

3
��3t3 + O��5�� +

i2

8

��− ��2t2 + 6�3t3 + O��4�� . �15�

Using this equation, the integral can be calculated:

i�
0

� dt

e2�t − 1
�F�it� − F�− it�� =

�3

720
−

2�2

32
� �

10
−

��3�
�2 � ,

�16�

where ��z� is the Riemann zeta function.
Substituting Eqs. �11�, �14�, and �16� in Eq. �12�, the low-

temperature behavior of the free energy is obtained:

FID�a,T� = −

c

32�2a31 +
�4

720
−



32
�457

30
−

��3��3

�2 +
�4

10
��

�17�

�here the terms of order O��6� and O�2�5� are omitted�.
The low-temperature asymptotics of the Casimir entropy

and pressure can be obtained by the calculation of minus the
derivatives of Eq. �12� �with respect to temperature and sepa-
ration, respectively� and by subsequent application of the
Abel-Plana formula with the resulting functions F�l�. The
same asymptotic expressions are obtained also by direct dif-
ferentiation of Eq. �17�. They are as follows:

SID�a,T� =
kB

32�a2�2 �

45
+



4
�3��3�

2�2 −
�

5
�� ,

PID�a,T� = −

c

32�2a4�3 −
�4

720
−



320
�457 − �4�� .

�18�

It is significant that SID→0 when T→0 �recall that �
�T by definition�, so that the Nernst heat theorem is satis-
fied. For dilute dielectrics from Eqs. �7� and �18� it follows
also that SID�0. At the same time, there are temperature
intervals where the Casimir pressure is nonmonotonic. To
demonstrate this, in Fig. 1 the relative thermal correction to
the Casimir pressure, defined as

�TP =
P�a,T� − P�a,0�

P�a,0�
, �19�

is plotted as a function of temperature for =0.001 �solid
line� and 0.1 �dashed line� at a separation distance a=2�m
�here we use Eq. �8� and P�a ,T�= PID�a ,T��. As is seen from
Fig. 1, the region where the thermal correction is negative is
in accordance with the results of Ref. �22� for the Casimir-
Polder energy and force between an atom and a metal wall.

From Fig. 1 it is seen that for =0.1 it holds that �TPID

�0 at temperatures T�343 K. In this case the relative ther-
mal correction has the minimum value �TPID�−0.007 at T
=270 K. For comparison, at T=400 K the thermal correction
has the positive value �TPID�0.018. Note that there is some
analogy between the behavior of the Casimir pressure and
thermal correction as a function of temperature, obtained
here on the one hand, and discussed in Refs. �25–28� on the
other hand, in the case of real metals described by the Drude
dielectric function. We will return to this analogy in more
detail in Sec. V after the extension of the above results for
more realistic plate materials which will be obtained in the
following sections.

III. THERMAL CORRECTIONS TO THE CASIMIR
INTERACTION BETWEEN AN IDEAL METAL

AND A DIELECTRIC WITH FREQUENCY-INDEPENDENT
DIELECTRIC PERMITTIVITY

In this section we consider one plate made of dielectric
with arbitrary constant �D �not dilute� and the other plate
made of ideal metal as before. The application regions of the
asymptotic expressions at low and high temperatures, ob-
tained in Sec. II, will be our initial concern. To gain an im-

FIG. 1. Relative thermal correction to the Casimir pressure as a
function of temperature at a separation a=2 �m for two plates, one
made of an ideal metal and the other of a dilute dielectric with
�0

D=1.001 �solid line� and 1.1 �dashed line�.
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pression of how accurate the asymptotic of Eq. �17� is, let us
calculate the relative thermal correction to the Casimir en-
ergy,

�TF =
F�a,T� − F�a,0�

F�a,0�
, �20�

as a function of temperature both numerically �by the direct
use of the Lifshitz formula �3�� and analytically �using Eq.
�17��. In Fig. 2 the numerical results are presented by the
solid line and the analytic ones by the dashed line for a
dielectric with �0

D=1.1 �=0.1� at a separation a=1�m. As
is seen from this figure, at T�220 K there is practically
exact coincidence of numerical and analytic results. What
this means is that at ��1.2 �the effective temperature here is
equal to Teff=1145 K� one can use the asymptotic expression
of Eq. �17� in order to get accurate results.

