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This paper is motivated by the suggestion �W. Zurek, Phys. Scri. T, 76, 186 �1998�� that the chaotic
tumbling of the satellite Hyperion would become nonclassical within 20 years, but for the effects of environ-
mental decoherence. The dynamics of quantum and classical probability distributions are compared for a
satellite rotating perpendicular to its orbital plane, driven by the gravitational gradient. The model is studied
with and without environmental decoherence. Without decoherence, the maximum quantum-classical �QC�
differences in its average angular momentum scale as �2/3 for chaotic states, and as �2 for nonchaotic states,
leading to negligible QC differences for a macroscopic object like Hyperion. The quantum probability distri-
butions do not approach their classical limit smoothly, having an extremely fine oscillatory structure superim-
posed on the smooth classical background. For a macroscopic object, this oscillatory structure is too fine to be
resolved by any realistic measurement. Either a small amount of smoothing �due to the finite resolution of the
apparatus� or a very small amount of environmental decoherence is sufficient to ensure the classical limit.
Under decoherence, the QC differences in the probability distributions scale as ��2 /D�1/6, where D is the
momentum diffusion parameter. We conclude that decoherence is not essential to explain the classical behavior
of macroscopic bodies.
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I. INTRODUCTION

Quantum mechanics �QM� is a more fundamental theory
than classical mechanics �CM�. This fact does not diminish
the utility of CM in describing the behavior of macroscopic
objects. But theoretical consistency demands that the ob-
served classical phenomena should also emerge from QM in
an appropriate limit. However, a detailed understanding of
this quantum-to-classical �QC� limit is remarkably difficult
to achieve, and the origin of classical behavior is even sub-
ject to a degree of controversy. There has been some confu-
sion as to which QM structures should be compared with
classical predictions, and hence to what the appropriate cri-
terion for classicality should be. The role that decoherence
due to environmental perturbations might play in establish-
ing the QC limit is also controversial.

A criterion for classicality that has often been used is
based on Ehrenfest’s theorem �1�. If the size of the quantum
state is small compared to the scale on which the potential
energy varies, then the centroid of the state will approxi-
mately follow a classical Newtonian trajectory. The time du-
ration �and range of other relevant parameters� within which
this condition holds is referred to as the Ehrenfest regime.
Since any wave packet will eventually spread until it reaches
the size of the system �harmonic oscillators being a unique
exception�, it follows that this criterion for classicality will
eventually fail, no matter how macroscopic the system may
be. If the break time when this occurs were as long as the age
of the solar system, there would be no cause for concern. But
in chaotic systems, the size of a wave packet grows expo-
nentially, and the break time can be quite small. A striking
example, given by Zurek �2�, is the chaotic tumbling of Hy-

perion �a moon of Saturn�, for which the Ehrenfest criterion
for classicality will fail in less than 20 years. Zurek argues
that environmental decoherence can remove this paradox and
restore classical behavior to Hyperion. This claim is certainly
not correct, as long as the Ehrenfest criterion for classicality
is used. However, we propose another criterion for classical-
ity, within which the role of decoherence will be reassessed.

The origin of the above paradox consists in a failing to
take proper account of the statistical nature of QM. It is not
correct to identify the trajectory of a body with the motion of
the centroid of the wave function �11�. QM does not describe
the actual observed phenomenon, but only the probabilities
of the various possible phenomena. We should, therefore,
compare quantum probabilities with classical probabilities.
This leads us to define the Liouville regime of quantum-
classical correspondence, within which the quantum prob-
abilities are approximately equal to the classical probabilities
that satisfy the Liouville equation. There is no requirement
that the probability distributions be narrow, and so the Liou-
ville regime of classicality is usually much larger than the
Ehrenfest regime.

The superiority of the Liouville criterion for classicality to
the Ehrenfest criterion has been demonstrated in several
ways. One way to see this is through the correction terms to
Ehrenfest’s theorem. When the width of the state is small but
not negligible, these corrections can be obtained as a series
involving the variance and higher moments of the position
probability distribution �3�. This series has exactly the same
form for the classical Liouville probability distribution.
Hence Ehrenfest’s theorem merely asserts that if the �quan-
tum or classical� probability distribution is sufficiently nar-
row, its centroid will follow a Newtonian trajectory. To lead-
ing order, the deviations from the Newtonian trajectory are
the same in both the quantum and classical cases, and so
those deviations are not primarily quantal in origin. The
magnitude of the deviations from Ehrenfest’s theorem de-*Electronic address: ballenti@sfu.ca
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pends primarily on the width of the initial state in configu-
ration space, and has no systematic dependence on � �4�.
However, the �much smaller� differences between the quan-
tum and classical probabilities scale as �2, indicating that
they are truly of quantal origin.

Our interest in Hyperion was stimulated by Zurek’s pro-
vocative paper �2�. He begins with an estimate of the break
time, TE, beyond which the Ehrenfest criterion of classicality
will fail. Since the width of a wave packet in a chaotic sys-
tem grows exponentially with the Lyapunov exponent �, the
time taken for it to reach the scale L over which the potential
varies �typically of order of the system size� will be TE
=�−1 ln�L /�x0�, where �x0 is the initial width of the wave
packet. Zurek chooses �x0=�p0 /�, with the width of the
momentum distribution �p0 being estimated from thermal
fluctuations, and thereby obtains the now familiar result that
the break time TE scales as ln��−1� �5�. This TE can be quite
short, even for a macroscopic system, and because of the
logarithmic dependence, it is not sensitive to detailed as-
sumptions about the initial state. Thus, according to the
Ehrenfest criterion for classicality, the tumbling motion of
Hyperion should long ago have ceased to be classical.

This paradoxical conclusion is not affected by including
environmental decoherence. Decoherence converts a pure
state into a mixed state, but it does not produce localization
of the position probability density, and so it has no signifi-
cant influence on the breakdown of Ehrenfest’s theorem. �In-
deed, the diffusive term that describes the effect of the envi-
ronment in the master equation for the density matrix will
have a slight delocalizing effect.� Therefore, if the Ehrenfest
criterion were the sole criterion for classicality, we would
still be faced with the paradoxical conclusion that macro-
scopic bodies like Hyperion should be grossly nonclassical.

In �2,6�, Zurek next considers the equation of motion of
the Wigner function, which has the form of the classical
Liouville equation plus a series of �-dependent terms, called
the Moyal terms. The limit of the Liouville regime of classi-
cality will presumably be reached when the Moyal terms
have a significant effect. Unfortunately, Zurek does not dis-
tinguish between the Ehrenfest and Liouville regimes, and
denotes both break times as t�. This is a serious confusion,
since they are both conceptually and numerically distinct.