The asymptotic regime of high temperatures is given by
Eq. �9�. This regime is achieved at T=1500 K where the
values of �TFID, calculated by Eqs. �3� and �9�, differ for
only 0.2%. For higher temperatures ���8.2� Eq. �9� is ap-
plicable for accurate calculations.

We now turn to the dielectrics with larger �0
D. For the sake

of convenience in the comparison of experiment and theory,
we will present the results of the calculation as a function of
separation rather than temperature. The point is that in all the
previous experiments of Refs. �5–14� the temperature was
constant �T=300 K� and the separation distance was variable
�there is only one proposed but not yet completed experiment
�45,46� exploiting the effect of two different temperatures�.
Theoretically, the two asymptotic regimes of low �T�Teff�
and high �T�Teff� temperatures are equivalent to the limits
of small and large separations, respectively. This becomes
evident if it is recalled that Teff�a−1. We consider the sepa-
ration region 100�a�1400 nm where the nonmonotonic
behavior of the thermal correction to the Casimir energy is
observed for dielectrics with larger � �not dilute�. In fact,
even in that separation region effects which are due to the
nonideality of a metal and the absorption bands in a dielec-

tric �see, e.g., Refs. �47,48�� become important. At shorter
separations �a�100 nm� these effects lead to the result that
the model of an ideal metal and a dielectric with constant
dielectric permittivity becomes inapplicable �see Sec. IV
where the case of a real metal and dielectric is considered�.

In Fig. 3�a� we present the values of the relative thermal
correction �20� to the Casimir energy at T=300 K as a func-
tion of separation computed by the use of the Lifshitz for-
mula �3� for ideal metal and dielectrics with different dielec-
tric permittivities �0

D=3, 6, 7, and 10 �lines 1, 2, 3, and 4,
respectively�. As is seen from Fig. 3�a�, lines 3 and 4 dem-
onstrate the nonmonotonic behavior of the thermal correction
to the free energy �recall that in the case of an ideal metal
and dilute dielectric only the Casimir pressure is a nonmono-
tonic function of the temperature; see Fig. 1�. Curiously, line
3 possesses both a minimum and a maximum value within
the separation interval under consideration.

For line 4 ��0
D=10� the zero value of the thermal correc-

tion is achieved at a1=0.2 �m and at a2=1.25 �m. Within
the separation region a1�a�a2 the relative thermal correc-
tion is negative. Using the corresponding effective tempera-
tures �Teff

�1�=5724 K at a=a1 and Teff
�2�=916 K at a=a2� we

find that in terms of the dimensionless parameter �, intro-

FIG. 2. Relative thermal correction to the Casimir energy at a
separation a=1 �m as a function of temperature for two plates, one
made of an ideal metal and the other of a dilute dielectric with
�0

D=1.1, computed numerically �solid line� and by the asymptotics
of low temperatures �dashed line�.

FIG. 3. �a� Relative thermal correction to the Casimir energy at
T=300 K as a function of separation for two plates, one made of an
ideal metal and the other of dielectrics with �0

D=3, 6, 7, and 10
�lines 1, 2, 3, and 4, respectively�; �b� Casimir entropy as a function
of temperature for the dielectric plate with �0

D=7 at a separation a
=600 nm from a metal plate.
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duced in Sec. II, the thermal correction is negative within the
interval 0.33���2.06. The minimum on line 4 is achieved
at a=0.9 �m ��=1.48�. What this means is that the entropy
of a fluctuating field takes negative values within the interval
0.33���1.48 �in the case of a plate made of dilute dielec-
tric the entropy is positive�. In terms of the usual tempera-
tures for the plates at a separation a=0.2 �m, the Casimir
entropy is negative within the interval 300�T�1350 K �if,
as assumed in this section, �D is independent of the tempera-
ture�. Note that for the dielectric with �0

D=10 the thermal
correction is almost 0.5% at a=0.9 �m, i.e., much greater
than in the case of a dilute dielectric. It remains, however,
still too small to be observed experimentally.

To illustrate the behavior of the Casimir entropy as a
function of temperature in the configuration of a plate made
of ideal metal and another plate made of dielectric with a
frequency-independent dielectric permittivity, we plot it in
Fig. 3�b� for �0

D=7 and separation distance a=600 nm. As is
seen from Fig. 3�b�, the entropy is negative within the inter-
val from 137 to 311 K �i.e., from 0.45 to 1.02 in terms of ��.
The minimum value of the entropy equal to
−14 keV m−2 K−1 is achieved at a temperature T=238 K ��
=0.78�. When this result is compared with the above case of
�0

D=10, it is apparent that the region where the entropy is
negative is narrowed with a decrease of the dielectric permit-
tivity. Thus, for �0

D�6 the Casimir entropy is already posi-
tive at any temperature.