While the time limit TE of the Ehrenfest regime is easy to
estimate reliably, an analogous limit for the Liouville regime
is much more difficult to obtain. Zurek uses heuristic argu-
ments to claim that decoherence tends to counter the effects
of the Moyal terms, and he obtains a Liouville break time
similar in form to TE �6�. We consider this conclusion to be
doubtful for several reasons. Habib et al. �7� have shown
that, in order for the non-negativity of the density matrix
�“rho-positivity” in their terminology� to be preserved, the
Moyal terms must have subtle effects that are not counter-
acted by decoherence. Full numerical computations for a
driven system �8� and for an autonomous system �9� have
found that, although the differences between quantum and
classical averages of observables have a brief period of ex-
ponential growth, these differences reach a saturation value,
about which they fluctuate irregularly. This saturation value
is much smaller than the system size �unlike the deviations
from Ehrenfest’s theorem�, and it tends to zero as some small

power of �. The break time estimated by Zurek would be
relevant only if the exponential growth of these QC differ-
ences continued until they reached macroscopic size.

In this paper, we perform classical and quantum compu-
tations for the chaotic tumbling of an object like Hyperion,
which complement the published classical theory �10�. The
actual value of the de Broglie wavelength is, of course, much
too short to be treated in a numerical integration of the
Schrödinger equation. So we cast the equation into dimen-
sionless form, and solve it for a range of the dimensionless �
parameter. These results lead to scaling relations, from which
we can extrapolate to estimate the values appropriate to Hy-
perion. We study the system with and without environmental
decoherence, discuss the conditions needed to ensure classi-
cality, as well as examine whether there is a qualitative dif-
ference between the classical limit of regular and chaotic
initial states.

II. MODEL

Our model of Hyperion’s rotation was first suggested in
1988 by Wisdom �10�. It assumes that Hyperion’s center of
mass travels in an elliptical orbit about Saturn, and that its
orbit is unaffected by its rotation. However, since Hyperion
is an extended object, Saturn’s gravitational field is not con-
stant over its volume. Since its mass distribution is not
spherical, the variation in the gravitational field can produce
a net torque. To lowest order in a multipole expansion of the
mass distribution, this torque depends on the quadrupole mo-
ment of the mass distribution, and for simplicity we neglect
all higher-order moments.

It should be noted that this configuration is attitude-
unstable, and so small inclinations of I3 toward the plane of
the orbit will tend to grow. However, this simplifying as-
sumption makes both the classical and the quantum-
mechanical computations feasible.

The coordinate system is shown in Fig. 1. The space-fixed
x axis is along the semimajor axis of the orbital ellipse, and
the z axis is perpendicular to the orbital plane. The angle �
denotes the position of the satellite in the orbit. The axis of
the smallest moment of inertia �I1� makes an angle � with
respect to the x axis, hence the angle between the body axis

FIG. 1. Orbit of satellite spinning about the z axis perpendicular
to the orbital plane. � denotes the position of the satellite on the
orbit, and � is the orentation of the satellite with respect to the
semimajor axis of the orbit.
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of I1 and the radius vector r� is �−�. The largest moment of
inertia I3 is parallel to the z axis. The canonical coordinates
for this system are the angular momentum and the orienta-
tion of the satellite �Lz ,��.

The coupling of the gravitational field to the satellite is
obtained by a Taylor expansion of the potential about the
satellite’s center of mass,

H =
Lz

2

2Izz
+ ��

i
�

j
	 ��r��xixjd

3x
�2V

�xi�xj
�

x�=0

+ ¯ . �1�

Here xi refers to the distance along the ith space-fixed axis
from the center of mass of the satellite,

� �2V

�xi�xj
�

x�=0
= diag
2Gm

r3 ,
− Gm

r3 ,
− Gm

r3 � . �2�

Here m is the mass of the gravitational source �Saturn� and r
is the distance from the source to the satellite. The first-order
term in Eq. �1� vanishes because the expansion is about the
center of mass, and the second-order term is related to the
moments of inertia tensor,

Iij =	 ��x2�ij − xixj�d3x . �3�

Using Kepler’s third law, which states GM /a3=4�2 /T2,
the Hamiltonian becomes

H =
Lz

2

2I3
−

3�2

T2 � a

r�t�
3

�I2 − I1�cos�2�� − ��t��� . �4�

Here T is the orbital period, a is the length of the semimajor
axis of the orbit, Lz is the angular momentum about the z
axis, I3= Izz is the moment of inertia for rotations in the or-
bital plane, and r�t� and ��t� are the orbital coordinates of the
satellite, which are functions of the period T and the eccen-
tricity e. These functions are found by numerically integrat-
ing the equations of motion for the center of mass, using the
code provided in �12�.

A. Classical equation of motion

It is convenient to express the equation of motion in terms
of dimensionless variables. We introduce the anisotropy pa-
rameter,

	 =
�I2 − I1�

I3
, �5�

a dimensionless time �in units of the orbital period�,


 = t/T , �6�

and a dimensionless angular momentum Jz in terms of the
dimensional angular momentum Lz,

Jz =
LzT

I3
. �7�

To estimate 	 for Hyperion, we use the observed lengths
of its principal axes �410±10, 260±10, 220±10 km� �13�,
and assume that it is an ellipsoid of uniform mass density.
Hence

I3 =
M

5
�r1

2 + r2
2� . �8�

Here ri is half the length of the ith principal axis of the
ellipsoid. The other moments of inertia are obtained by cy-
clically permuting the indices. Substituting Eq. �8� into Eq.
�5� yields

	 =
r1

2 − r2
2

r1
2 + r2

2 . �9�

Hence 	=0.43±0.04. In this work we used a slightly larger
value, 	=0.5, because it leads to a more purely chaotic mo-
tion, whereas for 	=0.43, e=0.1 there are large regular is-
lands embedded in the chaotic sea. We wish to compare cha-
otic motions with regular motions, and the differences would
be obscured by a mixed phase space.

Following Wisdom �10�, we obtain the equation of motion
�in dimensionless variables� to be

�̇ = Jz,

J̇z = − 6�2� a

r�
�
3

	 sin�2�� − ��
��� . �10�

B. Quantum mechanics

The quantum mechanics will be solved by integrating the
Schrödinger equation in angular momentum representation.
The state vector is written as

���t�� = �
m

cm�t��m� , �11�

with �m� being an angular momentum eigenstate. The matrix
elements of the Hamiltonian are

�m�Ĥ��� =
�2m2cm

2I3
− �

n

3�2

2T2 cn� a

r�t�
3

�I2 − I1�
1

2�

�	
0

2�

�ei�n−m+2��e−2i� + ei�n−m−2��e2i��d� .