The negativeness of the Casimir entropy within some
temperature �separation� intervals should not become of con-
cern. It is self-evident that the entropy of a closed system,
which includes the space occupied by the dielectric plate, is
positive �the second plate is made of an ideal metal with the
Dirichlet boundary condition on it; for this reason it does not
contribute to the entropy of the system under consideration�.
It should be noted also that the Nernst heat theorem is satis-
fied perfectly well. To prove this fact analytically, we apply
the Abel-Plana formula �11� in Eq. �3� where the role of F�l�
is played by the integral in the right-hand side of Eq. �3�.
Preserving only the lowest expansion order in the parameter
�l, we arrive at

F�l� = �2l2�0
D − 1

�0
D + 1

�
�l

�

dy

� � �0
D

��0
D + 1� − ��0

D − 1�e−y −
�0

D + 1

4
� e−y

y
+ O��3l3� .

�21�

From this after integration it follows that

F�it� − F�− it� = i��2t2 ��0
D − 1�2

4��0
D + 1�

. �22�

Performing the integration with respect to t in Eq. �11�, we
obtain from Eq. �3� the asymptotic behavior of the Casimir
free energy,

FID�a,T� = FID�a,T = 0� −

c��3��3

512�4a3

��0
D − 1�2

�0
D + 1

. �23�

Note that for a dilute dielectric this coincides with the term
of Eq. �17� of order �3, as it should.

From Eq. �23� we finally arrive at the low-temperature
asymptotics of the entropy,

SID�a,T� =
3kB��3��2

128�3a2

��0
D − 1�2

�0
D + 1

, �24�

which is also in perfect agreement with the second-order
term in Eq. �18� obtained for dilute dielectrics. From Eq. �24�
it follows that the Casimir entropy goes to zero as the second
power of the temperature, i.e., the Nernst heat theorem is
satisfied. The comparison with the numerical computations
shows that the asymptotic expressions �23� and �24� work
well for all ��0.1.

IV. THERMAL CORRECTIONS TO THE CASIMIR
INTERACTION BETWEEN A REAL METAL

AND A DIELECTRIC

In this section we consider one of the plates made of real
metal �Au� and the other plate made of a real dielectric �Si or
�-Al2O3�. Both these chosen dielectrics possess relatively
large values of the static dielectric permittivity and quite dif-
ferent behavior of �D�i	� around the characteristic frequen-
cies for the separations under consideration. The Casimir
free energy is found by the use of the complete Lifshitz
formula �1� describing the case of two parallel plates made of
real materials. The dielectric permittivity of real materials
along the imaginary frequency axis can be obtained through
the dispersion relation

�M,D�i	� = 1 +
2

�
�

0

�

d�
� Im �M,D���

�2 + 	2 . �25�

Here the imaginary part of the dielectric permittivity is cal-
culated as 2n1n2 where n1 and n2 are the real and imaginary
parts of the complex refraction index tabulated, e.g., in Ref.
�49�. For Au the available tabulated data are extended for
lower frequencies using the usual procedure �see, e.g., Refs.
�47,48��. The resulting behavior of �Au as a function of 	 can

FIG. 4. Dielectric permittivity of Si �line 1� and �-Al2O3 �line
2� along the imaginary frequency axis as a function of the logarithm
of frequency.
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be found in Refs. �21,24,47,48�. The same procedure, applied
in the case of Si �here tabulated data for lower frequencies
than for Au are available so that no additional extension of
data is needed�, leads to the results shown by line 1 in Fig. 4.