�12�

Using Eqs. �12� and �11�, the matrix equation �m�Ĥ���
= i��m�� /�t��� becomes

i�
�cm�t�

�t
=

�2m2cm

2I3
−

3�2

2T2 �a

r
3

�I2 − I1�

� �cm+2e2i��t� + cm−2e−2i��t�� . �13�

In addition to the dimensionless parameters 
 and 	, we
now introduce a dimensionless � parameter,

 =
�T

I3
. �14�

The dimensionless Schrödinger equation then becomes
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i
�cm

�

=

m2cm

2
−

3�2

2

	


� a

r�
�
3

�cm+2e2i��
� + cm−2e−2i��
�� .

�15�

A peculiar feature of Eq. �15� is that the coefficient cm
depends only on cm+2 and cm−2, therefore the even cm cannot
interact with the odd cm. This coupling arises from the in-
variance of the Hamiltonian under rotations by �. But octa-
pole and other odd moments are not invariant under rotations
by �, so this symmetry is an artifact of the model.

C. Initial state

The initial quantum state is chosen to be a Gaussian in
angular momentum,

��� = �
m

exp�−
�m − J0�2

2�2 − i�0m�m� . �16�

Here m is a dimensionless angular momentum, J0 is the
average of the dimensionless angular momentum in the state,
� is its standard deviation, and �0 is the central angle of the
initial state. These parameters will be varied to ensure that
the initial states are in regions of phase space that are either
purely chaotic or purely regular.

In principle, the sum is from m=−� to +�, but in practice
it is restricted to a range �−K¯K�. The value of K must be
chosen so that this range includes all of the values of Jz that
have significant amplitudes in the time-dependent state. By
examining phase-space diagrams for the classical distribu-
tions, we found that �Jz��20 for all time, and so K=20/
was sufficient to contain the quantum distribution.

The initial classical probability distributions are chosen so
that they match the angular momentum and angular distribu-
tions for the initial quantum state. Because the initial state is
a minimum uncertainty state with fixed width in angular mo-
mentum, its width in angle is proportional to . Thus  �di-
mensionless �� enters into the classical calculation to ensure
that the initial quantum and classical states correspond to
each other.

III. RESULTS FOR A NONCHAOTIC STATE

The classical limit of the quantum tumbling of a satellite
will now be examined for a nonchaotic state, to determine
whether there is a qualitative difference between chaotic and
nonchaotic systems in their approach to classicality.

Nonchaotic motion is ensured by choosing a circular or-
bit: e=0, r�
�=a, ��
�=2�
. The time dependence in Eq.
�10� can be transformed away by the substitution �=�
−2�
, yielding an integrable equation of motion,

�̈ = − 6�2 	 sin�2�� . �17�

Fixed points for this equation occur at the angles �
=0,� /2 ,� ,3� /2. These fixed points describe motions in
which Hyperion presents the same face to Saturn at all times.
The stable fixed points correspond to the smallest moment of
inertia pointing toward Saturn.

The initial state was chosen to be far from the unstable
fixed point. It is centered at J0=4, with a standard deviation
in Jz of �=1/�2 �see Fig. 2�, and a central angle �0 equal to
zero.

A. QC differences in ŠJz‹

The classical probability distributions are found by time-
evolving a finite ensemble of systems, using Eq. �10�. The
distributions of Jz and � are found by randomly choosing the
angular momentum and orientation of each member of the
ensemble from probability distributions in Jz and � that cor-
respond to the initial quantum state. As a notational conve-
nience, we will denote the differences between the quantum
and classical expectation values in momentum as ��Jz�.

The finiteness of the ensemble leads to statistical errors,
which may be reduced by increasing its size. The standard
deviation of the fluctuations in the mean is

�m =
�

�n
. �18�

Here n is the number of members in the ensemble and � is
the standard deviation of the distribution. Any difference be-
tween the computed mean values of the quantum and the
classical variables is not significant unless it is larger than
�m. Ensembles of 1 000 000 to 20 000 000 particles were
used to ensure that the typical QC differences are greater
than �m.

As →0, the QC differences become smaller, and thus a
larger ensemble is needed to reduce the statistical errors be-
low that level. Hence different ensemble sizes were used for
different values of  in Fig. 3. The ensemble sizes were
chosen so that �m= �0.0002,0.0007,0.002� for 
= �0.0125,0.05,0.5�.

Ensembles were evolved for several values of , ranging
from =0.5 to =0.002. For �0.01, the QC differences
were far smaller than �m for any computationally feasible
ensemble sizes, so no data will be presented for �0.01.

FIG. 2. Poincare section for e=0, 	=0.5. Black circle denotes a
typical initial state.
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A plot of the QC differences in �Jz� is shown in Fig. 3. In
this and similar figures, any QC differences smaller than �m
should be ignored, since they are dominated by statistical
errors. The QC differences oscillate on the scale of the driv-
ing force, and only the envelope of these oscillations is of
interest. From Fig. 3, it is apparent that at early times the
envelope of ��Jz� grows as 
2. For longer times, the enve-
lope of the QC differences is oscillatory, as can be seen in
Fig. 4. Such recurrences are typical for nonchaotic systems
�14�. Figure 5 shows that, for fixed times, ��Jz� scales as 2.
This result is similar to that found for some other systems
�4�.

B. QC differences in distributions

The differences in �Jz� alone are insufficient to fully de-
scribe the differences between quantum and classical sys-

tems because two different probability distributions can have
the same mean but different variances and higher moments.
We shall now examine the differences between probability
distributions, and how they scale with .

Since the angular momentum distributions are discrete,
one can regard them as vectors, and measure the difference
between the quantum and classical probability vectors by the
1-norm, defined as

�qm − cl�1 = �
m

�Pcl�m� − Pqm�m�� . �19�

This probability distribution is normalized so that �mP�m�
=1. Alternatively, one can define a probability density, which

is normalized so that �P̃��m�d��m�=1. Then the 1-norm of
the probability densities takes the form

�qm − cl�1 = 	
−�

�

�P̃cl��m� − P̃qm��m��d��m� . �20�

These two forms are equivalent because P̃��m�= P��m� /�,
and the additional factor of � is canceled by the factor of � in
the integral.

Figure 6 shows that the QC differences in the probability
distributions do not tend to zero as →0. This lack of point-
wise convergence of the quantum probability distributions to
the classical limit has also been observed for other systems,
such as a particle in a box and the kicked rotor �15�. In these
one-dimensional driven system, the quantum probability dis-
tributions develop a fractal-like structure, and only the
smooth background converges to the classical probability
distribution. We will show in Sec. V C that a similar result
holds for Hyperion.

IV. RESULTS FOR A CHAOTIC STATE

In this section, the rotation of a satellite is investigated for
a chaotic state. The previous value of 	=0.5 is used, but now
the eccentricity is taken to be Hyperion’s value of e=0.1.

FIG. 3. QC differences in �Jz� vs 
, for several , with e=0,
	=0.5. For = �0.0125,0.05,0.5�, the statistical errors are �m

= �0.0002,0.0007,0.002�.

FIG. 4. QC differences in �Jz� for =0.0125, with e=0, 	
=0.5, �m=0.7�10−3.

FIG. 5. Scaling of the early time QC differences in �Jz� �denoted
��Jz�� with , for e=0, 	=0.5, showing a 2 dependence.
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The computation is carried out as in Sec. III.
The initial state is centered at dimensionless angular mo-

mentum J0=10, with a standard deviation of �=0.5, and a
central angle �0=0. This state is in the chaotic sea, far away
from any regular torii, as can be seen in Fig. 7. The maxi-
mum Lyapunov exponent for the chaotic sea is �=0.85.

This state was evolved for several periods of the driving
force, and the differences between the quantum and classical
results were computed. In Fig. 8, the QC differences in �Jz�
�denoted ��Jz�� are initially dominated by statistical errors,
which are approximately �m=2�10−4. ��Jz� grows expo-
nentially with time until the differences saturate at 
�6.
This saturation occurs when the classical trajectories ergodi-
cally fill the chaotic sea. For 
�20, the classical ensemble
saturates at �Jz��8.2. The quantum value of �Jz� also satu-
rates at approximately the same value, but with irregular
fluctuations superimposed. This suggests that the QC differ-
ences here are dominated by quantum fluctuations, once the

probability distributions have saturated the chaotic sea.

A. QC differences in ŠJz‹ for early times

To determine how the QC differences scale with , we
varied  with 
 fixed at the times of the peaks in Fig. 8. From
Fig. 9, it can be seen that ��Jz� scales as 2, the same scaling
as was found for the nonchaotic states. This 2 scaling was
previously found by a different method for other systems �4�.
The classical ensemble sizes were chosen so that �m= �1.6
�10−4 ,1.6�10−4 ,2.2�10−4� for = �1�10−3 ,3�10−3 ,8
�10−3�.

In the initial growth region of Fig. 8, the QC differences
in �Jz� vary with time as

��Jz� � e2.9
 �21�

for 
=2 between 2 and 5.5. The exponent in Eq. �21� appears
to be independent of the value of . The exponent is greater

FIG. 6. Variation of �qm−cl�1 �Eq. �19�� with time and  for the
nonchaotic state �e=0,	=0.5�. Each classical ensemble has
1 000 000 members.

FIG. 7. Poincare section for a chaotic state, 	=0.5, e=0.1.
Black circle denotes a typical initial state, with Jz=10 and �=0.5.

FIG. 8. QC differences in �Jz� vs 
 for a chaotic state, 	=0.5,
e=0.1. For = �1�10−3 ,3�10−3 ,8�10−3� the statistical errors are
�m= �1.4�10−4 ,1.4�10−4 ,2.2�10−4�.

FIG. 9. QC differences in �Jz� vs , for a chaotic state before
saturation is reached, showing a 2 dependence.
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than 2�, implying that the QC differences grow at a rate that
is greater than the classical Lyapunov exponent. Similar re-
sults have been obtained for some other systems �4,8,16�.

The exponential growth eventually saturates. This cessa-
tion of exponential growth of ��Jz� is relevant to Zurek’s
argument �2� that, absent decoherence, the QC differences
for Hyperion should reach macroscopic size within about
20 years. That argument implicitly assumes that the QC dif-
ferences will continue to grow exponentially until they reach
the size of the system. However, we find that not to be the
case.

B. QC differences in ŠJz‹ for the saturation regime

The maximum QC differences occur in the saturation re-
gime. If these differences converge to 0 as →0, then the
classical limit will be reached for all times, and there will be
no break time beyond which QC correspondence fails.

At the beginning of the saturation region �Fig. 8 and Fig.
15�, ��Jz� reaches a maximum, before decaying to a satura-
tion level, about which the differences fluctuate irregularly.
Because of this fluctuation in the saturation regime, we cal-
culate the time average of the QC differences. Here ��Jz�
was averaged over 
 from 20 to 100. As shown in Figure 10,
these averaged QC differences tend to scale as 2/3.

For sufficiently small , the peak QC differences also
scale as 2/3 �see Fig. 11�. This scaling also was found for
the maximum QC differences in a model of coupled pendu-
lums �9�, so it might be generic for chaotic systems in the
saturation regime.

C. QC differences in probability distributions

The probability distributions contain much more informa-
tion than do the averages of observables. These probability
distributions are shown in Figs. 12 and 19. We use the quan-
tity �qm−cl�1 �defined in Eq. �19�� as a measure of the QC
differences in the probabilities.

As can be seen from Fig. 13, �qm−cl�1 increases with time
before saturating, but fails to converge to 0 as →0. Since
pointwise convergence does not occur, neither for the chaotic
nor for the nonchaotic states, this lack of pointwise conver-
gence is not a result of chaos.

Most of the QC differences in the probabilities occur on a
very fine scale, and a modest amount of smoothing is suffi-
cient to cause the quantum probability distributions to better
approximate the classical results. Figure 14 shows that the
differences between the two distributions are dramatically
reduced by smoothing them over a small width. This smooth-
ing process is discussed and compared to environmental de-
coherence in Sec. V C.

To summarize the results of this section, for early times
the QC differences in �Jz� scale as 2, and increase exponen-
tially with time. The exponential growth ceases when the
probability distributions saturate the chaotic sea. Both the
maximum values and the saturation levels of the QC differ-
ences were found to scale as 2/3. A small amount of smooth-
ing can dramatically reduce the QC differences in the prob-

FIG. 10. QC differences in �Jz�, averaged over 
 from 20 to 100.
Initial state is in the chaotic sea. e=0.1, 	=0.5. This suggests that
��Jz��2/3 in the saturation regime.

FIG. 11. Maximum QC differences in �Jz� vs  for a chaotic
state. e=0.1, 	=0.5. This suggests that this maximum difference
scales as 2/3.