There are also good analytic formulas describing the be-
havior of the dielectric permittivities of different materials
along the imaginary frequency axis. As an example, the di-
electric permittivity of �-Al2O3 is well described �43� in the
Ninham-Parsegian representation �1�

�D�i	� = 1 +
Cir

1 + 	2/�ir
2 +

Cuv

1 + 	2/�uv
2 , �26�

where �ir=1�1014 rad/s and �uv=2�1016 rad/s are the
characteristic absorption frequencies, and Cir=7.03 and Cuv
=2.072 are the corresponding absorption strengths in the in-
frared and ultraviolet ranges, respectively. The dielectric per-
mittivity of �-Al2O3 as a function of 	 is plotted in Fig. 4,
line 2. As is seen from Fig. 4, the dielectric permittivities of
Si and �-Al2O3 are qualitatively different in the region of
characteristic frequencies 	c�1015 rad/s. In fact, for �-
Al2O3 in the region around 	c the values of �D correspond to
the second step of line 2 and are several times less than �0

D

=10.1, whereas for Si the static value of the dielectric per-
mittivity �0

D=11.66 is preserved up to the region of charac-
teristic frequencies.

It should be stressed that the computations below are un-
affected by the controversies concerning the contribution of
the zero-frequency term of the Lifshitz formula in the case of
real metals �this contribution is different in the approaches
using the Drude dielectric function and the Leontovich sur-
face impedance; see the Introduction�. The reason is that in
our case only one plate is made of a real metal, whereas the
other one is made of a dielectric. According to Eq. �2�, for
dielectrics with finite �D�0�=�0

D it follows that

r

D�0,y� =

�0
D − 1

�0
D + 1

, r�
D�0,y� = 0. �27�

As a result, if one plate is made of a dielectric, the transverse
electric mode at zero frequency does not contribute to the
Casimir free energy regardless of the approach used to de-
scribe the metal of the other plate �i.e., regardless of the
value of the transverse reflection coefficient r�

M�0,y��.
A further distinctive feature of the different approaches to

the thermal Casimir force in the case of a real metal, which
might play a part in determining the contribution to the free
energy at nonzero Matsubara frequencies, is the form of the
reflection coefficients. In the framework of the impedance
approach �30,35�, in place of the usual reflection coefficients
�2� expressed in terms of the dielectric permittivity, one
should use the coefficients expressed in terms of the Leon-
tovich surface impedance. This, however, does not present a
problem because, as was demonstrated in Ref. �14�, at all
nonzero Matsubara frequencies the contributions from both
types of reflection coefficients are practically the same.

In Fig. 5 we present the results of the calculation for the
relative thermal correction to the Casimir energy between Au
and Si plates obtained by Eqs. �1� and �2� using the proce-
dure described above at T=300 K �solid line�. For compari-

son, in the same figure the dashed line shows the results
obtained using the approach of Sec. III �i.e., for an ideal
metal and a dielectric with a frequency-independent dielec-
tric permittivity �0

D=11.66 equal to the static permittivity of
Si�. As is seen from Fig. 5 �solid line�, there is a wide sepa-
ration interval 0.2�a�1.3 �m where the relative thermal
correction to the Casimir energy in the case of real materials
is negative �in terms of the dimensionless variable this holds
for 0.33���2.14�. The minimum value of the thermal cor-
rection �TF=−0.006 is achieved at a=0.95 �m ��=1.56�.
What this means is that the Casimir entropy in the case of
real materials is negative within the separation region 0.2
�a�0.95 �m �or, in terms of �, for 0.33���1.56�. The
comparison with the dashed line shows that for Si the simple
model, used in Sec. III, leads to the same qualitative results
with only minor differences in the minimum values of �TF
and the width of the intervals where the thermal correction
and the Casimir entropy are negative.

We now turn to the Casimir interaction of a Au plate with
a plate made of �-Al2O3. As was discussed above, the be-

FIG. 5. Relative thermal correction to the Casimir energy at T
=300 K as a function of separation for two plates, one made of real
metal �Au� and the other of dielectric �Si� �solid line�. The same is
shown by the dashed line for an ideal metal and dielectric with
�0

D=11.67.

FIG. 6. Relative thermal correction to the Casimir energy at T
=300 K as a function of separation for two plates, one made of a
real metal �Au� and the other of a dielectric ��-Al2O3� �solid line�.
The same is shown by the dashed line for an ideal metal and di-
electric with �0

D=10.1.
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havior of the dielectric permittivity of �-Al2O3 along the
imaginary frequency axis is different from that of Si. The
results of the calculation for the relative thermal correction to
the Casimir energy as a function of separation at T=300 K,
obtained by Eqs. �1�, �2�, and �26�, are shown in Fig. 6 by the
solid line. The dashed line is calculated for an ideal metal
and a dielectric with the frequency-independent dielectric
permittivity �0

D=10.1 equal to the static dielectric permittiv-
ity of �-Al2O3. As is seen from Fig. 6, in this case the solid
line presents the monotonically increasing positive function
of the separation distance. The corresponding Casimir en-
tropy is also nonnegative within the separation region re-
flected in the figure. The application of the simplified model
of Sec. III to �-Al2O3 leads to qualitatively different results
shown by the dashed line in Fig. 6. This line demonstrates
the negative thermal correction within the separation region
from a1=0.25 �m to a2=1.27 �m and the negative Casimir
entropy within the separations from 0.25 to 0.9 �m. Thus,
the use of realistic data for the dielectric permittivities of the
plates is essential for the final results.

V. CONCLUSIONS AND DISCUSSION

In the foregoing we have investigated the thermal correc-
tions to the Casimir interaction between metallic and dielec-
tric plates. This was done both analytically �using the ideal-
ized model of an ideal metal and a dilute dielectric� and
numerically �for the ideal metal and a dielectric with a
frequency-independent dielectric permittivity, and for a real
metal and two different dielectrics with dissimilar behavior
of their dielectric permittivities along the imaginary fre-
quency axis�. The main conclusion obtained above is that the
pressure and the free energy of the Casimir interaction be-
tween metal and dielectric plates may be nonmonotonic
functions of the temperature within some definite regions.
This leads to the possibility of negative relative thermal cor-
rections and negative values of entropy of the fluctuating
field �the latter holds only for dielectrics with sufficiently
large dielectric permittivity�. Using the proximity force theo-
rem, one can conclude that the relative thermal correction to
the Casimir force between a plane metal plate and a spherical
dielectric lens �the configuration used in many experiments�
also can be negative.

The physical interpretation of the obtained results is based
on the fact that both the free energy and entropy of the closed
system under consideration consist of contributions from the
plates and from their interaction �in the previous sections the
latter were denoted as FID,SID or as F ,S for real materials�.
The above conclusions about the possibility of a nonmono-
tonic behavior of the free energy and of the negativeness of
the entropy are not relevant for the closed system but are due
to the interaction between its parts. In the case of two plates

made of an ideal metal with the Dirichlet boundary condi-
tions on their surface, there is no penetration of the fluctuat-
ing field inside the plates. In this case the characteristics of
the closed system coincide with those obtained for the inter-
action between the plates. As a result, for ideal metals the
free energy of a fluctuating field is a monotonic function and
the entropy is positive. For two dielectric plates �27,50� or
for one dielectric and one metal plate this is not necessarily
so.

It is important to keep in mind that only the interaction
parts of the free energy and entropy depend on the separation
distance: F=F�a ,T�, S=S�a ,T�. This leads to two conclu-
sions of considerable significance. The first is that the ther-
mal correction to the Casimir force �which is minus the de-
rivative of the free energy with respect to the separation� can
be negative. The second is that the Nernst heat theorem must
be valid separately for the contribution to the entropy from
the interaction between the plates, so that S�a ,0�=0, and for
the entropy of the plates. If this were not the case, i.e., if the
equation S�a ,0�= f�a��0 were valid �as in Refs. �25–28� for
a perfect crystal with no impurities�, then the Nernst heat
theorem for the closed system would be violated as the en-
tropies of the plates do not depend on a. Both these conclu-
sions were illustrated above by the example of the Casimir
interaction between metal and dielectric.

To conclude, the nonmonotonic dependence of the Ca-
simir free energy on temperature and the negative values of
the relative thermal correction �as, for instance, was pre-
dicted for real metals in the approach of Refs. �25–28� and
for Si in Ref. �50�� are not in themselves excluded thermo-
dynamically. Such behavior for real metals is, however, un-
likely because there is only a small penetration of the elec-
tromagnetic fluctuations at the characteristic frequencies in
the interior of a metal �recall that in the approach of Refs.
�30,35�, where this property of real metals is taken into ac-
count, the free energy is monotonic, and the corresponding
thermal correction is positive�. The decisive theoretical argu-
ment to give preference to any approach is, thus, the satis-
faction of the Nernst heat theorem for the Casimir entropy of
a fluctuating field for both perfect crystals and crystals with
impurities. In particular, if one interacting body is made of a
metal and the other of a dielectric, the entropy of the fluctu-
ating field vanishes when the temperature goes to zero.
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