FIG. 12. Quantum probability density for 
=40.0, =0.002.
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ability distributions, since most of the differences come from
very fine scale structures in the quantum probability distri-
butions.

V. ENVIRONMENTAL EFFECTS

Interaction with the environment leads to decoherence
and dissipation. Decoherence is a quantum effect that causes
interference patterns to decay. The time scale upon which
this happens is model-dependent, and for some systems there
is no single decoherence time scale �17�. Strunz et al. �18�
suggest that for the rapid decoherence expected in macro-
scopic bodies, the decay time varies as a small power of �,
and is not sensitive to the system Hamiltonian.

Dissipation is a classical effect which results in diffusive
spreading of the probability distributions. Often, the time
scale for dissipation is much longer than the time scale for
decoherence, and dissipation is insensitive to �, unlike deco-
herence. But both effects are present together, and it is not
always easy to separate them.

The effect of the environment on a quantum system is
often treated by a master equation that has nonunitary time
evolution. Because an initially pure state can evolve into a
mixed state, it is necessary to compute the density matrix,
which requires much greater storage than does the computa-
tion of a state vector. The requirements for storage and com-
putation time scale like K2, where K is the number of basis
vectors needed to store a state vector.

An alternative method is to perform n evolutions of Eq.
�15� with a different realization of the random potential
added for each run. Averaging the probability distributions
that result from the each of the n runs is physically equiva-
lent to tracing over the environmental variables. The advan-
tage of this method is that the computational resources for
each run scale as K, rather than K2 for the master equation.
On the other hand, to achieve good accuracy, a large number
of realizations of the random potential must be considered, in
order to reduce the statistical errors in the quantum calcula-
tion. However the number of realizations of the random po-
tential that was needed to get sufficient accuracy was consid-
erably less than K, so this method was much more
computationally efficient than integrating the master equa-
tion.

A stochastic potential is included, in both the quantum
and classical mechanics, to model the effect of the environ-
ment on the satellite. The simplest stochastic potential that
yields a random torque is

Hint = V0R�t�cos��� . �22�

Here R�t� is a correlated random function of zero mean and
unit variance, V0 is the amplitude of the random potential,
and 
c is its correlation time. A correlated random function is
used because the fluctuations in the environment do not oc-
cur instantly, but rather they occur and decay on some time
scale 
c. The correlated random sequence R�t� can be con-
structed from an uncorrelated sequence, as is shown in Ap-
pendix A. The results are not sensitive to the exact form of
Eq. �22�, and qualitatively similar results were obtained
when cos��� was replaced by cos�2��. As is shown in Ap-
pendixes B and C, the effects of the environment are ex-

FIG. 13. �qm−cl�1 vs time for different values of , for a chaotic
state, e=0.1.

FIG. 14. Quantum and classical probability densities for 

=40.0, =0.002. Both quantum and classical densities are con-
volved with a triangular filter of width 0.25 in Jz.

FIG. 15. Variation of ��Jz� with 
 with and without the random
potential with � /Vch=0.024, 
c=0.01 �chaotic state, =0.05�.
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pected to depend mainly on the product �2
c, rather than on
the two parameters separately. Therefore, we label the results
by the momentum diffusion parameter, D=�2
c /6, which is
derived in Appendix B.

The environmental perturbation should be much weaker
than the tidal force on the satellite. Hence we compare the
interaction potential Eq. �22� to the amplitude of the tidal
potential, made dimensionless by dividing by I3 /T2, which is
Vch=3�2�2	, or Vch�21 for 	=0.5. In all cases reported in
this paper, the environmental perturbation was so weak as to
have no significant effect on the classical results, so its only
significant effect is to produce decoherence in the quantum
results. The same parameters as in the previous chaotic case
were used, 	=0.5 and e=0.1.

Many realizations of the random potential were com-
puted, and the results averaged, to get an accurate measure of
the effects of the environment. We used 500 realizations to
obtain results that are not strongly affected by statistical er-
rors. Figure 15 shows the QC differences in �Jz�, with and
without the random environmental potential. The environ-
ment has no significant effect at early times, but in the satu-
ration regime the QC differences are reduced. Since the pri-
mary effect of environmental decoherence is to destroy fine-

scale structures in the probability distributions, which do not
affect averages like �Jz�, this result may seem surprising. In
fact, a typical trace of �Jz� versus time for a single realization
of the random potential will look very much like that from a
run without the random potential in Fig. 15. But as time
progresses, the oscillations in �Jz� for different realizations of
the random potential tend to get out of phase with each other,
and the decreased amplitudes of the QC differences in Fig.
15 are due to the averaging over the many different realiza-
tions of the random potential.

In Fig. 16, 100 realizations of the interaction potential
were sufficient to find the maximum QC differences in �qm
−cl�1 �Eq. �19��. However, 700 realizations of the interaction
potential were insufficient to resolve the QC differences in
�qm−cl�1 in the saturation regime, and so for computational
reasons these will be estimated rather than directly com-
puted. The variation of these differences with  and the en-
vironmental parameters can be seen in Figs. 17 and 18.

It can be seen in Fig. 19 that, with the inclusion of the
environmental perturbation, the quantum probability distri-
bution is much closer to the classical distribution than with-
out the environment �compare Fig. 12�.

FIG. 16. Variation of �qm−cl�1 with 
 for different numbers n of
realizations of the random potential with � /Vch=0.012, 
c=0.01
�chaotic state�.

FIG. 17. �qm−cl�1 vs 
 for =0.05, for varying D=�2
c /6.

FIG. 18. �qm−cl�1 vs 
 for varying , with 
c=0.01 and � /Vch

=0.012, for a chaotic state.

FIG. 19. Quantum and classical probability distributions at 

=40, with =0.0125, � /Vch=0.012, and 
c=0.01 for the chaotic
state. In �b� the solid lines denote the results with the environment,
and squares without the environment, showing that the classical
probability distribution is not significantly affected by the
environment.
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A. Environmental effects in the saturation regime

In the saturation regime, the QC differences in �qm−cl�1
�Eq. �19�� appear to decay exponentially from their maxi-
mum value to a saturation level �see Figs. 17 and 18�. The
rate of this decay is a duffusion time, and is not the decoher-
ence time, as will be shown shortly. From Fig. 20 it is clear
that, for sufficiently large values of 
c, the decay time 
d no
longer depends on 
c, but settles at 
d�5.6. For sufficiently
large � and sufficiently small , the decay time was found to
also have approximately this same limit.

To test whether this decay rate is governed by quantum
mechanics, we compared two classical ensembles with dif-
ferent initial values of J0 �J0=10 and J0=11�, and computed
the 1-norm of the difference between them as a function of
time. Figure 21 shows that these initially different classical
ensembles converge at a rate given by 
d=5.6. So, appar-
ently, this time scale measures how quickly the differences
between two different distributions decrease as they both
grow to fill the chaotic sea.

It is not clear from Figs. 17 and 18 whether the QC dif-
ferences in the probability distributions eventually decrease
to zero or reach a nonzero long-time limit. In Fig. 22, the
long-time saturation level of �qm−cl�1 is plotted as a function
of the number n of realizations of the random potential. In
the limit n→�, the QC differences approach a small value
that appears to be slightly positive. However, that extrapo-
lated limit is substantially smaller than the typical statistical
errors for ensemble sizes of 1 000 000 to 2 000 000, and so is
not significantly different from zero.

B. Scaling of the maximum QC differences

The maximum value of �qm−cl�1 for the quantum and
classical probability distributions must depend on the three
parameters , �, and 
c. However, in agreement with argu-
ments presented by Pattanayak et al. �19�, the data were
found to collapse onto a single curve parametrized by

FIG. 20. Decay times 
d of �qm−cl�1 vs the correlation time 
c

of the perturbing environment, with =0.05, � /Vch=0.012, in the
saturation regime �	=0.5,e=0.1�.

FIG. 21. 1-norm of the difference between two classical en-
sembles, one with �Jz�=10, the other �Jz�=11. =0.05, � /Vch

=0.012, 
c=0.01.

FIG. 22. �qm−cl�1 vs n−1/2 at 
=40. n is the number of realiza-
tions of the random potential �� /Vch=0.012, 
c=0.01 for the cha-
otic state�.

FIG. 23. Maximum values of �qm−cl�1 vs 2 /D. The points
labeled , �, and 
c represent data sets where , �, and 
c were
varied with the other two parameters held constant.
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�=2 /D �Fig. 23�. From a least-squares fit, the scaling rela-
tionship was found to be

max��qm − cl�1� � �2

D
1/6

. �23�

This scaling as �1/3 was also found for a coupled rotor
model without decoherence �9�. This result suggests that the
1/3 scaling found here might be generic for systems with
more than one degree of freedom, and also suggests that the
pointwise convergence of the quantum probability distribu-
tion to the classical distribution may occur because of other
interacting degrees of freedom �not necessarily an external
environment�.

C. Effects of decoherence vs smoothing

The effect of environmental decoherence is analogous to
applying a smoothing filter to the quantum distributions, but
the two effects are not exactly the same. A small amount of
smoothing does not affect the average values of an observ-
able, whereas decoherence can have an effect by dephasing
the quantum fluctuation, which are then averaged over �see
Fig. 15�. This effect may be peculiar to systems with only
one degree of freedom.

Another difference is in the scaling of the QC differences
with the parameters. Figure 24 shows �qm−cl�1 in the satu-
ration regime as a function of  and �s, where �s is the
half-width of the triangular filter used to smooth the quantum
distribution. In the saturation regime, �qm−cl�1 was found to
depend on the single parameter  /�s, where it obeys the
scaling relation

�qm − cl�1 = 0.58� 

�s
0.44

. �24�

Equation �24� shows a scaling relationship similar to Eq.
�23�. This may be understood as follows. Environmental per-
turbations cause momentum diffusion. This effect is propor-
tional to �D, and so �s should be compared to D2. Hence, in
the late-time limit, smoothing and decoherence rely on a
similar composite parameter. However, the power laws are
different in the two cases, and so the two processes are not
entirely equivalent.

In summary, the environmental perturbations were found
to drastically reduce the fine-scale structure in the quantum
distributions. The measure of the QC differences, �qm−cl�1,
was found to initially increase with 
 in a form similar to the
results in Sec. IV. After reaching a maximum value, �qm
−cl�1 then decreased exponentially with time. The decay time
was found to be a classical diffusion time, and not a deco-
herence time. The maximum QC differences were found to
scale as �2 /D�1/6, where D is the momentum diffusion pa-
rameter.

VI. CLASSICAL LIMIT FOR HYPERION

A. QC differences without environment

Having calculated the QC differences for the chaotic ro-
tation of a tidally driven satellite, and determined how they

scale with the relevant parameters, we shall now use this
information to estimate the magnitude of quantum effects on
Hyperion. In particular, we shall assess Zurek’s claim �2,6�
that environmental decoherence is needed to ensure its clas-
sical behavior. We first examine the magnitude of the QC
differences for Hyperion if the effect of the environment is
ignored.

First we must determine the dimensionless parameter 
=�T / I3. Using Hyperion’s mean density of �=1.4 g cm−3,
and treating it as an ellipsoid with moments of inertia I3
� I2� I1, then I3=2.1�1029 kg m2. Using the value of �
=1.05�10−34 J s, and the orbital period T=1.8�106 s, then
yields

 = 9.3 � 10−58. �25�

In Sec. IV B, it was found that the maximum QC differ-
ences in �Jz� scale as 2/3. Hence the maximum QC differ-
ence in the dimensionless angular momentum �Jz� for Hype-
rion should be approximately 5�10−37. So there should be
no observable difference between the quantum and classical
averages of angular momentum for Hyperion.

This result contradicts Zurek’s claim that, if decoherence
is ignored, there should be a break time of no more than
20 years, beyond which the QC differences would become
macroscopic. As was pointed out in the Introduction, if that
break time is interpreted as the limit of the Ehrenfest regime,
then it does not mark the end of the classical domain. But in
�6�, a break time of a similar order of magnitude was esti-
mated for the end of the Liouville regime. Both of those
estimates were based on an exponential growth of the QC
differences that occur in a chaotic state. Now the deviations
from Ehrenfest’s theorem do, indeed, grow exponentially un-
til they reach the size of the system, as is needed for Zurek’s
argument to succeed. But, as was shown in Sec. IV A, the
exponential growth of the differences between quantum state
averages and classical ensemble averages will saturate before
those differences reach the size of the system, and the satu-
ration value scales with a small power of �. Hence, for the

FIG. 24. �qm−cl�1 for smoothed probability distributions for
varying �m and  in the saturation regime �
=20�.
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actual �small� value of �, the QC differences in the Liouville
regime can remain small for all time, and there is no effec-
tive break time for the regime of classicality.

The differences in �Jz� become vanishingly small in the
classical limit, but this does not imply that the full quantum
probability distribution converges to the classical limit. We
know that the quantum probability distribution will not con-
verge to the classical distribution in a pointwise fashion. But
we can ask what resolution is needed for a detector to be able
to discriminate between these two distributions. Let us sup-
pose that two probability distributions are practically indis-
tinguishable when �qm−cl�1�0.01. Using the scaling result
in Fig. 24, we find that a resolution �s of 1 part in
10−60 rad/s is needed to resolve the two probability distribu-
tions. This suggests that it would be practically impossible to
observe the quantum effects in the probability distributions,
even without invoking environmental decoherence.

B. Environmental effects on Hyperion

There are many environmental perturbations that can af-
fect the satellite: random motion of the particles within the
satellite, random collisions with interplanetary dust, and ran-
dom light fluctuations from the Sun, to name a few. We shall
consider the random collisions with dust particles as an ex-
ample.

To do this, we treat the interplanetary dust as a dilute gas,
and Hyperion as a sphere rotating about a fixed axis under
the influence of random motion of the fluid. The dimensional
momentum diffusion parameter is �20�

D̃ = 16�kTRh
3� . �26�

Using Eq. �B4�, the dimensionless momentum diffusion pa-
rameter D is

D =
8�kTRh

3�T3

I3
2 . �27�

Here T is the temperature, k is Boltzmann’s constant, Rh is
the radius of Hyperion, and � is the kinetic viscosity of the
dust fluid, which, following �21�, is calculated to be

� =
nmv̄L

3�2
. �28�

Here v̄ is the rms velocity of the dust particles, m is their
mass, n is their number density, L=1/n�r2 is their mean free
path, and r is the radius of a dust particle.

The properties of interplanetary dust were measured by
the Voyager space probes. The average number density of
particles near Saturn is n=4�10−8 m−3 �22�. The average
mass of the dust grains is estimated to be m=10−10 g, and
their radius is about r=10−6 m. The temperature in the vicin-
ity of Saturn is about T�135 K �12�.

Using Eq. �28�, treating Hyperion as a sphere of radius
Rh=150 km, and using �=1.8�10−6 Pa s for the kinetic vis-
cosity, we estimate the dimensionless angular momentum
diffusion parameter to be D�6.4�10−50. Even such a small
value is sufficient to reduce �qm−cl�1 substantially. Using Eq.

�23�, the order of magnitude of �qm−cl�1 for Hyperion is
found to be 10−10. This implies that the classical and quan-
tum probability distributions will agree almost exactly for a
large body such as Hyperion. Without the influence of the
environment, the value of �qm−cl�1 due to the very fine-scale
differences between the quantum and classical probability
distributions might be of order unity. But, of course, these
differences would be impossible to resolve because they ex-
ist on such a very fine scale. So the effect of decoherence is
to destroy a fine structure that would be unobservable any-
how.

VII. CONCLUSION

In this paper, the regular and chaotic dynamics of a satel-
lite rotating under the influence of tidal forces was examined,
with application to the motion of Hyperion. Quantum and
classical mechanics were compared for both types of initial
state, and the scaling with � of the quantum-classical �QC�
differences was determined. The effect of the environment
was modeled, and its effect on the QC differences was esti-
mated, so as to determine whether environmental decoher-
ence is needed to account for the classical behavior of a
macroscopic object like Hyperion. Two measures of the dif-
ferences between quantum and classical mechanics were ex-
amined: the QC difference in the average angular momen-
tum, ��Jz�Q− �Jz�C�, and the differences between the
probability distributions, �qm−cl�1 �Eq. �19��.

For early times, the QC differences in �Jz� grow in time as

2 for the nonchaotic state, and as e2.9
 for the chaotic state.
At longer times, the QC differences saturate for the chaotic
state, but oscillate quasiperiodically for the nonchaotic state.
The magnitude of the QC differences scales as 2 �dimen-
sionless �� at early times, for both the chaotic and nonchaotic
states. This 2 scaling persists for all times for the noncha-
otic state. But the QC differences that occur in the saturation
regime of the chaotic state scale as 2/3. A similar scaling has
also been observed for a model of two coupled rotors �9�, so
this result is not peculiar to the particular model studied in
this paper.

The value of the dimensionless � for Hyperion is =9.3
�10−54, for which the 2/3 scaling relation predicts a maxi-
mum value for the QC difference in �Jz� to be 5�10−37.
Therefore, there is no need to invoke environmental decoher-
ence to explain the classical behavior of �Jz� for a macro-
scopic object like Hyperion.

Although the differences between the quantum and clas-
sical averages of observables become very small in the mac-
roscopic limit, this need not be true for the differences be-
tween quantum and classical probability distributions.
Indeed, the quantum probability distributions do not con-
verge pointwise to the classical probability distributions, for
either the nonchaotic or the chaotic states. A modest amount
of smoothing of the quantum distribution reveals that it is
made up of an extremely fine-scale oscillation superimposed
upon a smooth background, and it is that smooth background
that converges to the classical distribution. Similar behavior
has been found for other one-dimensional systems �15�. This
smoothing can be regarded as an inevitable consequence of
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the finite resolving power of the measuring apparatus. Alter-
natively, it may be impossible to observe the fine structure
because of environmental decoherence. At the macroscopic
scale of Hyperion, the primary effect of decoherence is to
destroy a fine structure that is anyhow much finer than could
ever be resolved by measurement.

When the environment was included, the results were
found to follow a scaling relationship proposed by �19�: the
maximum distance between the classical and the quantum
probability distributions is proportional to �2 /D�1/6. Here D
is the momentum diffusion parameter �see Appendix B�. This
suggests that the quantum probability distributions will ap-
proach the classical distributions pointwise as →0, pro-
vided that D is nonzero. With environmental perturbations
included, the QC differences in the probability distributions
scaled as �qm−cl�1�1/3. A similar scaling was also found
for two autonomous coupled rotors �9�. This suggests that
pointwise convergence of the quantum probability distribu-
tion to the classical value may be typical for systems with
more than one degree of freedom, and the lack of such con-
vergence for systems with only one degree of freedom may
be pathological. The role of the environment, in the model of
this paper, is then to cure this pathology by supplying more
degrees of freedom.

Taking D to be the momentum diffusion parameter for
rotation of Hyperion due to collisions with the interplanetary
dust around Saturn, we find �estimated from Eq. �23�� that
the maximum of �qm−cl�1 that Hyperion should exhibit
should be of order 10−10. Thus decoherence would cause the
quantum probability distribution to converge to the classical
distribution in essentially a pointwise fashion.

Coarse graining �due to the finite resolution power of the
measurement apparatus� will also decrease the QC differ-
ences in the probability distributions. In the saturation re-
gime, the measure �qm−cl�1 of that difference was found to
be proportional to � /�s�0.44, where �s is the width of the
smoothing filter. This shows that decoherence and smoothing
have similar effects. But they are not exactly equivalent,
since their effects scale with somewhat different values of .

In conclusion, we find that, for all practical purposes, the
quantum theory of the chaotic tumbling motion of Hyperion
will agree with the classical theory, even without taking ac-
count of the effect of the environment. Decoherence aids in
reducing the quantum-classical differences, but it is not cor-
rect to assert that environmental decoherence is the root
cause of the appearance of the classical world.
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APPENDIX A: CORRELATED RANDOM NUMBER
GENERATION

To describe the effect of environmental perturbations, we
require a sequence of correlated random numbers. Genera-

tors for uncorrelated random variates are commonly avail-
able, but algorithms for generating a correlated sequence are
not common. We show here how to generate a random se-
quence having a controlled amount of correlation from a
standard sequence of independently distributed random num-
bers. Let �ri� be such a sequence, with zero mean and unit
variance,

�ri� = 0, �A1�

�rirj� = �ij . �A2�

To generate a correlated sequence �Ri� from the uncorre-
lated sequence, we simply form linear combinations,

Ri+1 = cRi + �1 − c�ri+1, �A3�

where c is a chosen positive constant �c�1�, and R1�r1. It
follows from Eq. �A3� that

Ri+1 = ci−1r1 + �
m=0

i−1

cm�1 − c�ri+1−m. �A4�

From this result, we can calculate the degree of correlation in
our new sequence. Taking i� j, and using Eq. �A4� and Eq.
�A2�, we obtain

�RiRj� = �
m=0

i−2

�
m�=0

j−2

cm+m��1 − c�2�ri+1−mrj+1−m��

+ �
m=0

i−2

cm�1 − c�cj−1�r1ri+1−m�

+ �
m�=0

j−2

cm��1 − c�ci−1�rj+1−m�r1� + ci−j−2�r1
2� .

�A5�

Equation �A5� can be simplified using Eq. �A2�. Performing
the resulting geometric sums then yields

�RiRj� = �1 − c

1 + c
ci−1�c1−j − cj−1� . �A6�

For j�1 and c�1, Eq. �A6� becomes

�RiRj� � �1 − c

1 + c
ci−j . �A7�

This discrete sequence must now be converted into a
function of time. Each Ri refers to the correlated random
function at time ti. Taking the time interval between the ran-
dom numbers to be �t, then it is appropriate to define a
correlation time 
c=�t / �ln�c�� for the correlated random
function, for which we have

�R�0�R�
�� � �1 − c

1 + c
e−
/
c. �A8�

APPENDIX B: MOMENTUM DIFFUSION PARAMETER

The momentum diffusion parameter �D� is needed to cal-
culate the effect of the environment on the system
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�17,18,23�. In particular, the form of D is needed to show
that the scaling result in �19� applies also to our model.

Consider the random potential of the form V=V0 cos���.
The random torque is then F=V0R�t�sin���. Here R�t� is a
correlated random function, as defined in Appendix A. From
this, we can find the momentum diffusion parameter through
the relation

D̃ = lim
t→0

�s�t�2�
t

. �B1�

The integral of the torque over time yields the angular mo-
mentum, hence the variance of the angular momentum under
this random torque is given by

�s2�t�� =
V0

2

2
	

0

t 	
0

t

dt�dt��R�t��R�t���

=
V0

2

2
	

0

t 	
0

t

dt�dt��1 − c

1 + c
c�t�−t��/tc

= V0
2�1 − c

1 + c
�tc

2 + tct + tc
2 exp�− t/tc�� . �B2�

The quantity s�t� is the standard deviation of the angular
momentum for a random walk under the influence of Eq.
�22�, and � is the standard deviation of the random potential.
For t� tc, we have

�s2�t�� � ttcV0
2�1 − c

1 + c
 . �B3�

Using Eq. �B1� and choosing the value c=1/2, we obtain

the momentum diffusion constant D̃ to be

D̃ =
V0

2tc

3
. �B4�

In the body of this paper, we use a dimensionless momen-
tum diffusion parameter D. The relation between these two
quantities is

D = D̃
T3

2I3
2 =

�2
c

6
, �B5�

where 
c is defined to be 
c= tc /T and �=V0T2 / I3.

APPENDIX C: DERIVATION OF SCALING PARAMETER

Pattanayak et al. �19� suggested that at long times the QC
differences in the probability distribution should become a
function of the single parameter �, where �=�a�bDc, for
some powers a, b, and c. Here D is the diffusion parameter,

defined in Appendix B, and � is the classical Lyapunov ex-
ponent.

The argument is similar to one presented in �2�. It as-
sumes that the differences between quantum and classical
mechanics are due to the Moyal terms in the equation of
motion for the Wigner function. These terms have the form

�
n=1

�
�2n

22n�2n + 1�!
��

2n+1V����p
2n+1�w, �C1�

where �w is the Wigner function for the state. For a chaotic
system, the phase-space distribution will develop very fine
structures as it fills the accessible phase space, with the rate
at which these fine structures develop being governed by the
Lyapunov exponent �. Since these terms depend on �p

2n+1�w,
they will become larger as time progresses and the fine struc-
ture grows. However, the inclusion of environmental pertur-
bations on the system causes diffusion, which will limit the
growth of the fine structure. When these effects balance each
other, the fine structure is expected to have an equilibrium
scale �2,19� given by

��w

�p
�� �

2D
. �C2�

If this equilibrium momentum scale is sufficiently large com-
pared to �, then only the first-order Moyal term should be
significant. Under this assumption, the QC differences
should be a function of this Moyal term, given by

� = �2�5/2D−�3/2��
3V���
��3 . �C3�

It is argued �2� that the characteristic scale on which �w

varies is ����D /�. The characteristic variation of ��
3 V���

can be found by a Taylor expansion of ��
3 V����sin��� about

an arbitrary point �0=0. Averaging the result over �0=0
then yields

�3V���
��3 � �� ��D

�
. �C4�

Inserting Eq. �C4� into Eq. �C3� yields

� �
�2

D
. �C5�

Thus, once the growth fine scale structure of the probabil-
ity distribution reaches equilibrium with diffusion, the QC
differences in the probability distribution should be a func-
tion of �2D−1. The results in Sec. V confirm this conclusion.
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